Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 46,
  • Issue 11,
  • pp. 1613-1620
  • (1992)

Evaluation of Signal Reabsorption and Sample Heating in NIR-Raman Measurements

Not Accessible

Your library or personal account may give you access

Abstract

In order to assess the magnitude of the experimental problem of NIR absorption in NIR-Raman measurements, 1064 nm-Raman spectra of representative scattering lipid suspensions were measured, the spectral artifacts were compared, and the relative magnitude of sample heating was determined by using principal component analysis to measure the shift in a thermotropic phase transition. As in a previous evaluation of the problem, solvent O-H absorption was found to be the main difficulty because it significantly attenuates the Raman signal from C-H stretching. This is true even though the effective sample thickness was only 175 μm. Small Raman intensity artifacts were created by the changes in NIR absorption or optical scattering that occur with changing lipid concentration or state of liposome aggregation. Though use of D<sub>2</sub>O as the suspending solvent greatly improved the intensity of the C-H stretching region, in comparison to H<sub>2</sub>O suspensions, observed laser heating was reduced by only a factor of two. C-H stretching absorption can contribute to the heating when D<sub>2</sub>O is the solvent. In D<sub>2</sub>O the lipid sample heating was reduced to an acceptable level (1°C) when the laser illumination was 740 mW over a 2.5-mm circular spot. Thus power density needs to be kept at less than 1/10 that typically used in similar visible Raman experiments. O-H containing samples without strong optical scattering show pronounced spectral attenuation in the 180° geometry, if the spectrometer optics collect from deep within the specimen. This consideration places limitations on the use of long pathlengths to improve signal intensity. Extinction pathlengths available from the literature provide a convenient way to extrapolate these results to other NIR excitation wavelengths. Shifting excitation from 1064 nm to 910 nm would avoid most of the Raman spectral attenuation by O-H and reduce the H<sub>2</sub>O lipid suspension sample heating by a factor of two. Unfortunately, heating of the D<sub>2</sub>O suspensions will not be significantly reduced even if the excitation is moved to 830 nm.

PDF Article
More Like This
Improvement of dark signal evaluation and signal-to-noise ratio of multichannel receivers in NIR heterodyne spectroscopy application for simultaneous CO2 and CH4 atmospheric measurements

Sergei Zenevich, Iskander Gazizov, Dmitry Churbanov, Maxim Spiridonov, and Alexander Rodin
OSA Continuum 3(7) 1801-1810 (2020)

Evaluation of hyperspectral NIRS for quantitative measurements of tissue oxygen saturation by comparison to time-resolved NIRS

Matthew Kewin, Ajay Rajaram, Daniel Milej, Androu Abdalmalak, Laura Morrison, Mamadou Diop, and Keith St Lawrence
Biomed. Opt. Express 10(9) 4789-4802 (2019)

Evaluation of the changes in human milk lipid composition and conformational state with Raman spectroscopy during a breastfeed

Johanna R. de Wolf, Anki Lenferink, Aufried Lenferink, Cees Otto, and Nienke Bosschaart
Biomed. Opt. Express 12(7) 3934-3947 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved