Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 45,
  • Issue 6,
  • pp. 969-976
  • (1991)

A Method for Background Reduction in a Supersonic Jet/Multiphoton Ionization Reflectron Time-of-Flight Mass Spectrometer

Not Accessible

Your library or personal account may give you access

Abstract

A method of background reduction for supersonic jet spectroscopy (SJS) and multiphoton ionization mass spectrometry (MPIMS) is described. This method is based on the ion trajectory difference of the sample ions, generated from the jet-cooled molecules, and the background ions during the flight from the acceleration region to the detector in a reflectron time-of-flight mass spectrometer (TOFMS). Studies of the ionization signal profiles of the sample pulse and background indicate that the jet-cooled sample molecules have much higher linear velocities in the jet expansion axis than the background molecules. On the basis of this fact, a computer simulation on the ion trajectory in the TOFMS is performed. The simulation results suggest that it is possible to selectively detect the sample ions if a sufficient flight distance is provided. It is demonstrated that, with a reflectron TOFMS which provides a longer flight length and a less diffused sample-ion packet, the intense background signals can be significantly reduced with the use of an ion deflector and the proper adjustment of the time delay between the laser and the sample pulse. Finally, an example of the application of this method for background reduction in SJS and MPIMS with the fast atom bombardment and laser desorption techniques for sample volatization is given.

PDF Article
More Like This
Ultrasensitive detection of atmospheric constituents by supersonic molecular beam, multiphoton ionization, mass spectroscopy

Jack A. Syage, James E. Pollard, and Ronald B. Cohen
Appl. Opt. 26(17) 3516-3520 (1987)

Molecular analysis by ionization of laser-desorbed neutral species

Keith R. Lykke, Peter Wurz, Deborah H. Parker, and Michael J. Pellin
Appl. Opt. 32(6) 857-866 (1993)

Development of a jet–REMPI (resonantly enhanced multiphoton ionization) continuous monitor for environmental applications

Harald Oser, Michael J. Coggiola, Gregory W. Faris, Steve E. Young, Bengt Volquardsen, and David R. Crosley
Appl. Opt. 40(6) 859-865 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.