Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 45,
  • Issue 3,
  • pp. 390-397
  • (1991)

Time-Resolved FT-IR Absorption Spectroscopy Using a Step-Scan Interferometer

Not Accessible

Your library or personal account may give you access

Abstract

The implementation of time-resolved step-scan FT-IR spectroscopy with a commercial interferometer is described. With the use of the photoreaction of the biological system bacteriorhodopsin as an example which exhibits infrared spectral changes smaller than 10<sup>−2</sup> absorbance units, the quality of the method is demonstrated. A comparison with conventional flash-photolysis experiments with a monochromatic infrared monitoring beam clearly demonstrates the multiplex advantage. The advantage of covering the total time course of the reaction allows for a variety of data analysis, such as forming difference spectra between intermediates of the reaction and the deduction of time courses of absorbance changes at selected wavenumbers. The mirror stability is better than ±1.5 nm, which is sufficient for the reliable measurement of small absorbance changes.

PDF Article
More Like This
Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy

Markus Brandstetter, Andreas Genner, Clemens Schwarzer, Elvis Mujagic, Gottfried Strasser, and Bernhard Lendl
Opt. Express 22(3) 2656-2664 (2014)

High-information time-resolved step-scan Fourier interferometer

Georges Durry and Guy Guelachvili
Appl. Opt. 34(12) 1971-1981 (1995)

Visible intracavity laser spectroscopy with a step-scan Fourier-transform interferometer

Kimberly Strong, Timothy J. Johnson, and Geoffrey W. Harris
Appl. Opt. 36(33) 8533-8540 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.