Abstract

A unique echelle spectrometer system employing charge injection device (CID) array detector technology for use in inductively coupled plasma atomic emission spectroscopy (ICP-AES) is described. Due to improvements in optical design, this system offers increased wavelength coverage and improved light throughput over those of previous systems. Low sensitivity in the far-ultraviolet has been considered a major draw-back when silicon-based detectors are used, due to absorbance in the insulating SiO<sub>2</sub> layer. The problem has been overcome through the use of a wavelength conversion phosphor. Therefore, detection limits comparable to those available with most commercial instruments have been obtained even in the far-UV. Operating parameters including precision, resolution, and background correction are also discussed. An analysis of the National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1643b demonstrates that the system is capable of simultaneously determining at least 15 elements using 31 emission wavelengths with a high degree of accuracy.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription