Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 43,
  • Issue 8,
  • pp. 1341-1343
  • (1989)

Automatic Sampling System Employing a Nebulizer for Solid-Surface Room-Temperature Phosphorescence Analysis

Not Accessible

Your library or personal account may give you access

Abstract

A new experimental system for the automation of Solid-Surface Room Temperature Phosphorescence (SSRTP) has been constructed. Samples were sprayed onto a moving filter paper by means of a conventional atomic absorption nebulizer. A new sample holder, which permits measurements of a previously optimized position for a maximum phosphorescent signal, has been designed and adapted to the cell compartment of the spectrofluorimeter. The results show that a considerable step has been taken towards the automation of SSRTP and, therefore, to its application in areas where numerous samples are handled routinely.

PDF Article
More Like This
Room temperature phosphorescence from Si-doped-CD-based composite materials with long lifetimes and high stability

Guangqi Hu, Yixuan Xie, Xiaokai Xu, Bingfu Lei, Jianle Zhuang, Xuejie Zhang, Haoran Zhang, Chaofan Hu, Wenshi Ma, and Yingliang Liu
Opt. Express 28(13) 19550-19561 (2020)

Temperature measurements of single droplets by use of laser-induced phosphorescence

Alaa Omrane, Greger Juhlin, Frederik Ossler, and Marcus Aldén
Appl. Opt. 43(17) 3523-3529 (2004)

Lifetime-tunable green room temperature phosphorescence of carbon dots by the multi-step modification

Jinshu Huang, Jinyang Zhu, Gang Yang, Yongsheng Zhu, Xiumei Xu, and Gencai Pan
Opt. Express 29(25) 41014-41022 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.