Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 43,
  • Issue 7,
  • pp. 1223-1232
  • (1989)

Easily and Noneasily Ionizable Element Matrix Effects in Inductively Coupled Plasma Optical Spectrometry

Not Accessible

Your library or personal account may give you access

Abstract

Changes in analyte emission intensities occur when either easily or non-easily ionizable elements are present as concomitant species at a concentration of 0.05 M. The direction (enhancement or depression of emission signals) and magnitude of the matrix effect are strongly dependent on radial and vertical location in the plasma. At some heights in the ICP, matrix-induced depressions of the emission intensity in the center are equal to enhancements off-center. As a result, no change in the line-of-sight emission intensity is observed. Initial fluorescence measurements suggest that the number of analyte ions in the normal analytical zone decreases in the presence of each of the concomitant species studied. However, it appears that the presence of concomitant species enhances the fraction of ions that are excited and that therefore emit light. The presence of Na and K resulted in larger enhancements in the fraction of ions excited than did the presence of Fe, Ni, or Ba.

PDF Article
More Like This
Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

Michaela Galiová, Jozef Kaiser, Francisco J. Fortes, Karel Novotný, Radomír Malina, Lubomír Prokeš, Aleš Hrdlička, Tomáš Vaculovič, Miriam Nývltová Fišáková, Jiří Svoboda, Viktor Kanický, and Javier J. Laserna
Appl. Opt. 49(13) C191-C199 (2010)

Quantitative analysis of Fuller’s earth using laser-induced breakdown spectroscopy and inductively coupled plasma/optical emission spectroscopy

I. Rehan, M. Z. Khan, K. Rehan, S. Sultana, M. U. Rehman, R. Muhammad, M. Ikram, and H. Anwar
Appl. Opt. 58(16) 4227-4233 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.