Ammonia and eight aliphatic amines (ranging in alkyl chain length from <i>C</i><sub>1</sub> to <i>C</i><sub>16</sub>) are photolyzed at 193 nm, producing fluorescent molecular fragments (NH from ammonia; CN, CH, and NH from the amines). Fluorescence from NH is used to quantify ammonia; CN fluorescence is used to quantify the amines. Limits of detection in the 10-50 pmol regime, precision of ~6% RSD, and linear dynamic ranges of 1-3 decades in, quantity of parent compound are observed. A small but discernible "large molecule effect" exists; as the size of the alkyl chain in RNH<sub>2</sub> increases, the limit of detection increases, and the dependence of the fragment fluorescence signal on photolysis laser fluence also increases. Attempts to enhance fragment fluorescence intensities via "probe-laser" excitation of ground-state fragments were unsuccessful; it is inferred that, at the photolysis fluences employed (~2 × 10<sup>18</sup> photons/cm<sup>2</sup>), few ground-state fragments are formed.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription