Abstract

Analyzing distributions of data represents a common problem in chemistry. Quantile-quantile (QQ) plots provide a useful way to attack this problem. These graphs are often used in the form of the normal probability plot, to determine whether the residuals from a fitting process are randomly distributed and therefore whether an assumed model fits the data at hand. By comparing the integrals of two probability density functions in a single plot, QQ plotting methods are able to capture the location, scale, and skew of a data set. This procedure provides more information to the analyst than do classical statistical methods that rely on a single test statistic for distribution comparisons.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription