Abstract

Resonant two-photon ionization (R2PI) has been demonstrated for several classes of biomolecules in a supersonic jet. These thermally labile and nonvolatile species have been vaporized with pulsed laser desorption, with the use of a CO<sub>2</sub> laser from a ceramic surface with subsequent entrapment in a jet expansion. R2PI is then demonstrated in a time-of-flight mass spectrometer (TOFMS) with the use of ultraviolet laser radiation at either 280 or 266 nm. The 280-nm wavelength is found to be a fairly general tool for exciting the π-π* transition of the molecules under study, <i>viz</i>., metabolites of catecholamines, indoleamines, and tyrosine near their respective origin regions. The resulting mass spectra exhibit soft ionization where either molecular ions or minimal fragmentation is produced. At frequencies of much higher energy than that of the origin, fragmentation becomes increasingly difficult to prevent.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription