Binary liquid mixtures near their consolute critical points are shown to possess desirable thermophysical properties for thermal lens absorption measurements. By use of a 2,6-dimethylpyridine/water mixture near critical composition and temperature, sensitivity was found to be enhanced relative to pure liquids by the Soret effect in which a concentration gradient is created between the two solvent components by thermally induced mass diffusion within the laser-excited temperature gradient. A 35-fold increase in sensitivity relative to a thermal expansion lens effect in pure water was obtained. A mechanism of phase separation unique to the critical point region known as spinodol decomposition was observed, as the sample temperature was driven above the critical point by laser excitation. This phenomenon was also found to be a potentially useful spectrophotometric technique for the thermooptical detection of small absorbances.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription