A high-powered, atmospheric-pressure, helium microwave-induced plasma (MIP) is used as the interface between a gas chromatograph (GC) and a Fourier transform near-infrared (FT-NIR) emission spectrometer. By the collection of a series of time-resolved interferograms when organic compounds elute from the GC into the plasma, a complete account of both spectral and chromatographic activity is recorded. Computer-generated, element-specific chromatographic reconstructions for each of eight different nonmetals are obtained from a single injection of a chemical mixture. Atomic emission intensity vs. chromatographic retention time is plotted for each of eight or more optical frequencies chosen from the 15,700-7900 cm<sup>−1</sup> region. The frequencies are preselected to coincide with spectral lines of C, H, N, O, F, Cl, Br, and S emitting from the helium MIP. This unique GC/MIP/FT-NIR emission spectrometer provides simultaneous multielement-specific chromatographic detection of a variety of nonmetals important to synthetic organic chemistry.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription