Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 36,
  • Issue 4,
  • pp. 369-374
  • (1982)

High-voltage Spark Atomic Emission Detector for Gas Chromatography

Not Accessible

Your library or personal account may give you access

Abstract

A de-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

PDF Article
More Like This
Ultraviolet laser microplasma–gas chromatography detector: detection of species-specific fragment emission

Randy J. Locke, Jeffrey B. Morris, Brad E. Forch, and Andrzej W. Miziolek
Appl. Opt. 29(33) 4987-4992 (1990)

Vacuum Ultraviolet Emission from High Density Spark Discharges in Argon and Helium

Lothar Michel and Heinz Fischer
Appl. Opt. 11(4) 899-906 (1972)

Emission Characteristics of Vacuum Spark Discharges

J. C. Wahr, W. W. McCormick, and R. A. Sawyer
J. Opt. Soc. Am. 43(3) 151-156 (1953)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.