Abstract

In the Raman spectrum of B-type carbonated apatites, the ν1 CO32– mode (at ∼1070 cm–1) overlaps the ν3 PO43– band. The latter is readily observed where the CO32– content is low (up to ∼3 wt%). The CO32– content of bone is considerably higher (∼7–9 wt%). As a result, the ν3 PO43– band becomes completely obscured. The 1000–1100 cm–1 spectral range of carbonated apatite is frequently considered a combined ν3 PO43– and ν1 CO32– region. Here, high-resolution polarized Raman spectroscopy (step size of 0.74 ± 0.04 cm–1) provides new insights into synthetic hydroxyapatite (HAp) obtained as micrometer-sized fibers. Compared to bone mineral (deproteinized bovine bone), spectral features of HAp fibers are highly resolved. In particular, the ν3 PO43– band resolves into nine distinct sub-components: 1028, 1032, 1040, 1043, 1047, 1053, 1055, 1062, and 1076 cm–1. Parameters including full width half-maximum, intensity, area fraction, intensity ratio, and area fraction ratio vary between parallel and perpendicular polarized configurations. It is likely that the ν1 CO32– band of B-type carbonated apatites may contain a small but not insignificant contribution from the 1076 cm–1 sub-component of the ν3 PO43– band. Furthermore, the 1076 cm–1/1047 cm–1 ratio changes between parallel and perpendicular scattering configurations, suggesting that the contribution of the 1076 cm–1 sub-component may vary as a function of local orientation of bone mineral, thus skewing the ν1 CO32– band and compromising accurate estimation of carbonate-to-phosphate ratios in B-type CO32– substituted apatite.

© 2020 The Author(s)

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.V. Dorozhkin, M. Epple. “Biological and Medical Significance of Calcium Phosphates”. Angew. Chem., Int. Ed. Engl. 2002; 41(17): 3130–3146.
  2. B. Wopenka, J.D. Pasteris. “A Mineralogical Perspective on the Apatite in Bone”. Mater. Sci. Eng., C. 2005; 25(2): 131–143.
  3. E. Boanini, M. Gazzano, A. Bigi. “Ionic Substitutions in Calcium Phosphates Synthesized at Low Temperature”. Acta Biomater. 2010; 6(6): 1882–1894.
  4. G.S. Mandair, M.D. Morris. “Contributions of Raman Spectroscopy to the Understanding of Bone Strength”. Bonekey Rep. 2015; 4: 620.
  5. F.A. Shah, B.E.J. Lee, J. Tedesco, et al. “Micrometer-Sized Magnesium Whitlockite Crystals in Micropetrosis of Bisphosphonate-Exposed Human Alveolar Bone”. Nano Lett. 2017; 17(10): 6210–6216.
  6. M. Wang, R. Qian, M. Bao, et al. “Raman, FT-IR and XRD Study of Bovine Bone Mineral and Carbonated Apatites with Different Carbonate Levels”. Mater. Lett. 2018; 210: 203–206.
  7. A.C. Deymier, A.G. Schwartz, C. Lim, et al. “Multiscale Effects of Spaceflight on Murine Tendon and Bone”. Bone. 2020; 131: 115152.
  8. A. Awonusi, M.D. Morris, M.M. Tecklenburg. “Carbonate Assignment and Calibration in the Raman Spectrum of Apatite”. Calcif. Tissue Int. 2007; 81(1): 46–52.
  9. G. Penel, C. Delfosse, M. Descamps, et al. “Composition of Bone and Apatitic Biomaterials as Revealed by Intravital Raman Microspectroscopy”. Bone. 2005; 36(5): 893–901.
  10. R.Z. Legeros, O.R. Trautz, J.P. Legeros, et al. “Apatite Crystallites: Effects of Carbonate on Morphology”. Science. 1967; 155(3768): 1409–1411.
  11. M. Raghavan, N.D. Sahar, R.H. Wilson, et al. “Quantitative Polarized Raman Spectroscopy in Highly Turbid Bone Tissue”. J. Biomed. Opt. 2010; 15(3): 037001.
  12. B. Gong, M.E. Oest, K.A. Mann, et al. “Raman Spectroscopy Demonstrates Prolonged Alteration of Bone Chemical Composition Following Extremity Localized Irradiation”. Bone. 2013; 57(1): 252–258.
  13. G. Falgayrac, S. Facq, G. Leroy, et al. “New Method for Raman Investigation of the Orientation of Collagen Fibrils and Crystallites in the Haversian System of Bone”. Appl. Spectrosc. 2010; 64(7): 775–780.
  14. A. Antonakos, E. Liarokapis, T. Leventouri. “Micro-Raman and FTIR Studies of Synthetic and Natural Apatites”. Biomaterials. 2007; 28(19): 3043–3054.
  15. M. Oda, S. Kuroda, H. Kondo, et al. “Hydroxyapatite Fiber Material with BMP-2 Gene Induces Ectopic Bone Formation”. J. Biomed. Mater. Res., Part B. 2009; 90(1): 101–109.
  16. A. Akiva, M. Neder, K. Kahil, et al. “Minerals in the Pre-Settled Coral Stylophora Pistillata Crystallize Via Protein and Ion Changes”. Nat. Commun. 2018; 9(1): 1880.
  17. J.S. Nyman, A.J. Makowski, C.A. Patil, et al. “Measuring Differences in Compositional Properties of Bone Tissue by Confocal Raman Spectroscopy”. Calcif. Tissue Int. 2011; 89(2): 111–122.
  18. F.A. Shah, A. Stoica, C. Cardemil, et al. “Multiscale Characterization of Cortical Bone Composition, Microstructure, and Nanomechanical Properties in Experimentally Induced Osteoporosis”. J. Biomed. Mater. Res., Part A. 2018; 106(4): 997–1007.
  19. A. Creecy, S. Uppuganti, A.R. Merkel, et al. “Changes in the Fracture Resistance of Bone with the Progression of Type 2 Diabetes in the ZDSD Rat”. Calcif. Tissue Int. 2016; 99(3): 289–301.
  20. M.A. Hammond, M.A. Gallant, D.B. Burr, et al. “Nanoscale Changes in Collagen are Reflected in Physical and Mechanical Properties of Bone at the Microscale in Diabetic Rats”. Bone. 2014; 60: 26–32.
  21. F.A. Shah, A. Snis, A. Matic, et al. “3D Printed Ti6Al4V Implant Surface Promotes Bone Maturation and Retains a Higher Density of Less Aged Osteocytes at the Bone-Implant Interface”. Acta Biomater. 2016; 30: 357–367.
  22. F.A. Shah, E. Jergéus, A. Chiba, et al. “Osseointegration of 3D Printed Microalloyed CoCr Implants: Addition of 0.04% Zr to CoCr Does Not Alter Bone Material Properties”. J. Biomed. Mater. Res., Part A. 2018; 106(6): 1655–1663.

2020 (1)

A.C. Deymier, A.G. Schwartz, C. Lim, et al. “Multiscale Effects of Spaceflight on Murine Tendon and Bone”. Bone. 2020; 131: 115152.

2018 (4)

M. Wang, R. Qian, M. Bao, et al. “Raman, FT-IR and XRD Study of Bovine Bone Mineral and Carbonated Apatites with Different Carbonate Levels”. Mater. Lett. 2018; 210: 203–206.

A. Akiva, M. Neder, K. Kahil, et al. “Minerals in the Pre-Settled Coral Stylophora Pistillata Crystallize Via Protein and Ion Changes”. Nat. Commun. 2018; 9(1): 1880.

F.A. Shah, A. Stoica, C. Cardemil, et al. “Multiscale Characterization of Cortical Bone Composition, Microstructure, and Nanomechanical Properties in Experimentally Induced Osteoporosis”. J. Biomed. Mater. Res., Part A. 2018; 106(4): 997–1007.

F.A. Shah, E. Jergéus, A. Chiba, et al. “Osseointegration of 3D Printed Microalloyed CoCr Implants: Addition of 0.04% Zr to CoCr Does Not Alter Bone Material Properties”. J. Biomed. Mater. Res., Part A. 2018; 106(6): 1655–1663.

2017 (1)

F.A. Shah, B.E.J. Lee, J. Tedesco, et al. “Micrometer-Sized Magnesium Whitlockite Crystals in Micropetrosis of Bisphosphonate-Exposed Human Alveolar Bone”. Nano Lett. 2017; 17(10): 6210–6216.

2016 (2)

F.A. Shah, A. Snis, A. Matic, et al. “3D Printed Ti6Al4V Implant Surface Promotes Bone Maturation and Retains a Higher Density of Less Aged Osteocytes at the Bone-Implant Interface”. Acta Biomater. 2016; 30: 357–367.

A. Creecy, S. Uppuganti, A.R. Merkel, et al. “Changes in the Fracture Resistance of Bone with the Progression of Type 2 Diabetes in the ZDSD Rat”. Calcif. Tissue Int. 2016; 99(3): 289–301.

2015 (1)

G.S. Mandair, M.D. Morris. “Contributions of Raman Spectroscopy to the Understanding of Bone Strength”. Bonekey Rep. 2015; 4: 620.

2014 (1)

M.A. Hammond, M.A. Gallant, D.B. Burr, et al. “Nanoscale Changes in Collagen are Reflected in Physical and Mechanical Properties of Bone at the Microscale in Diabetic Rats”. Bone. 2014; 60: 26–32.

2013 (1)

B. Gong, M.E. Oest, K.A. Mann, et al. “Raman Spectroscopy Demonstrates Prolonged Alteration of Bone Chemical Composition Following Extremity Localized Irradiation”. Bone. 2013; 57(1): 252–258.

2011 (1)

J.S. Nyman, A.J. Makowski, C.A. Patil, et al. “Measuring Differences in Compositional Properties of Bone Tissue by Confocal Raman Spectroscopy”. Calcif. Tissue Int. 2011; 89(2): 111–122.

2010 (3)

M. Raghavan, N.D. Sahar, R.H. Wilson, et al. “Quantitative Polarized Raman Spectroscopy in Highly Turbid Bone Tissue”. J. Biomed. Opt. 2010; 15(3): 037001.

G. Falgayrac, S. Facq, G. Leroy, et al. “New Method for Raman Investigation of the Orientation of Collagen Fibrils and Crystallites in the Haversian System of Bone”. Appl. Spectrosc. 2010; 64(7): 775–780.

E. Boanini, M. Gazzano, A. Bigi. “Ionic Substitutions in Calcium Phosphates Synthesized at Low Temperature”. Acta Biomater. 2010; 6(6): 1882–1894.

2009 (1)

M. Oda, S. Kuroda, H. Kondo, et al. “Hydroxyapatite Fiber Material with BMP-2 Gene Induces Ectopic Bone Formation”. J. Biomed. Mater. Res., Part B. 2009; 90(1): 101–109.

2007 (2)

A. Antonakos, E. Liarokapis, T. Leventouri. “Micro-Raman and FTIR Studies of Synthetic and Natural Apatites”. Biomaterials. 2007; 28(19): 3043–3054.

A. Awonusi, M.D. Morris, M.M. Tecklenburg. “Carbonate Assignment and Calibration in the Raman Spectrum of Apatite”. Calcif. Tissue Int. 2007; 81(1): 46–52.

2005 (2)

G. Penel, C. Delfosse, M. Descamps, et al. “Composition of Bone and Apatitic Biomaterials as Revealed by Intravital Raman Microspectroscopy”. Bone. 2005; 36(5): 893–901.

B. Wopenka, J.D. Pasteris. “A Mineralogical Perspective on the Apatite in Bone”. Mater. Sci. Eng., C. 2005; 25(2): 131–143.

2002 (1)

S.V. Dorozhkin, M. Epple. “Biological and Medical Significance of Calcium Phosphates”. Angew. Chem., Int. Ed. Engl. 2002; 41(17): 3130–3146.

1967 (1)

R.Z. Legeros, O.R. Trautz, J.P. Legeros, et al. “Apatite Crystallites: Effects of Carbonate on Morphology”. Science. 1967; 155(3768): 1409–1411.

Akiva, A.

A. Akiva, M. Neder, K. Kahil, et al. “Minerals in the Pre-Settled Coral Stylophora Pistillata Crystallize Via Protein and Ion Changes”. Nat. Commun. 2018; 9(1): 1880.

Antonakos, A.

A. Antonakos, E. Liarokapis, T. Leventouri. “Micro-Raman and FTIR Studies of Synthetic and Natural Apatites”. Biomaterials. 2007; 28(19): 3043–3054.

Awonusi, A.

A. Awonusi, M.D. Morris, M.M. Tecklenburg. “Carbonate Assignment and Calibration in the Raman Spectrum of Apatite”. Calcif. Tissue Int. 2007; 81(1): 46–52.

Bao, M.

M. Wang, R. Qian, M. Bao, et al. “Raman, FT-IR and XRD Study of Bovine Bone Mineral and Carbonated Apatites with Different Carbonate Levels”. Mater. Lett. 2018; 210: 203–206.

Bigi, A.

E. Boanini, M. Gazzano, A. Bigi. “Ionic Substitutions in Calcium Phosphates Synthesized at Low Temperature”. Acta Biomater. 2010; 6(6): 1882–1894.

Boanini, E.

E. Boanini, M. Gazzano, A. Bigi. “Ionic Substitutions in Calcium Phosphates Synthesized at Low Temperature”. Acta Biomater. 2010; 6(6): 1882–1894.

Burr, D.B.

M.A. Hammond, M.A. Gallant, D.B. Burr, et al. “Nanoscale Changes in Collagen are Reflected in Physical and Mechanical Properties of Bone at the Microscale in Diabetic Rats”. Bone. 2014; 60: 26–32.

Cardemil, C.

F.A. Shah, A. Stoica, C. Cardemil, et al. “Multiscale Characterization of Cortical Bone Composition, Microstructure, and Nanomechanical Properties in Experimentally Induced Osteoporosis”. J. Biomed. Mater. Res., Part A. 2018; 106(4): 997–1007.

Chiba, A.

F.A. Shah, E. Jergéus, A. Chiba, et al. “Osseointegration of 3D Printed Microalloyed CoCr Implants: Addition of 0.04% Zr to CoCr Does Not Alter Bone Material Properties”. J. Biomed. Mater. Res., Part A. 2018; 106(6): 1655–1663.

Creecy, A.

A. Creecy, S. Uppuganti, A.R. Merkel, et al. “Changes in the Fracture Resistance of Bone with the Progression of Type 2 Diabetes in the ZDSD Rat”. Calcif. Tissue Int. 2016; 99(3): 289–301.

Delfosse, C.

G. Penel, C. Delfosse, M. Descamps, et al. “Composition of Bone and Apatitic Biomaterials as Revealed by Intravital Raman Microspectroscopy”. Bone. 2005; 36(5): 893–901.

Descamps, M.

G. Penel, C. Delfosse, M. Descamps, et al. “Composition of Bone and Apatitic Biomaterials as Revealed by Intravital Raman Microspectroscopy”. Bone. 2005; 36(5): 893–901.

Deymier, A.C.

A.C. Deymier, A.G. Schwartz, C. Lim, et al. “Multiscale Effects of Spaceflight on Murine Tendon and Bone”. Bone. 2020; 131: 115152.

Dorozhkin, S.V.

S.V. Dorozhkin, M. Epple. “Biological and Medical Significance of Calcium Phosphates”. Angew. Chem., Int. Ed. Engl. 2002; 41(17): 3130–3146.

Epple, M.

S.V. Dorozhkin, M. Epple. “Biological and Medical Significance of Calcium Phosphates”. Angew. Chem., Int. Ed. Engl. 2002; 41(17): 3130–3146.

Facq, S.

G. Falgayrac, S. Facq, G. Leroy, et al. “New Method for Raman Investigation of the Orientation of Collagen Fibrils and Crystallites in the Haversian System of Bone”. Appl. Spectrosc. 2010; 64(7): 775–780.

Falgayrac, G.

G. Falgayrac, S. Facq, G. Leroy, et al. “New Method for Raman Investigation of the Orientation of Collagen Fibrils and Crystallites in the Haversian System of Bone”. Appl. Spectrosc. 2010; 64(7): 775–780.

Gallant, M.A.

M.A. Hammond, M.A. Gallant, D.B. Burr, et al. “Nanoscale Changes in Collagen are Reflected in Physical and Mechanical Properties of Bone at the Microscale in Diabetic Rats”. Bone. 2014; 60: 26–32.

Gazzano, M.

E. Boanini, M. Gazzano, A. Bigi. “Ionic Substitutions in Calcium Phosphates Synthesized at Low Temperature”. Acta Biomater. 2010; 6(6): 1882–1894.

Gong, B.

B. Gong, M.E. Oest, K.A. Mann, et al. “Raman Spectroscopy Demonstrates Prolonged Alteration of Bone Chemical Composition Following Extremity Localized Irradiation”. Bone. 2013; 57(1): 252–258.

Hammond, M.A.

M.A. Hammond, M.A. Gallant, D.B. Burr, et al. “Nanoscale Changes in Collagen are Reflected in Physical and Mechanical Properties of Bone at the Microscale in Diabetic Rats”. Bone. 2014; 60: 26–32.

Jergéus, E.

F.A. Shah, E. Jergéus, A. Chiba, et al. “Osseointegration of 3D Printed Microalloyed CoCr Implants: Addition of 0.04% Zr to CoCr Does Not Alter Bone Material Properties”. J. Biomed. Mater. Res., Part A. 2018; 106(6): 1655–1663.

Kahil, K.

A. Akiva, M. Neder, K. Kahil, et al. “Minerals in the Pre-Settled Coral Stylophora Pistillata Crystallize Via Protein and Ion Changes”. Nat. Commun. 2018; 9(1): 1880.

Kondo, H.

M. Oda, S. Kuroda, H. Kondo, et al. “Hydroxyapatite Fiber Material with BMP-2 Gene Induces Ectopic Bone Formation”. J. Biomed. Mater. Res., Part B. 2009; 90(1): 101–109.

Kuroda, S.

M. Oda, S. Kuroda, H. Kondo, et al. “Hydroxyapatite Fiber Material with BMP-2 Gene Induces Ectopic Bone Formation”. J. Biomed. Mater. Res., Part B. 2009; 90(1): 101–109.

Lee, B.E.J.

F.A. Shah, B.E.J. Lee, J. Tedesco, et al. “Micrometer-Sized Magnesium Whitlockite Crystals in Micropetrosis of Bisphosphonate-Exposed Human Alveolar Bone”. Nano Lett. 2017; 17(10): 6210–6216.

Legeros, J.P.

R.Z. Legeros, O.R. Trautz, J.P. Legeros, et al. “Apatite Crystallites: Effects of Carbonate on Morphology”. Science. 1967; 155(3768): 1409–1411.

Legeros, R.Z.

R.Z. Legeros, O.R. Trautz, J.P. Legeros, et al. “Apatite Crystallites: Effects of Carbonate on Morphology”. Science. 1967; 155(3768): 1409–1411.

Leroy, G.

G. Falgayrac, S. Facq, G. Leroy, et al. “New Method for Raman Investigation of the Orientation of Collagen Fibrils and Crystallites in the Haversian System of Bone”. Appl. Spectrosc. 2010; 64(7): 775–780.

Leventouri, T.

A. Antonakos, E. Liarokapis, T. Leventouri. “Micro-Raman and FTIR Studies of Synthetic and Natural Apatites”. Biomaterials. 2007; 28(19): 3043–3054.

Liarokapis, E.

A. Antonakos, E. Liarokapis, T. Leventouri. “Micro-Raman and FTIR Studies of Synthetic and Natural Apatites”. Biomaterials. 2007; 28(19): 3043–3054.

Lim, C.

A.C. Deymier, A.G. Schwartz, C. Lim, et al. “Multiscale Effects of Spaceflight on Murine Tendon and Bone”. Bone. 2020; 131: 115152.

Makowski, A.J.

J.S. Nyman, A.J. Makowski, C.A. Patil, et al. “Measuring Differences in Compositional Properties of Bone Tissue by Confocal Raman Spectroscopy”. Calcif. Tissue Int. 2011; 89(2): 111–122.

Mandair, G.S.

G.S. Mandair, M.D. Morris. “Contributions of Raman Spectroscopy to the Understanding of Bone Strength”. Bonekey Rep. 2015; 4: 620.

Mann, K.A.

B. Gong, M.E. Oest, K.A. Mann, et al. “Raman Spectroscopy Demonstrates Prolonged Alteration of Bone Chemical Composition Following Extremity Localized Irradiation”. Bone. 2013; 57(1): 252–258.

Matic, A.

F.A. Shah, A. Snis, A. Matic, et al. “3D Printed Ti6Al4V Implant Surface Promotes Bone Maturation and Retains a Higher Density of Less Aged Osteocytes at the Bone-Implant Interface”. Acta Biomater. 2016; 30: 357–367.

Merkel, A.R.

A. Creecy, S. Uppuganti, A.R. Merkel, et al. “Changes in the Fracture Resistance of Bone with the Progression of Type 2 Diabetes in the ZDSD Rat”. Calcif. Tissue Int. 2016; 99(3): 289–301.

Morris, M.D.

G.S. Mandair, M.D. Morris. “Contributions of Raman Spectroscopy to the Understanding of Bone Strength”. Bonekey Rep. 2015; 4: 620.

A. Awonusi, M.D. Morris, M.M. Tecklenburg. “Carbonate Assignment and Calibration in the Raman Spectrum of Apatite”. Calcif. Tissue Int. 2007; 81(1): 46–52.

Neder, M.

A. Akiva, M. Neder, K. Kahil, et al. “Minerals in the Pre-Settled Coral Stylophora Pistillata Crystallize Via Protein and Ion Changes”. Nat. Commun. 2018; 9(1): 1880.

Nyman, J.S.

J.S. Nyman, A.J. Makowski, C.A. Patil, et al. “Measuring Differences in Compositional Properties of Bone Tissue by Confocal Raman Spectroscopy”. Calcif. Tissue Int. 2011; 89(2): 111–122.

Oda, M.

M. Oda, S. Kuroda, H. Kondo, et al. “Hydroxyapatite Fiber Material with BMP-2 Gene Induces Ectopic Bone Formation”. J. Biomed. Mater. Res., Part B. 2009; 90(1): 101–109.

Oest, M.E.

B. Gong, M.E. Oest, K.A. Mann, et al. “Raman Spectroscopy Demonstrates Prolonged Alteration of Bone Chemical Composition Following Extremity Localized Irradiation”. Bone. 2013; 57(1): 252–258.

Pasteris, J.D.

B. Wopenka, J.D. Pasteris. “A Mineralogical Perspective on the Apatite in Bone”. Mater. Sci. Eng., C. 2005; 25(2): 131–143.

Patil, C.A.

J.S. Nyman, A.J. Makowski, C.A. Patil, et al. “Measuring Differences in Compositional Properties of Bone Tissue by Confocal Raman Spectroscopy”. Calcif. Tissue Int. 2011; 89(2): 111–122.

Penel, G.

G. Penel, C. Delfosse, M. Descamps, et al. “Composition of Bone and Apatitic Biomaterials as Revealed by Intravital Raman Microspectroscopy”. Bone. 2005; 36(5): 893–901.

Qian, R.

M. Wang, R. Qian, M. Bao, et al. “Raman, FT-IR and XRD Study of Bovine Bone Mineral and Carbonated Apatites with Different Carbonate Levels”. Mater. Lett. 2018; 210: 203–206.

Raghavan, M.

M. Raghavan, N.D. Sahar, R.H. Wilson, et al. “Quantitative Polarized Raman Spectroscopy in Highly Turbid Bone Tissue”. J. Biomed. Opt. 2010; 15(3): 037001.

Sahar, N.D.

M. Raghavan, N.D. Sahar, R.H. Wilson, et al. “Quantitative Polarized Raman Spectroscopy in Highly Turbid Bone Tissue”. J. Biomed. Opt. 2010; 15(3): 037001.

Schwartz, A.G.

A.C. Deymier, A.G. Schwartz, C. Lim, et al. “Multiscale Effects of Spaceflight on Murine Tendon and Bone”. Bone. 2020; 131: 115152.

Shah, F.A.

F.A. Shah, A. Stoica, C. Cardemil, et al. “Multiscale Characterization of Cortical Bone Composition, Microstructure, and Nanomechanical Properties in Experimentally Induced Osteoporosis”. J. Biomed. Mater. Res., Part A. 2018; 106(4): 997–1007.

F.A. Shah, E. Jergéus, A. Chiba, et al. “Osseointegration of 3D Printed Microalloyed CoCr Implants: Addition of 0.04% Zr to CoCr Does Not Alter Bone Material Properties”. J. Biomed. Mater. Res., Part A. 2018; 106(6): 1655–1663.

F.A. Shah, B.E.J. Lee, J. Tedesco, et al. “Micrometer-Sized Magnesium Whitlockite Crystals in Micropetrosis of Bisphosphonate-Exposed Human Alveolar Bone”. Nano Lett. 2017; 17(10): 6210–6216.

F.A. Shah, A. Snis, A. Matic, et al. “3D Printed Ti6Al4V Implant Surface Promotes Bone Maturation and Retains a Higher Density of Less Aged Osteocytes at the Bone-Implant Interface”. Acta Biomater. 2016; 30: 357–367.

Snis, A.

F.A. Shah, A. Snis, A. Matic, et al. “3D Printed Ti6Al4V Implant Surface Promotes Bone Maturation and Retains a Higher Density of Less Aged Osteocytes at the Bone-Implant Interface”. Acta Biomater. 2016; 30: 357–367.

Stoica, A.

F.A. Shah, A. Stoica, C. Cardemil, et al. “Multiscale Characterization of Cortical Bone Composition, Microstructure, and Nanomechanical Properties in Experimentally Induced Osteoporosis”. J. Biomed. Mater. Res., Part A. 2018; 106(4): 997–1007.

Tecklenburg, M.M.

A. Awonusi, M.D. Morris, M.M. Tecklenburg. “Carbonate Assignment and Calibration in the Raman Spectrum of Apatite”. Calcif. Tissue Int. 2007; 81(1): 46–52.

Tedesco, J.

F.A. Shah, B.E.J. Lee, J. Tedesco, et al. “Micrometer-Sized Magnesium Whitlockite Crystals in Micropetrosis of Bisphosphonate-Exposed Human Alveolar Bone”. Nano Lett. 2017; 17(10): 6210–6216.

Trautz, O.R.

R.Z. Legeros, O.R. Trautz, J.P. Legeros, et al. “Apatite Crystallites: Effects of Carbonate on Morphology”. Science. 1967; 155(3768): 1409–1411.

Uppuganti, S.

A. Creecy, S. Uppuganti, A.R. Merkel, et al. “Changes in the Fracture Resistance of Bone with the Progression of Type 2 Diabetes in the ZDSD Rat”. Calcif. Tissue Int. 2016; 99(3): 289–301.

Wang, M.

M. Wang, R. Qian, M. Bao, et al. “Raman, FT-IR and XRD Study of Bovine Bone Mineral and Carbonated Apatites with Different Carbonate Levels”. Mater. Lett. 2018; 210: 203–206.

Wilson, R.H.

M. Raghavan, N.D. Sahar, R.H. Wilson, et al. “Quantitative Polarized Raman Spectroscopy in Highly Turbid Bone Tissue”. J. Biomed. Opt. 2010; 15(3): 037001.

Wopenka, B.

B. Wopenka, J.D. Pasteris. “A Mineralogical Perspective on the Apatite in Bone”. Mater. Sci. Eng., C. 2005; 25(2): 131–143.

Acta Biomater (2)

E. Boanini, M. Gazzano, A. Bigi. “Ionic Substitutions in Calcium Phosphates Synthesized at Low Temperature”. Acta Biomater. 2010; 6(6): 1882–1894.

F.A. Shah, A. Snis, A. Matic, et al. “3D Printed Ti6Al4V Implant Surface Promotes Bone Maturation and Retains a Higher Density of Less Aged Osteocytes at the Bone-Implant Interface”. Acta Biomater. 2016; 30: 357–367.

Angew. Chem., Int. Ed. Engl (1)

S.V. Dorozhkin, M. Epple. “Biological and Medical Significance of Calcium Phosphates”. Angew. Chem., Int. Ed. Engl. 2002; 41(17): 3130–3146.

Appl. Spectrosc (1)

G. Falgayrac, S. Facq, G. Leroy, et al. “New Method for Raman Investigation of the Orientation of Collagen Fibrils and Crystallites in the Haversian System of Bone”. Appl. Spectrosc. 2010; 64(7): 775–780.

Biomaterials (1)

A. Antonakos, E. Liarokapis, T. Leventouri. “Micro-Raman and FTIR Studies of Synthetic and Natural Apatites”. Biomaterials. 2007; 28(19): 3043–3054.

Bone (4)

A.C. Deymier, A.G. Schwartz, C. Lim, et al. “Multiscale Effects of Spaceflight on Murine Tendon and Bone”. Bone. 2020; 131: 115152.

G. Penel, C. Delfosse, M. Descamps, et al. “Composition of Bone and Apatitic Biomaterials as Revealed by Intravital Raman Microspectroscopy”. Bone. 2005; 36(5): 893–901.

B. Gong, M.E. Oest, K.A. Mann, et al. “Raman Spectroscopy Demonstrates Prolonged Alteration of Bone Chemical Composition Following Extremity Localized Irradiation”. Bone. 2013; 57(1): 252–258.

M.A. Hammond, M.A. Gallant, D.B. Burr, et al. “Nanoscale Changes in Collagen are Reflected in Physical and Mechanical Properties of Bone at the Microscale in Diabetic Rats”. Bone. 2014; 60: 26–32.

Bonekey Rep (1)

G.S. Mandair, M.D. Morris. “Contributions of Raman Spectroscopy to the Understanding of Bone Strength”. Bonekey Rep. 2015; 4: 620.

Calcif. Tissue Int (3)

A. Awonusi, M.D. Morris, M.M. Tecklenburg. “Carbonate Assignment and Calibration in the Raman Spectrum of Apatite”. Calcif. Tissue Int. 2007; 81(1): 46–52.

J.S. Nyman, A.J. Makowski, C.A. Patil, et al. “Measuring Differences in Compositional Properties of Bone Tissue by Confocal Raman Spectroscopy”. Calcif. Tissue Int. 2011; 89(2): 111–122.

A. Creecy, S. Uppuganti, A.R. Merkel, et al. “Changes in the Fracture Resistance of Bone with the Progression of Type 2 Diabetes in the ZDSD Rat”. Calcif. Tissue Int. 2016; 99(3): 289–301.

J. Biomed. Mater. Res., Part A (2)

F.A. Shah, E. Jergéus, A. Chiba, et al. “Osseointegration of 3D Printed Microalloyed CoCr Implants: Addition of 0.04% Zr to CoCr Does Not Alter Bone Material Properties”. J. Biomed. Mater. Res., Part A. 2018; 106(6): 1655–1663.

F.A. Shah, A. Stoica, C. Cardemil, et al. “Multiscale Characterization of Cortical Bone Composition, Microstructure, and Nanomechanical Properties in Experimentally Induced Osteoporosis”. J. Biomed. Mater. Res., Part A. 2018; 106(4): 997–1007.

J. Biomed. Mater. Res., Part B (1)

M. Oda, S. Kuroda, H. Kondo, et al. “Hydroxyapatite Fiber Material with BMP-2 Gene Induces Ectopic Bone Formation”. J. Biomed. Mater. Res., Part B. 2009; 90(1): 101–109.

J. Biomed. Opt (1)

M. Raghavan, N.D. Sahar, R.H. Wilson, et al. “Quantitative Polarized Raman Spectroscopy in Highly Turbid Bone Tissue”. J. Biomed. Opt. 2010; 15(3): 037001.

Mater. Lett (1)

M. Wang, R. Qian, M. Bao, et al. “Raman, FT-IR and XRD Study of Bovine Bone Mineral and Carbonated Apatites with Different Carbonate Levels”. Mater. Lett. 2018; 210: 203–206.

Mater. Sci. Eng., C (1)

B. Wopenka, J.D. Pasteris. “A Mineralogical Perspective on the Apatite in Bone”. Mater. Sci. Eng., C. 2005; 25(2): 131–143.

Nano Lett (1)

F.A. Shah, B.E.J. Lee, J. Tedesco, et al. “Micrometer-Sized Magnesium Whitlockite Crystals in Micropetrosis of Bisphosphonate-Exposed Human Alveolar Bone”. Nano Lett. 2017; 17(10): 6210–6216.

Nat. Commun (1)

A. Akiva, M. Neder, K. Kahil, et al. “Minerals in the Pre-Settled Coral Stylophora Pistillata Crystallize Via Protein and Ion Changes”. Nat. Commun. 2018; 9(1): 1880.

Science (1)

R.Z. Legeros, O.R. Trautz, J.P. Legeros, et al. “Apatite Crystallites: Effects of Carbonate on Morphology”. Science. 1967; 155(3768): 1409–1411.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.