Abstract

Preprocessing of Raman spectra is generally done in three separate steps: (1) cosmic ray removal, (2) signal smoothing, and (3) baseline subtraction. We show that a convolutional neural network (CNN) can be trained using simulated data to handle all steps in one operation. First, synthetic spectra are created by randomly adding peaks, baseline, mixing of peaks and baseline with background noise, and cosmic rays. Second, a CNN is trained on synthetic spectra and known peaks. The results from preprocessing were generally of higher quality than what was achieved using a reference based on standardized methods (second-difference, asymmetric least squares, cross-validation). From 105 simulated observations, 91.4% predictions had smaller absolute error (RMSE), 90.3% had improved quality (SSIM), and 94.5% had reduced signal-to-noise (SNR) power. The CNN preprocessing generated reliable results on measured Raman spectra from polyethylene, paraffin and ethanol with background contamination from polystyrene. The result shows a promising proof of concept for the automated preprocessing of Raman spectra.

© 2020 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription