Abstract

This work describes the use of a laser-induced breakdown spectroscopy (LIBS) system to conduct macroscopic elemental mapping of uranium and iron on the exterior surface and interior center cross-section of surrogate nuclear debris for the first time. The results suggest that similar LIBS systems could be packaged for use as an effective instrument for screening samples during collection activities in the field or to conduct process control measurements during the production of debris surrogates. The technique focuses on the mitigation of chemical and physical matrix effects of four uranium atomic emission lines, relatively free of interferences and of good analytical value. At a spatial resolution of 0.5 mm, a material fractionation pattern in the surrogate debris is identified and discussed in terms of constituent melting temperatures and thermal gradients experienced.

© 2019 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription