Abstract

This paper compares the signal-to-noise ratio obtained using an InSb photodiode for infrared (IR) polarization spectroscopy to that obtained using an upconversion detector, and shows a factor 64 improvement by the change. Upconversion detection is based on using sum frequency generation to move the IR optical signal to near-visible wavelengths to improve the sensitivity.

© 2017 The Author(s)

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Hu, J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “High-Resolution Mid-IR Spectrometer Based on Frequency Upconversion”. Opt. Lett. 2012. 37(24): 5232–5234.
  2. J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “Room-Temperature Mid-Infrared Single-Photon Spectral Imaging”. Nat. Photonics. 2012. 6(11): 788–793.
  3. L. H⊘gstedt, J.S. Dam, C. Pedersen, P. Tidemand-Lichtenberg, et al. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.
  4. Z. Sun, Z.S. Li, A. Konnov, M. Aldén. “Quantitative HCN Measurements in CH4/N2O/O2/N2 Flames Using Mid-Infrared Polarization Spectroscopy”. Combust. Flame. 2011. 158(10): 1898–1904.
  5. O. Gayer, Z. Sacks, E. Galun, A. Arie. “Temperature and Wavelength Dependent Refractive Index Equations for MgO-Doped Congruent and Stoichiometric LiNbO3”. Appl. Phys. B: Lasers Opt. 2008. 91(2): 343–348.
  6. Z.S. Li, C.H. Hu, J. Zetterberg, M. Linvin, et al. “Midinfrared Polarization Spectroscopy of OH and Hot Water in Low Pressure Lean Premixed Flames”. J. Chem. Phys. 2007. 127(8): 1–9.
  7. B.E. Saleh, M.C. Teich. “Non-Linear Optics”. In: B.E. Saleh, editor. Fundamentals of Photonics. Somerset, NJ: John Wiley & Sons, (2007). 2nd ed. Chap. 21, Pp. 889–892.
  8. Z.S. Li, M. Rupinski, J. Zetterberg, Z. Alwahabi, et al. “Detection of Methane with Mid-Infrared Polarization-Spectroscopy”. Appl. Phys. B: Lasers Opt. 2004. B79(2): 135–138.
  9. Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

2014 (1)

L. H⊘gstedt, J.S. Dam, C. Pedersen, P. Tidemand-Lichtenberg, et al. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

2012 (2)

Q. Hu, J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “High-Resolution Mid-IR Spectrometer Based on Frequency Upconversion”. Opt. Lett. 2012. 37(24): 5232–5234.

J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “Room-Temperature Mid-Infrared Single-Photon Spectral Imaging”. Nat. Photonics. 2012. 6(11): 788–793.

2011 (2)

Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Z. Sun, Z.S. Li, A. Konnov, M. Aldén. “Quantitative HCN Measurements in CH4/N2O/O2/N2 Flames Using Mid-Infrared Polarization Spectroscopy”. Combust. Flame. 2011. 158(10): 1898–1904.

2008 (1)

O. Gayer, Z. Sacks, E. Galun, A. Arie. “Temperature and Wavelength Dependent Refractive Index Equations for MgO-Doped Congruent and Stoichiometric LiNbO3”. Appl. Phys. B: Lasers Opt. 2008. 91(2): 343–348.

2007 (1)

Z.S. Li, C.H. Hu, J. Zetterberg, M. Linvin, et al. “Midinfrared Polarization Spectroscopy of OH and Hot Water in Low Pressure Lean Premixed Flames”. J. Chem. Phys. 2007. 127(8): 1–9.

2004 (1)

Z.S. Li, M. Rupinski, J. Zetterberg, Z. Alwahabi, et al. “Detection of Methane with Mid-Infrared Polarization-Spectroscopy”. Appl. Phys. B: Lasers Opt. 2004. B79(2): 135–138.

Aldén, M.

Z. Sun, Z.S. Li, A. Konnov, M. Aldén. “Quantitative HCN Measurements in CH4/N2O/O2/N2 Flames Using Mid-Infrared Polarization Spectroscopy”. Combust. Flame. 2011. 158(10): 1898–1904.

Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Alwahabi, Z.

Z.S. Li, M. Rupinski, J. Zetterberg, Z. Alwahabi, et al. “Detection of Methane with Mid-Infrared Polarization-Spectroscopy”. Appl. Phys. B: Lasers Opt. 2004. B79(2): 135–138.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, A. Arie. “Temperature and Wavelength Dependent Refractive Index Equations for MgO-Doped Congruent and Stoichiometric LiNbO3”. Appl. Phys. B: Lasers Opt. 2008. 91(2): 343–348.

Dam, J.S.

L. H⊘gstedt, J.S. Dam, C. Pedersen, P. Tidemand-Lichtenberg, et al. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

Q. Hu, J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “High-Resolution Mid-IR Spectrometer Based on Frequency Upconversion”. Opt. Lett. 2012. 37(24): 5232–5234.

J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “Room-Temperature Mid-Infrared Single-Photon Spectral Imaging”. Nat. Photonics. 2012. 6(11): 788–793.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, A. Arie. “Temperature and Wavelength Dependent Refractive Index Equations for MgO-Doped Congruent and Stoichiometric LiNbO3”. Appl. Phys. B: Lasers Opt. 2008. 91(2): 343–348.

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, A. Arie. “Temperature and Wavelength Dependent Refractive Index Equations for MgO-Doped Congruent and Stoichiometric LiNbO3”. Appl. Phys. B: Lasers Opt. 2008. 91(2): 343–348.

H?gstedt, L.

L. H⊘gstedt, J.S. Dam, C. Pedersen, P. Tidemand-Lichtenberg, et al. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

Hu, C.H.

Z.S. Li, C.H. Hu, J. Zetterberg, M. Linvin, et al. “Midinfrared Polarization Spectroscopy of OH and Hot Water in Low Pressure Lean Premixed Flames”. J. Chem. Phys. 2007. 127(8): 1–9.

Hu, Q.

Q. Hu, J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “High-Resolution Mid-IR Spectrometer Based on Frequency Upconversion”. Opt. Lett. 2012. 37(24): 5232–5234.

Konnov, A.

Z. Sun, Z.S. Li, A. Konnov, M. Aldén. “Quantitative HCN Measurements in CH4/N2O/O2/N2 Flames Using Mid-Infrared Polarization Spectroscopy”. Combust. Flame. 2011. 158(10): 1898–1904.

Li, B.

Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Li, Z.S.

Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Z. Sun, Z.S. Li, A. Konnov, M. Aldén. “Quantitative HCN Measurements in CH4/N2O/O2/N2 Flames Using Mid-Infrared Polarization Spectroscopy”. Combust. Flame. 2011. 158(10): 1898–1904.

Z.S. Li, C.H. Hu, J. Zetterberg, M. Linvin, et al. “Midinfrared Polarization Spectroscopy of OH and Hot Water in Low Pressure Lean Premixed Flames”. J. Chem. Phys. 2007. 127(8): 1–9.

Z.S. Li, M. Rupinski, J. Zetterberg, Z. Alwahabi, et al. “Detection of Methane with Mid-Infrared Polarization-Spectroscopy”. Appl. Phys. B: Lasers Opt. 2004. B79(2): 135–138.

Linvin, M.

Z.S. Li, C.H. Hu, J. Zetterberg, M. Linvin, et al. “Midinfrared Polarization Spectroscopy of OH and Hot Water in Low Pressure Lean Premixed Flames”. J. Chem. Phys. 2007. 127(8): 1–9.

Pedersen, C.

L. H⊘gstedt, J.S. Dam, C. Pedersen, P. Tidemand-Lichtenberg, et al. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

Q. Hu, J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “High-Resolution Mid-IR Spectrometer Based on Frequency Upconversion”. Opt. Lett. 2012. 37(24): 5232–5234.

J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “Room-Temperature Mid-Infrared Single-Photon Spectral Imaging”. Nat. Photonics. 2012. 6(11): 788–793.

Rupinski, M.

Z.S. Li, M. Rupinski, J. Zetterberg, Z. Alwahabi, et al. “Detection of Methane with Mid-Infrared Polarization-Spectroscopy”. Appl. Phys. B: Lasers Opt. 2004. B79(2): 135–138.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, A. Arie. “Temperature and Wavelength Dependent Refractive Index Equations for MgO-Doped Congruent and Stoichiometric LiNbO3”. Appl. Phys. B: Lasers Opt. 2008. 91(2): 343–348.

Sun, Z.

Z. Sun, Z.S. Li, A. Konnov, M. Aldén. “Quantitative HCN Measurements in CH4/N2O/O2/N2 Flames Using Mid-Infrared Polarization Spectroscopy”. Combust. Flame. 2011. 158(10): 1898–1904.

Sun, Z.W.

Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Tidemand-Lichtenberg, P.

L. H⊘gstedt, J.S. Dam, C. Pedersen, P. Tidemand-Lichtenberg, et al. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

Q. Hu, J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “High-Resolution Mid-IR Spectrometer Based on Frequency Upconversion”. Opt. Lett. 2012. 37(24): 5232–5234.

J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “Room-Temperature Mid-Infrared Single-Photon Spectral Imaging”. Nat. Photonics. 2012. 6(11): 788–793.

Zetterberg, J.

Z.S. Li, C.H. Hu, J. Zetterberg, M. Linvin, et al. “Midinfrared Polarization Spectroscopy of OH and Hot Water in Low Pressure Lean Premixed Flames”. J. Chem. Phys. 2007. 127(8): 1–9.

Z.S. Li, M. Rupinski, J. Zetterberg, Z. Alwahabi, et al. “Detection of Methane with Mid-Infrared Polarization-Spectroscopy”. Appl. Phys. B: Lasers Opt. 2004. B79(2): 135–138.

Appl. Phys. B: Lasers Opt (2)

O. Gayer, Z. Sacks, E. Galun, A. Arie. “Temperature and Wavelength Dependent Refractive Index Equations for MgO-Doped Congruent and Stoichiometric LiNbO3”. Appl. Phys. B: Lasers Opt. 2008. 91(2): 343–348.

Z.S. Li, M. Rupinski, J. Zetterberg, Z. Alwahabi, et al. “Detection of Methane with Mid-Infrared Polarization-Spectroscopy”. Appl. Phys. B: Lasers Opt. 2004. B79(2): 135–138.

Combust. Flame (1)

Z. Sun, Z.S. Li, A. Konnov, M. Aldén. “Quantitative HCN Measurements in CH4/N2O/O2/N2 Flames Using Mid-Infrared Polarization Spectroscopy”. Combust. Flame. 2011. 158(10): 1898–1904.

J. Chem. Phys (1)

Z.S. Li, C.H. Hu, J. Zetterberg, M. Linvin, et al. “Midinfrared Polarization Spectroscopy of OH and Hot Water in Low Pressure Lean Premixed Flames”. J. Chem. Phys. 2007. 127(8): 1–9.

J. Raman Spectrosc (1)

Z.W. Sun, Z.S. Li, B. Li, M. Aldén. “Flame Temperature Diagnostics with Water Lines Using Mid-Infrared Degenerate Four-Wave Mixing”. J. Raman Spectrosc. 2011. 42(10): 1828–1835.

Nat. Photonics (1)

J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “Room-Temperature Mid-Infrared Single-Photon Spectral Imaging”. Nat. Photonics. 2012. 6(11): 788–793.

Opt. Lett (2)

L. H⊘gstedt, J.S. Dam, C. Pedersen, P. Tidemand-Lichtenberg, et al. “Low-Noise Mid-IR Upconversion Detector for Improved IR-Degenerate Four-Wave Mixing Gas Sensing”. Opt. Lett. 2014. 39(18): 5321–5324.

Q. Hu, J.S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. “High-Resolution Mid-IR Spectrometer Based on Frequency Upconversion”. Opt. Lett. 2012. 37(24): 5232–5234.

Other (1)

B.E. Saleh, M.C. Teich. “Non-Linear Optics”. In: B.E. Saleh, editor. Fundamentals of Photonics. Somerset, NJ: John Wiley & Sons, (2007). 2nd ed. Chap. 21, Pp. 889–892.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.