Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 69,
  • Issue 11,
  • pp. 1229-1242
  • (2015)

Design of a New Concentration Series for the Orthogonal Sample Design Approach and Estimation of the Number of Reactions in Chemical Systems

Not Accessible

Your library or personal account may give you access

Abstract

A new concentration series is proposed for the construction of a two-dimensional (2D) synchronous spectrum for orthogonal sample design analysis to probe intermolecular interaction between solutes dissolved in the same solutions. The obtained 2D synchronous spectrum possesses the following two properties: (1) cross peaks in the 2D synchronous spectra can be used to reflect intermolecular interaction reliably, since interference portions that have nothing to do with intermolecular interaction are completely removed, and (2) the two-dimensional synchronous spectrum produced can effectively avoid accidental collinearity. Hence, the correct number of nonzero eigenvalues can be obtained so that the number of chemical reactions can be estimated. In a real chemical system, noise present in one-dimensional spectra may also produce nonzero eigenvalues. To get the correct number of chemical reactions, we classified nonzero eigenvalues into significant nonzero eigenvalues and insignificant nonzero eigenvalues. Significant nonzero eigenvalues can be identified by inspecting the pattern of the corresponding eigenvector with help of the Durbin-Watson statistic. As a result, the correct number of chemical reactions can be obtained from significant nonzero eigenvalues. This approach provides a solid basis to obtain insight into subtle spectral variations caused by intermolecular interaction.

PDF Article
More Like This
Laser-Induced Chemical Reactions

N. V. Karlov
Appl. Opt. 13(2) 301-309 (1974)

In situ laser measurement of oxygen concentration and flue gas temperature utilizing chemical reaction kinetics

J. Viljanen, T. Sorvajärvi, and J. Toivonen
Opt. Lett. 42(23) 4925-4928 (2017)

Quantification of solid-phase chemical reactions using the temperature-dependent terahertz pulsed spectroscopy, sum rule, and Arrhenius theory: thermal decomposition of α-lactose monohydrate

G. A. Komandin, K. I. Zaytsev, I. N. Dolganova, V. S. Nozdrin, S. V. Chuchupal, V. B. Anzin, and I. E. Spektor
Opt. Express 30(6) 9208-9221 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.