This research work investigated new methods to improve the accuracy of intact feed calibrations for the near-infrared (NIR) prediction of the ingredient composition. When NIR reflection spectroscopy, together with linear models, was used for the prediction of the ingredient composition, the results were not always acceptable. Therefore, other methods have been investigated. Three different local methods (comparison analysis using restructured near-infrared and constituent data [CARNAC]), locally weighed regression [LWR], and LOCAL) were applied to a large (<i>N</i> = 20 320) and heterogeneous population of non-milled feed compounds for the NIR prediction of the inclusion percentage of wheat and sunflower meal, as representative of two different classes of ingredients. Compared with partial least-squares regression, results showed considerable reductions of standard error of prediction values for all methods and ingredients: reductions of 59, 47, and 50% with CARNAC, LWR, and LOCAL, respectively, for wheat, and reductions of 49, 45, and 43% with CARNAC, LWR, and LOCAL, respectively, for sunflower meal. These results are a valuable achievement in coping with legislation and manufacture requirements concerning the labeling of intact feedstuffs.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription