Flexible and low-loss hollow waveguide has many advantages as an absorption cell for spectroscopic gas sensing. The characteristics of the sensing system are dependent on the parameters of the hollow waveguide cell. In this paper, a mathematical model was proposed to analyze the waveguide cell by considering waveguide loss, effective optical path length, and signal-to-noise ratio of the system. Simulation results show that the gas absorption intensity and system sensitivity are dependent not only on the waveguide length but also on the bore-diameter, signal-to-noise ratio, and the concentration of the target gases. The results provide optimizing methods for the sensing system and algorithms for error compensation. Preliminary experiments on concentration detection of methane gas were carried out and measured data showed good agreements with the simulation results.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription