Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 67,
  • Issue 10,
  • pp. 1185-1199
  • (2013)

Improved Intact Soil-Core Carbon Determination Applying Regression Shrinkage and Variable Selection Techniques to Complete Spectrum Laser-Induced Breakdown Spectroscopy (LIBS)

Not Accessible

Your library or personal account may give you access

Abstract

Laser-induced breakdown spectroscopy (LIBS) provides a potential method for rapid, in situ soil C measurement. In previous research on the application of LIBS to intact soil cores, we hypothesized that ultraviolet (UV) spectrum LIBS (200-300 nm) might not provide sufficient elemental information to reliably discriminate between soil organic C (SOC) and inorganic C (IC). In this study, using a custom complete spectrum (245-925 nm) core-scanning LIBS instrument, we analyzed 60 intact soil cores from six wheat fields. Predictive multi-response partial least squares (PLS2) models using full and reduced spectrum LIBS were compared for directly determining soil total C (TC), IC, and SOC. Two regression shrinkage and variable selection approaches, the least absolute shrinkage and selection operator (LASSO) and sparse multivariate regression with covariance estimation (MRCE), were tested for soil C predictions and the identification of wavelengths important for soil C prediction. Using complete spectrum LIBS for PLS2 modeling reduced the calibration standard error of prediction (SEP) 15 and 19% for TC and IC, respectively, compared to UV spectrum LIBS. The LASSO and MRCE approaches provided significantly improved calibration accuracy and reduced SEP 32-55% over UV spectrum PLS2 models. We conclude that (1) complete spectrum LIBS is superior to UV spectrum LIBS for predicting soil C for intact soil cores without pretreatment; (2) LASSO and MRCE approaches provide improved calibration prediction accuracy over PLS2 but require additional testing with increased soil and target analyte diversity; and (3) measurement errors associated with analyzing intact cores (e.g., sample density and surface roughness) require further study and quantification.

PDF Article
More Like This
Spark-induced breakdown spectroscopy and multivariate analysis applied to the measurement of total carbon in soil

Morgan S. Schmidt, Kellen J. Sorauf, Keith E. Miller, David Sonnenfroh, Richard Wainner, and Amy J. R. Bauer
Appl. Opt. 51(7) B176-B182 (2012)

Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils

Madhavi Z. Martin, Stan D. Wullschleger, Charles T. Garten, and Anthony V. Palumbo
Appl. Opt. 42(12) 2072-2077 (2003)

Evaluation of univariate and multivariate calibration strategies for the direct determination of total carbon in soils by laser-induced breakdown spectroscopy: tutorial

Wesley Nascimento Guedes, Diego Victor Babos, Vinícius Câmara Costa, Carla Pereira De Morais, Vitor da Silveira Freitas, Kleydson Stenio, Alfredo Augusto Pereira Xavier, Luís Carlos Leva Borduchi, Paulino Ribeiro Villas-Boas, and Débora Marcondes Bastos Pereira Milori
J. Opt. Soc. Am. B 40(5) 1319-1330 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.