Abstract

<b>We present calculations of absorption spectra arising from molecular vibrations at THz frequencies for molecular clusters of the explosive HMX using density functional theory (DFT). The features of these spectra can be shown to follow from the coupling of vibrational modes. In particular, the coupling among ground-state vibrational modes provides a reasonable molecular-level interpretation of spectral features associated with the vibrational modes of molecular clusters. THz excitation from the ground state is associated with frequencies that characteristically perturb molecular electronic states, in contrast to frequencies, which are usually substantially above the mid-infrared (mid-IR) range, that can induce appreciable electronic-state transition. Owing to this characteristic of THz excitation, one is able to make a direct association between local oscillations about ground-state minima of molecules, either isolated or comprising a cluster, and THz absorption spectra. The DFT software program GAUSSIAN was used for the calculations of the absorption spectra presented here.</b>

PDF Article

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.