A simple continuum source tungsten coil atomic fluorescence spectrometer is constructed and evaluated. The heart of the system is the atomizer: a low-cost tungsten filament extracted from a 150 W light bulb. The filament is resistively heated with a small, solid-state, constant-current power supply. The atomizer is housed in a glass chamber and purged with a 1 L/min flow of a conventional welding gas mixture: 10% H<sub>2</sub>/Ar. A 25 μL sample aliquot is pipetted onto the tungsten coil, the liquid is dried at low current, and then the atomic vapor is produced by applying a current in the range 3.5–5.5 A. The atomization current does not produce temperatures high enough to excite atomic emission. Radiation from a 300 W xenon lamp is focused through the atomic vapor, exciting atomic fluorescence. Fluorescence signals are collected using a hand-held chargecoupled device (CCD) spectrometer. Simultaneous determination of ten elements (Ag, Bi, Cr, Cu, Ga, In, Mg, Mn, and Tl) results in detection limits in the range 0.3 to 10 ng. The application of higher atomization currents (10 A) leads to straightforward detection of atomic emission signals with no modifications to the instrument.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription