Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 64,
  • Issue 2,
  • pp. 173-176
  • (2010)

Instantaneous Temperature Imaging of Diffusion Flames Using Two-Line Atomic Fluorescence

Not Accessible

Your library or personal account may give you access

Abstract

This work investigates the first demonstration of nonlinear regime two-line atomic fluorescence (NTLAF) thermometry in laminar non-premixed flames. The results show the expediency of the technique in the study of the reaction zone and reveals interesting findings about the indium atomization process. Indium fluorescence is observed to be strongest at the flame-front, where the temperature exceeds 1000 K. The uncertainty in the deduced temperature measurement is ∼6%. The temperature profile across the reaction zone shows good agreement with laminar flame calculations. The advantages and inherent limitations of the technique are discussed.

PDF Article
More Like This
Development of temperature imaging using two-line atomic fluorescence

Paul R. Medwell, Qing N. Chan, Peter A. M. Kalt, Zeyad T. Alwahabi, Bassam B. Dally, and Graham J. Nathan
Appl. Opt. 48(6) 1237-1248 (2009)

Two-line atomic fluorescence as a temperature probe for highly sooting flames

J. Engström, J. Nygren, M. Aldén, and C. F. Kaminski
Opt. Lett. 25(19) 1469-1471 (2000)

Solvent effects on two-line atomic fluorescence of indium

Qing N. Chan, Paul R. Medwell, Peter A. M. Kalt, Zeyad T. Alwahabi, Bassam B. Dally, and Graham J. Nathan
Appl. Opt. 49(8) 1257-1266 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved