Abstract

This study provides experimentally determined values for the actual μ-Raman spectroscopy sampling depth in zirconia ceramics (ZrO<sub>2</sub>) via line scans on a wedge-shaped sample. Common instrumental settings with metallurgical objective lenses in dry air, argon-ion, and helium-neon laser radiation of approximately 10 mW were chosen. Under those conditions effective sampling depths, defined as the depth at which 99% of the information is recorded, range from 20 to more than 50 μm, depending on the numerical aperture of the lens and the laser wavelength. These results elucidate the pitfalls of the investigation of surface phenomena in zirconia ceramics such as low-temperature degradation or mechanically induced phase transformations by Raman spectroscopy.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription