Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 61,
  • Issue 9,
  • pp. 928-934
  • (2007)

Two-Dimensional Attenuated Total Reflection Infrared and Near-Infrared Correlation Study of the Structure of Butyl Alcohol/Water Mixtures

Not Accessible

Your library or personal account may give you access

Abstract

The effect of temperature on attenuated total reflection infrared (ATR-IR) and near-infrared (NIR) transmission spectra of pure butan-1-ol, butan-2-ol, 2-methyl-propan-1-ol, 2-methyl-propan-2-ol, and mixtures with a small water content (X<sub>H<sub>2</sub>O</sub> ≤ 0.1) have been examined. The spectra were analyzed using a two-dimensional (2D) correlation approach. Two kinds of correlation analysis were performed: IR–IR and NIR–NIR homo-correlation and IR–NIR hetero-correlation. Our results reveal that the addition of small to moderate amounts of water does not destroy the structure of alcohol. The presence of water stabilizes the structure of alcohols and this effect is more evident for sec-butanol and tert-butanol. The ATR-IR spectra provide information on the most associated species, whereas absorption of the smaller associates and the free OH group is hardly seen. On the contrary, in the NIR spectra the absorption of the free OH groups dominates. The ability of resolution enhancement in the hetero-correlation asynchronous spectra is reduced as compared to that in the homo-correlation spectra. On the other hand, peaks may appear in the hetero-correlation synchronous spectra that are not observed in the homo-correlation contour plots. The positions of the synchronous peaks were used for evaluation of anharmonicity constants. These values for the free OH group do not depend on the experimental conditions. In contrast, the anharmonicity constants for the bonded OH groups determined from the spectra of pure alcohols may significantly differ from those obtained from diluted solutions.

PDF Article
More Like This
The Infrared Absorption Spectra of Mixtures of Alcohol and Water

Dudley Williams, R. D. Weatherford, and E. K. Plyler
J. Opt. Soc. Am. 26(4) 149-152 (1936)

Water absorption studies in thin films by the IR attenuated total reflection method

P. V. Ashrit, S. Badilescu, Fernand E. Girouard, and Vo-Van Truong
Appl. Opt. 28(3) 420-422 (1989)

Attenuated total reflectance spectroscopy with chirped-pulse upconversion

Hideto Shirai, Constance Duchesne, Yuji Furutani, and Takao Fuji
Opt. Express 22(24) 29611-29616 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.