Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 55,
  • Issue 1,
  • pp. 84-91
  • (2001)

Optical Bleaching in Continuous Laser-Excited Photothermal Lens Spectrometry

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents methods for measuring and modeling optical bleaching that occurs, by using continuous laser sources for solution-phase organic dye molecule spectrometry. Photothermal lens experiments are used to measure the nonlinear optical absorption coefficients of eosin Y, erythrosin B, and pseudo-isocyanine iodide dyes in ethanol as a function of excitation irradiance. Excitation irradiance-dependent photothermal lens data are subsequently interpreted in terms of the photophysics and excited-state relaxation dynamics of the condensed-phase dye molecules under study. The model uses first-order kinetics for excitation and subsequent metastable-state relaxation back to the ground state and accounts for both ground- and metastable-state absorption. The measurement model accounts for thermal lens formation and apparatus configuration. Nonlinear absorption measurements are fit to the model with nonlinear regression. The resulting parameters allow calculation of triplet-state absorption coefficients and triplet to ground singlet state-relaxation rate constants.

PDF Article
More Like This
Time-resolved, photothermal-deflection spectrometry with step optical excitation: experiments

Jianqin Zhou, Jianhua Zhao, Jun Shen, and Mauro Luciano Baesso
J. Opt. Soc. Am. B 22(11) 2409-2416 (2005)

Time-resolved, photothermal-deflection spectrometry with step optical excitation

Jianhua Zhao, Jun Shen, Cheng Hu, Jianqin Zhou, and Mauro Luciano Baesso
J. Opt. Soc. Am. B 21(5) 1065-1072 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.