Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 54,
  • Issue 2,
  • pp. 202-208
  • (2000)

IR Chemical Sensor for Detection of Aromatic Compounds in Aqueous Solutions Using Alkylated Polystyrene-Coated ATR Waveguides

Not Accessible

Your library or personal account may give you access

Abstract

The combination of solid-phase micro-extraction (SPME) with infrared (IR) attenuated total reflection (ATR) spectroscopic methods provides a fast and convenient way to detect organic compounds in aqueous solutions. In an effort to overcome the limitation of commercially available polymers, polystyrene (PS) was derivatized with different alkyl groups chain lengths to increase the performance of SPME-IR/ATR in detection of various aromatic compounds in aqueous solutions. The alkylated PS provides higher extraction efficiency and speed of diffusion in analysis of aromatic compounds than the commonly used polymers in SPME-IR/ATR methods. The increase of extraction efficiency is mainly caused by the pi - pi interaction between the phenyl rings of PS and the aromatic compounds. Meanwhile, the high rate of diffusion in the SPME phase is due to the lower crystallinity after alkylation. Results from analysis of different polarity aromatic compounds indicated that alkylated PS provides both a higher partition coefficient and a faster diffusion rate for the examined aromatic compounds. Better extraction performance of longer chain length PS was observed for low-polarity aromatic compounds. For higher polarity aromatic compounds, the increased chain length reduces the extraction efficiency in detection of this type of compound. This observation may reveal that the pi - pi interaction is more important in attraction of medium to polar aromatic compounds.

PDF Article
More Like This
Mid-IR sensing platform for trace analysis in aqueous solutions based on a germanium-on-silicon waveguide chip with a mesoporous silica coating for analyte enrichment

Nuria Teigell Benéitez, Bettina Baumgartner, Jeroen Missinne, Sanja Radosavljevic, Dominik Wacht, Stefan Hugger, Paweł Leszcz, Bernard Lendl, and Gunther Roelkens
Opt. Express 28(18) 27013-27027 (2020)

Ultra-sensitive slot-waveguide-enhanced Raman spectroscopy for aqueous solutions of non-polar compounds using a functionalized silicon nitride photonic integrated circuit

Zuyang Liu, Haolan Zhao, Bettina Baumgartner, Bernhard Lendl, Andim Stassen, Andre Skirtach, Nicolas Le Thomas, and Roel Baets
Opt. Lett. 46(5) 1153-1156 (2021)

Photochemical reflective optical fiber sensor for selective detection of phenol in aqueous solutions

Zhengkun Wang, Nianbing Zhong, Ming Chen, Haixing Chang, Dengjie Zhong, Yongwu Wu, Huimin Liu, Xin Xin, Mingfu Zhao, Bing Tang, Tao Song, and Shenghui Shi
Appl. Opt. 58(8) 2091-2099 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.