Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 53,
  • Issue 11,
  • pp. 1412-1418
  • (1999)

In-Line Near-Infrared Monitoring of Polymer Processing. Part I: Process/Monitor Interface Development

Not Accessible

Your library or personal account may give you access

Abstract

Near-infrared in-line monitoring of polymer processing means using a fiber-optic-assisted spectrometer to obtain spectra of the polymer melt flowing through commonly used processing equipment (an extruder). Conditions in the extruder are typically 200 °C and 20 MPa. This paper shows the design of interfaces between the spectrometer and the molten polymer. Three designs are shown, each permitting monitoring at a different location in the process: a meltat-die interface, a melt-in-barrel interface, and a strand interface. These designs are for monitoring just before the extruder exit, in the main barrel of the extruder, and after the product exits from the extruder as a strand, respectively. All these interfaces protect the inserted fiber-optic probe from the harsh environment within the extruder while permitting easy replacement of a probe without interrupting the process. This latter characteristic is very important because it permits easy probe repair as well as the use of other types of probes (for monitoring color or particles, for example) to be used during a run. Examples of near-infrared spectra obtained with each of the interfaces used with an immiscible blend of polyethylene and polypropylene are shown. Large differences in the spectra demonstrate that the design of the interface will affect multivariate analysis directed at composition prediction. Subsequent papers are directed at using the melt-at-die interface for composition prediction and accounting for nonlinear relationships between absorbance and concentration.

PDF Article
More Like This
Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate Part I: Simulation

Guan Xu, Daqing Piao, Cameron H. Musgrove, Charles F. Bunting, and Hamid Dehghani
Opt. Express 16(22) 17484-17504 (2008)

Infrared Spectrum of Hydrogen Fluoride: Line Positions and Line Shapes. Part I. Experimental Details*

J. A. Herndon, W. E. Deeds, N. M. Gailar, W.F. Herget, R. J. Lovell, and A. H. Nielsen
J. Opt. Soc. Am. 52(10) 1108-1112 (1962)

Conjugated polymer-fullerene blend with strong optical limiting in the near-infrared

San-Hui Chi, Joel M. Hales, Matteo Cozzuol, Charles Ochoa, Madison Fitzpatrick, and Joseph W. Perry
Opt. Express 17(24) 22062-22072 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.