Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 50,
  • Issue 2,
  • pp. 148-153
  • (1996)

Near-Infrared FT-SERS Microspectroscopy on Silver and Gold Surfaces: Technical Development, Mass Sensitivity, and Biological Applications

Not Accessible

Your library or personal account may give you access

Abstract

An FT-Raman and FT-SERS microprobe with the spatial resolution on the micrometer scale has been developed. The main interfacing components are discussed and the whole setup is validated with the use of different SERS-active substrates: silver and gold colloids and gold island films. Micro-FT-SERS spectra of crocetin, mitoxantrone, and mitoxantrone/DNA complexes have been obtained, and the mass detection limits are found to be on the order of 5 × 10<sup>2</sup> molecules. Adsorption on the SERS-active substrates does not induce any detectable changes in the all-trans configuration of the crocetin. Adsorption of the mitoxantrone/DNA complex does not induce detectable perturbations of the molecular interactions within the complex. Moreover, interactions between the drug and DNA induces very similar effects in both the resonance Raman and FT-SERS spectra of the drugs. These effects were found to be consistent with the model of mitoxantrone/DNA intercalation proposed from nuclear magnetic resonance and resonance Raman data. The signal-to-noise ratios found indicate that submonolayer amounts of intracellularly localized drugs totaling less than 10<sup>-18</sup> mole can be detected by means of the FT-SERS microprobe. Hence, both the extralow mass detection limit of the technique and its sensitivity to interactions within the supramolecular complexes will in the future allow the drug to be followed within the living cell.

PDF Article
More Like This
Quantitative analysis of double-stranded DNA amplified by a polymerase chain reaction employing surface-enhanced Raman spectroscopy

X. Dou, T. Takama, Y. Yamaguchi, K. Hirai, H. Yamamoto, S. Doi, and Y. Ozaki
Appl. Opt. 37(4) 759-763 (1998)

A high sensitive fiber SERS probe based on silver nanorod arrays

HsiaoYun Chu, Yongjun Liu, Yaowen Huang, and Yiping Zhao
Opt. Express 15(19) 12230-12239 (2007)

Machine learning for composition analysis of ssDNA using chemical enhancement in SERS

Phuong H. L. Nguyen, Brandon Hong, Shimon Rubin, and Yeshaiahu Fainman
Biomed. Opt. Express 11(9) 5092-5121 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.