Laser-induced breakdown spectroscopy has been applied to perform elemental analysis of aluminum alloy targets. The plasma is generated by focusing a pulsed Nd:YAG laser on the target in air at atmospheric pressure. Such a plasma was characterized in terms of its appearance, emission spectrum, space-integrated excitation temperature, and electron density. The electron density is inferred from the Stark broadening of the profiles of ionized aluminum lines. The temperature is obtained by using Boltzmann plots of the neutral iron lines. Calibration curves for magnesium, manganese, copper, and silicon were produced. The detection limits are element-dependent but are on the order of 10 ppm.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription