Abstract

The effects of laser energy and atmosphere on the emission characteristics of laser-induced plasmas were studied with the use of a Q-switched Nd:YAG laser over a laser energy range of 20 to 95 mJ. Argon, helium, and air were used as surrounding atmospheres, and the pressures were changed from atmospheric pressure to 1 Torr. The experimental results showed that the maximum spectral intensity was obtained in argon at around 200 Torr at a high laser energy of 95 mJ, whereas the line-to-background ratio was maximized in helium at around 40 Torr at a low energy of 20 mJ. The results are discussed briefly on the basis of the temporal and spatial observations of the laser-induced plasmas.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription