Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 43,
  • Issue 6,
  • pp. 967-976
  • (1989)

Real-Time Laser Spark Spectroscopy of Particulates in Combustion Environments

Not Accessible

Your library or personal account may give you access

Abstract

Several laser-based techniques are being developed to provide <i>in situ</i> determinations of size, velocity, and elemental composition for individual particulates in combustion environments. Emphasis is placed on composition measurements using laser spark spectroscopy, and data for particulates entrained in gaseous flows are presented. Size and velocity of individual particles are determined by a colinear two-color laser scattering technique. Laser sparks (high-temperature plasmas) are produced from single particles with the use of a Q-switched Nd:YAG laser, and time-resolved emission spectra are observed. Results indicate a high sensitivity of the technique to mineral matter in coal particles. The detection of numerous constituent species is demonstrated, and trends observed in elemental distribution are in agreement with x-ray fluorescence measurements. Initial semi-quantitative results are compared with standard chemical analyses of the bulk material.

PDF Article
More Like This
Gaussian process regression for direct laser absorption spectroscopy in complex combustion environments

Weitian Wang, Zhenhai Wang, and Xing Chao
Opt. Express 29(12) 17926-17939 (2021)

High-speed laser-induced fluorescence and spark plug absorption sensor diagnostics for mixing and combustion studies in engines

Michael Cundy, Torsten Schucht, Olaf Thiele, and Volker Sick
Appl. Opt. 48(4) B94-B104 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved