Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 43,
  • Issue 5,
  • pp. 772-777
  • (1989)

Standard Normal Variate Transformation and De-trending of Near-Infrared Diffuse Reflectance Spectra

Not Accessible

Your library or personal account may give you access

Abstract

Particle size, scatter, and multi-collinearity are long-standing problems encountered in diffuse reflectance spectrometry. Multiplicative combinations of these effects are the major factor inhibiting the interpretation of near-infrared diffuse reflectance spectra. Sample particle size accounts for the majority of the variance, while variance due to chemical composition is small. Procedures are presented whereby physical and chemical variance can be separated. Mathematical transformations—standard normal variate (SNV) and de-trending (DT)—applicable to individual NIR diffuse reflectance spectra are presented. The standard normal variate approach effectively removes the multiplicative interferences of scatter and particle size. De-trending accounts for the variation in baseline shift and curvilinearity, generally found in the reflectance spectra of powdered or densely packed samples, with the use of a second-degree polynomial regression. NIR diffuse NIR diffuse reflectance spectra transposed by these methods are free from multi-collinearity and are not confused by the complexity of shape encountered with the use of derivative spectroscopy.

PDF Article
More Like This
Standard of specular reflectance at near normal incidence for the infrared region

Devinder Gupta and Satya P. Varma
Appl. Opt. 29(13) 1872-1874 (1990)

Spectral and geometrical variation of the bidirectional reflectance distribution function of diffuse reflectance standards

Alejandro Ferrero, Ana María Rabal, Joaquín Campos, Alicia Pons, and María Luisa Hernanz
Appl. Opt. 51(36) 8535-8540 (2012)

Sulfur as a proposed near infrared reflectance standard

Russell Tkachuk and Fred D. Kuzina
Appl. Opt. 17(17) 2817-2820 (1978)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved