Abstract

Since its demonstration in 2003, Bragg grating inscription with high-power femtosecond pulse duration infrared sources and phase masks has proven to be an effective and far more versatile approach to grating fabrication than the conventional ultraviolet laser technique. The ultrafast IR laser-based process allows for the creation of grating structures in glassy and crystalline material waveguides that are not typically UV-photosensitive, thereby creating new applications for Bragg gratings. In this paper we will review studies that have been performed on the development and applications of the ultrafast laser technique to fabricate gratings in various optical fibers and waveguides using phase masks.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
    [CrossRef]
  3. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [CrossRef] [PubMed]
  4. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [CrossRef]
  5. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
    [CrossRef] [PubMed]
  6. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [CrossRef] [PubMed]
  7. J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19(1), 325–341 (2011).
    [CrossRef] [PubMed]
  8. C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [CrossRef] [PubMed]
  9. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
    [CrossRef]
  10. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [CrossRef] [PubMed]
  11. D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Bragg gratings written in multimode borosilicate fibres using ultrafast infrared radiation and phase mask,” Electron. Lett. 44(24), 1398–1399 (2008).
    [CrossRef]
  12. D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers,” IEEE Photon. Technol. Lett. 18(24), 2686–2688 (2006).
    [CrossRef]
  13. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
    [CrossRef] [PubMed]
  14. S. K. Hoeffgen, H. Henschel, J. Kuhnhenn, U. Weinand, C. Caucheteur, D. Grobnic, and S. J. Mihailov, “Comparison of the radiation sensitivity of fiber Bragg gratings made by four different manufacturers,” IEEE Trans. Nucl. Sci. 58(3), 906–909 (2011).
    [CrossRef]
  15. E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006).
    [CrossRef] [PubMed]
  16. D. Grobnic, S. J. Mihailov, R. B. Walker, and C. W. Smelser, “Strong Bragg gratings made with IR femtosecond radiation in heavily doped Er3+and Yb3+silica fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper BTuC4.
  17. N. L. Liu, Y. H. Li, J. W. Shi, T. H. Ren, and P. X. Lu, “Characteristics of Bragg gratings written into active Er-doped fibers with 800 nm femtosecond radiation,” Appl. Phys. B 102(1), 73–79 (2011).
    [CrossRef]
  18. D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
    [CrossRef]
  19. S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
    [CrossRef]
  20. D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22(2), 124–126 (2010).
    [CrossRef]
  21. D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K, 67961K-9 (2007).
    [CrossRef]
  22. D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
    [CrossRef]
  23. D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, and C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17(5), 980–984 (2006).
    [CrossRef]
  24. D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Bragg gratings made with ultrafast radiation in crystal waveguides, lithium niobate, sapphire and YAG Bragg gratings,” Proc. SPIE 6790, 679620, 679620-8 (2007).
    [CrossRef]
  25. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
    [CrossRef] [PubMed]
  26. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
    [CrossRef]
  27. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]
  28. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004).
    [CrossRef]
  29. V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11(12), 2021–2025 (1993).
    [CrossRef]
  30. S. Kreger, S. Calvert, and E. Udd, “High pressure sensing using fiber Bragg gratings written in birefringent side hole fiber,” in Proceedings of the 15th Optical Fiber Sensors Conference Technical Digest, (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 355–358.
  31. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [CrossRef] [PubMed]
  32. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
    [CrossRef] [PubMed]
  33. P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25(3), 779–786 (2007).
    [CrossRef]
  34. D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Localized high birefringence induced in SMF-28 fiber by femtosecond IR laser exposure of the cladding,” J. Lightwave Technol. 25(8), 1996–2001 (2007).
    [CrossRef]
  35. D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Technol. Lett. 18(1), 160–162 (2006).
    [CrossRef]
  36. D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
    [CrossRef]
  37. A. Koike and N. Sugimoto, “Temperature dependences of optical path length inorganic glasses,” Reports Res. Lab. Asahi Glass Co, Ltd. 56, 1–6 (2006).
  38. T. Hasegawa, T. Nagashima, S. Ohara, and N. Sugimoto, “High nonlinearity bismuth fibers and their applications,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuH5.
  39. I. V. Kabakova, D. Grobnic, S. J. Mihailov, E. C. Mägi, C. M. de Sterke, and B. J. Eggleton, “Bragg grating-based optical switching in a bismuth-oxide fiber with strong χ(3)-nonlinearity,” Opt. Express 19(7), 5868–5873 (2011).
    [CrossRef] [PubMed]
  40. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
    [CrossRef] [PubMed]
  41. S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
    [CrossRef]
  42. D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photon. Technol. Lett. 20(12), 973–975 (2008).
    [CrossRef]
  43. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett. 29(18), 2127–2129 (2004).
    [CrossRef] [PubMed]
  44. C. W. Smelser, F. Bilodeau, B. Malo, D. Grobnic, and S. J. Mihailov, “Novel phase mask apparatus for ‘through the jacket’ inscription of FBG’s in unloaded SMF-28 fiber,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BThD3.
  45. S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
    [CrossRef]
  46. W. H. Loh, B. N. Samson, L. Dong, G. J. Cowle, and K. Hsu, “High performance single frequency fiber grating-based erbium/ytterbium-codoped fiber lasers,” J. Lightwave Technol. 16(1), 114–118 (1998).
    [CrossRef]
  47. Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006).
    [CrossRef] [PubMed]
  48. G. Androz, D. Faucher, M. Bernier, and R. Vallée, “Monolithic fluoride-fiber laser at 1480 nm using fiber Bragg gratings,” Opt. Lett. 32(10), 1302–1304 (2007).
    [CrossRef] [PubMed]
  49. D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and P. Lu, “Low order mode excitation of Bragg gratings made with ultrafast IR radiation in large core area multimode fibres,” in Proc. 32nd European Conference on Optical Communications (ECOC 2006), Cannes, France, Sept 24–28 2006, paper We3.P.35.
  50. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  51. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
    [CrossRef]
  52. Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
    [CrossRef] [PubMed]
  53. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “High-reflectivity thermally stable ultrafast induced fiber Bragg gratings in H2-loaded SMF-28 fiber,” IEEE Photon. Technol. Lett. 21(11), 682–684 (2009).
    [CrossRef]
  54. A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Sapphire optical fiber-based interferometer for high temperature environmental applications,” Smart Mater. Struct. 4(2), 147–151 (1995).
    [CrossRef]
  55. M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
    [CrossRef]
  56. S. J. Mihailov, D. Grobnic, and C. W. Smelser, “High-temperature multiparameter sensor based on sapphire fiber Bragg gratings,” Opt. Lett. 35(16), 2810–2812 (2010).
    [CrossRef] [PubMed]

2011 (4)

N. L. Liu, Y. H. Li, J. W. Shi, T. H. Ren, and P. X. Lu, “Characteristics of Bragg gratings written into active Er-doped fibers with 800 nm femtosecond radiation,” Appl. Phys. B 102(1), 73–79 (2011).
[CrossRef]

S. K. Hoeffgen, H. Henschel, J. Kuhnhenn, U. Weinand, C. Caucheteur, D. Grobnic, and S. J. Mihailov, “Comparison of the radiation sensitivity of fiber Bragg gratings made by four different manufacturers,” IEEE Trans. Nucl. Sci. 58(3), 906–909 (2011).
[CrossRef]

J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19(1), 325–341 (2011).
[CrossRef] [PubMed]

I. V. Kabakova, D. Grobnic, S. J. Mihailov, E. C. Mägi, C. M. de Sterke, and B. J. Eggleton, “Bragg grating-based optical switching in a bismuth-oxide fiber with strong χ(3)-nonlinearity,” Opt. Express 19(7), 5868–5873 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (3)

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “High-reflectivity thermally stable ultrafast induced fiber Bragg gratings in H2-loaded SMF-28 fiber,” IEEE Photon. Technol. Lett. 21(11), 682–684 (2009).
[CrossRef]

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[CrossRef]

Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Opt. Express 17(22), 19785–19790 (2009).
[CrossRef] [PubMed]

2008 (3)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photon. Technol. Lett. 20(12), 973–975 (2008).
[CrossRef]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Bragg gratings written in multimode borosilicate fibres using ultrafast infrared radiation and phase mask,” Electron. Lett. 44(24), 1398–1399 (2008).
[CrossRef]

2007 (10)

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K, 67961K-9 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Bragg gratings made with ultrafast radiation in crystal waveguides, lithium niobate, sapphire and YAG Bragg gratings,” Proc. SPIE 6790, 679620, 679620-8 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[CrossRef]

M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
[CrossRef] [PubMed]

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

G. Androz, D. Faucher, M. Bernier, and R. Vallée, “Monolithic fluoride-fiber laser at 1480 nm using fiber Bragg gratings,” Opt. Lett. 32(10), 1302–1304 (2007).
[CrossRef] [PubMed]

P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25(3), 779–786 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Localized high birefringence induced in SMF-28 fiber by femtosecond IR laser exposure of the cladding,” J. Lightwave Technol. 25(8), 1996–2001 (2007).
[CrossRef]

2006 (10)

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
[CrossRef] [PubMed]

Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006).
[CrossRef] [PubMed]

E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006).
[CrossRef] [PubMed]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[CrossRef]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

A. Koike and N. Sugimoto, “Temperature dependences of optical path length inorganic glasses,” Reports Res. Lab. Asahi Glass Co, Ltd. 56, 1–6 (2006).

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers,” IEEE Photon. Technol. Lett. 18(24), 2686–2688 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Technol. Lett. 18(1), 160–162 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, and C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17(5), 980–984 (2006).
[CrossRef]

2005 (1)

2004 (6)

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[CrossRef]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[CrossRef] [PubMed]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett. 29(18), 2127–2129 (2004).
[CrossRef] [PubMed]

2003 (3)

2001 (1)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[CrossRef]

1998 (1)

1997 (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

1996 (1)

1995 (1)

A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Sapphire optical fiber-based interferometer for high temperature environmental applications,” Smart Mater. Struct. 4(2), 147–151 (1995).
[CrossRef]

1993 (1)

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11(12), 2021–2025 (1993).
[CrossRef]

1989 (1)

Albert, J.

Androz, G.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Atkins, R. M.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11(12), 2021–2025 (1993).
[CrossRef]

Bartelt, H.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[CrossRef]

Becker, R. G.

Bennion, I.

Bernier, M.

Bilodeau, F.

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, and C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17(5), 980–984 (2006).
[CrossRef]

Broeng, J.

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[CrossRef]

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[CrossRef]

Burghoff, J.

Busch, M.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[CrossRef]

Caucheteur, C.

S. K. Hoeffgen, H. Henschel, J. Kuhnhenn, U. Weinand, C. Caucheteur, D. Grobnic, and S. J. Mihailov, “Comparison of the radiation sensitivity of fiber Bragg gratings made by four different manufacturers,” IEEE Trans. Nucl. Sci. 58(3), 906–909 (2011).
[CrossRef]

Chan, C.-F.

Chen, C.

Chin, S. L.

Claus, R. O.

A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Sapphire optical fiber-based interferometer for high temperature environmental applications,” Smart Mater. Struct. 4(2), 147–151 (1995).
[CrossRef]

Clausnitzer, T.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

Cowle, G. J.

Croteau, A.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

Cuglietta, G.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[CrossRef]

Davis, K. M.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

de Sterke, C. M.

Delavaux, J.-M. P.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11(12), 2021–2025 (1993).
[CrossRef]

DiGiovanni, D. J.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11(12), 2021–2025 (1993).
[CrossRef]

Ding, H.

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Technol. Lett. 18(1), 160–162 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, and C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17(5), 980–984 (2006).
[CrossRef]

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[CrossRef]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[CrossRef] [PubMed]

Dong, L.

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

Ecke, W.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[CrossRef]

Eggleton, B. J.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Faucher, D.

Fischer, D.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[CrossRef]

Franco, M.

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Fuchs, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006).
[CrossRef] [PubMed]

Glenn, W. H.

Gollapudi, S.

A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Sapphire optical fiber-based interferometer for high temperature environmental applications,” Smart Mater. Struct. 4(2), 147–151 (1995).
[CrossRef]

Grattan, K. T.

Graver, T.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[CrossRef]

Grobnic, D.

I. V. Kabakova, D. Grobnic, S. J. Mihailov, E. C. Mägi, C. M. de Sterke, and B. J. Eggleton, “Bragg grating-based optical switching in a bismuth-oxide fiber with strong χ(3)-nonlinearity,” Opt. Express 19(7), 5868–5873 (2011).
[CrossRef] [PubMed]

S. K. Hoeffgen, H. Henschel, J. Kuhnhenn, U. Weinand, C. Caucheteur, D. Grobnic, and S. J. Mihailov, “Comparison of the radiation sensitivity of fiber Bragg gratings made by four different manufacturers,” IEEE Trans. Nucl. Sci. 58(3), 906–909 (2011).
[CrossRef]

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22(2), 124–126 (2010).
[CrossRef]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “High-temperature multiparameter sensor based on sapphire fiber Bragg gratings,” Opt. Lett. 35(16), 2810–2812 (2010).
[CrossRef] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “High-reflectivity thermally stable ultrafast induced fiber Bragg gratings in H2-loaded SMF-28 fiber,” IEEE Photon. Technol. Lett. 21(11), 682–684 (2009).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photon. Technol. Lett. 20(12), 973–975 (2008).
[CrossRef]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Bragg gratings written in multimode borosilicate fibres using ultrafast infrared radiation and phase mask,” Electron. Lett. 44(24), 1398–1399 (2008).
[CrossRef]

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[CrossRef]

P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25(3), 779–786 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Bragg gratings made with ultrafast radiation in crystal waveguides, lithium niobate, sapphire and YAG Bragg gratings,” Proc. SPIE 6790, 679620, 679620-8 (2007).
[CrossRef]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K, 67961K-9 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Localized high birefringence induced in SMF-28 fiber by femtosecond IR laser exposure of the cladding,” J. Lightwave Technol. 25(8), 1996–2001 (2007).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, and C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17(5), 980–984 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers,” IEEE Photon. Technol. Lett. 18(24), 2686–2688 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Technol. Lett. 18(1), 160–162 (2006).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[CrossRef] [PubMed]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett. 29(18), 2127–2129 (2004).
[CrossRef] [PubMed]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[CrossRef]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[CrossRef] [PubMed]

Grubb, S. G.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11(12), 2021–2025 (1993).
[CrossRef]

Henderson, G.

Henschel, H.

S. K. Hoeffgen, H. Henschel, J. Kuhnhenn, U. Weinand, C. Caucheteur, D. Grobnic, and S. J. Mihailov, “Comparison of the radiation sensitivity of fiber Bragg gratings made by four different manufacturers,” IEEE Trans. Nucl. Sci. 58(3), 906–909 (2011).
[CrossRef]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hoeffgen, S. K.

S. K. Hoeffgen, H. Henschel, J. Kuhnhenn, U. Weinand, C. Caucheteur, D. Grobnic, and S. J. Mihailov, “Comparison of the radiation sensitivity of fiber Bragg gratings made by four different manufacturers,” IEEE Trans. Nucl. Sci. 58(3), 906–909 (2011).
[CrossRef]

Hsu, K.

Jafari, A.

Jovanovic, N.

Kabakova, I. V.

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Khrushchev, I.

Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006).
[CrossRef] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

Khrushchev, I. Y.

Koike, A.

A. Koike and N. Sugimoto, “Temperature dependences of optical path length inorganic glasses,” Reports Res. Lab. Asahi Glass Co, Ltd. 56, 1–6 (2006).

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kuhnhenn, J.

S. K. Hoeffgen, H. Henschel, J. Kuhnhenn, U. Weinand, C. Caucheteur, D. Grobnic, and S. J. Mihailov, “Comparison of the radiation sensitivity of fiber Bragg gratings made by four different manufacturers,” IEEE Trans. Nucl. Sci. 58(3), 906–909 (2011).
[CrossRef]

Lafond, C.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

Lai, Y.

Laronche, A.

Latka, I.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Li, Y.

Li, Y. H.

N. L. Liu, Y. H. Li, J. W. Shi, T. H. Ren, and P. X. Lu, “Characteristics of Bragg gratings written into active Er-doped fibers with 800 nm femtosecond radiation,” Appl. Phys. B 102(1), 73–79 (2011).
[CrossRef]

Limpert, J.

Liu, N. L.

N. L. Liu, Y. H. Li, J. W. Shi, T. H. Ren, and P. X. Lu, “Characteristics of Bragg gratings written into active Er-doped fibers with 800 nm femtosecond radiation,” Appl. Phys. B 102(1), 73–79 (2011).
[CrossRef]

Loh, W. H.

Lu, J.

Lu, P.

Lu, P. X.

N. L. Liu, Y. H. Li, J. W. Shi, T. H. Ren, and P. X. Lu, “Characteristics of Bragg gratings written into active Er-doped fibers with 800 nm femtosecond radiation,” Appl. Phys. B 102(1), 73–79 (2011).
[CrossRef]

Mägi, E. C.

Marshall, G. D.

Martinez, A.

May, R. G.

A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Sapphire optical fiber-based interferometer for high temperature environmental applications,” Smart Mater. Struct. 4(2), 147–151 (1995).
[CrossRef]

Meltz, G.

Mendez, A.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[CrossRef]

Mihailov, S. J.

S. K. Hoeffgen, H. Henschel, J. Kuhnhenn, U. Weinand, C. Caucheteur, D. Grobnic, and S. J. Mihailov, “Comparison of the radiation sensitivity of fiber Bragg gratings made by four different manufacturers,” IEEE Trans. Nucl. Sci. 58(3), 906–909 (2011).
[CrossRef]

I. V. Kabakova, D. Grobnic, S. J. Mihailov, E. C. Mägi, C. M. de Sterke, and B. J. Eggleton, “Bragg grating-based optical switching in a bismuth-oxide fiber with strong χ(3)-nonlinearity,” Opt. Express 19(7), 5868–5873 (2011).
[CrossRef] [PubMed]

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22(2), 124–126 (2010).
[CrossRef]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “High-temperature multiparameter sensor based on sapphire fiber Bragg gratings,” Opt. Lett. 35(16), 2810–2812 (2010).
[CrossRef] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “High-reflectivity thermally stable ultrafast induced fiber Bragg gratings in H2-loaded SMF-28 fiber,” IEEE Photon. Technol. Lett. 21(11), 682–684 (2009).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photon. Technol. Lett. 20(12), 973–975 (2008).
[CrossRef]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Bragg gratings written in multimode borosilicate fibres using ultrafast infrared radiation and phase mask,” Electron. Lett. 44(24), 1398–1399 (2008).
[CrossRef]

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[CrossRef]

P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25(3), 779–786 (2007).
[CrossRef]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Bragg gratings made with ultrafast radiation in crystal waveguides, lithium niobate, sapphire and YAG Bragg gratings,” Proc. SPIE 6790, 679620, 679620-8 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K, 67961K-9 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Localized high birefringence induced in SMF-28 fiber by femtosecond IR laser exposure of the cladding,” J. Lightwave Technol. 25(8), 1996–2001 (2007).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, and C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17(5), 980–984 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Technol. Lett. 18(1), 160–162 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers,” IEEE Photon. Technol. Lett. 18(24), 2686–2688 (2006).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[CrossRef] [PubMed]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett. 29(18), 2127–2129 (2004).
[CrossRef] [PubMed]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[CrossRef]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[CrossRef] [PubMed]

Miura, K.

Mizrahi, V.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11(12), 2021–2025 (1993).
[CrossRef]

Morey, W. W.

Murphy, K. A.

A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Sapphire optical fiber-based interferometer for high temperature environmental applications,” Smart Mater. Struct. 4(2), 147–151 (1995).
[CrossRef]

Mysyrowicz, A.

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[CrossRef]

Nolte, S.

Ortaç, B.

Park, Y. K.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J.-M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11(12), 2021–2025 (1993).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Poumellec, B.

Prade, B.

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Ramos, R. T.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photon. Technol. Lett. 20(12), 973–975 (2008).
[CrossRef]

Ren, T. H.

N. L. Liu, Y. H. Li, J. W. Shi, T. H. Ren, and P. X. Lu, “Characteristics of Bragg gratings written into active Er-doped fibers with 800 nm femtosecond radiation,” Appl. Phys. B 102(1), 73–79 (2011).
[CrossRef]

Saliminia, A.

Samson, B. N.

Sheng, Y.

Shi, J. W.

N. L. Liu, Y. H. Li, J. W. Shi, T. H. Ren, and P. X. Lu, “Characteristics of Bragg gratings written into active Er-doped fibers with 800 nm femtosecond radiation,” Appl. Phys. B 102(1), 73–79 (2011).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Smelser, C. W.

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22(2), 124–126 (2010).
[CrossRef]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “High-temperature multiparameter sensor based on sapphire fiber Bragg gratings,” Opt. Lett. 35(16), 2810–2812 (2010).
[CrossRef] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “High-reflectivity thermally stable ultrafast induced fiber Bragg gratings in H2-loaded SMF-28 fiber,” IEEE Photon. Technol. Lett. 21(11), 682–684 (2009).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photon. Technol. Lett. 20(12), 973–975 (2008).
[CrossRef]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Bragg gratings written in multimode borosilicate fibres using ultrafast infrared radiation and phase mask,” Electron. Lett. 44(24), 1398–1399 (2008).
[CrossRef]

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Bragg gratings made with ultrafast radiation in crystal waveguides, lithium niobate, sapphire and YAG Bragg gratings,” Proc. SPIE 6790, 679620, 679620-8 (2007).
[CrossRef]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K, 67961K-9 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Localized high birefringence induced in SMF-28 fiber by femtosecond IR laser exposure of the cladding,” J. Lightwave Technol. 25(8), 1996–2001 (2007).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, and C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17(5), 980–984 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Technol. Lett. 18(1), 160–162 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers,” IEEE Photon. Technol. Lett. 18(24), 2686–2688 (2006).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[CrossRef] [PubMed]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett. 29(18), 2127–2129 (2004).
[CrossRef] [PubMed]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[CrossRef]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[CrossRef] [PubMed]

Steel, M. J.

Sudrie, L.

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[CrossRef] [PubMed]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[CrossRef]

Sugimoto, N.

A. Koike and N. Sugimoto, “Temperature dependences of optical path length inorganic glasses,” Reports Res. Lab. Asahi Glass Co, Ltd. 56, 1–6 (2006).

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Sun, T.

Thomas, J.

Thomson, D. J.

Tünnermann, A.

Unruh, J.

Vallée, R.

Walker, R. B.

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22(2), 124–126 (2010).
[CrossRef]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K, 67961K-9 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[CrossRef] [PubMed]

Wang, A.

A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Sapphire optical fiber-based interferometer for high temperature environmental applications,” Smart Mater. Struct. 4(2), 147–151 (1995).
[CrossRef]

Wang, D. N.

Weinand, U.

S. K. Hoeffgen, H. Henschel, J. Kuhnhenn, U. Weinand, C. Caucheteur, D. Grobnic, and S. J. Mihailov, “Comparison of the radiation sensitivity of fiber Bragg gratings made by four different manufacturers,” IEEE Trans. Nucl. Sci. 58(3), 906–909 (2011).
[CrossRef]

Wikszak, E.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006).
[CrossRef] [PubMed]

Williams, R. J.

Willsch, R.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[CrossRef]

Withford, M. J.

Yang, M.

Zeitner, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

N. L. Liu, Y. H. Li, J. W. Shi, T. H. Ren, and P. X. Lu, “Characteristics of Bragg gratings written into active Er-doped fibers with 800 nm femtosecond radiation,” Appl. Phys. B 102(1), 73–79 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

Electron. Lett. (4)

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Bragg gratings written in multimode borosilicate fibres using ultrafast infrared radiation and phase mask,” Electron. Lett. 44(24), 1398–1399 (2008).
[CrossRef]

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (9)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photon. Technol. Lett. 20(12), 973–975 (2008).
[CrossRef]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “High-reflectivity thermally stable ultrafast induced fiber Bragg gratings in H2-loaded SMF-28 fiber,” IEEE Photon. Technol. Lett. 21(11), 682–684 (2009).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[CrossRef]

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg gratings made with a femtosecond laser in heavily doped Er-Yb phosphate glass fiber,” IEEE Photon. Technol. Lett. 19(12), 943–945 (2007).
[CrossRef]

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[CrossRef]

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, and P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22(2), 124–126 (2010).
[CrossRef]

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers,” IEEE Photon. Technol. Lett. 18(24), 2686–2688 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Technol. Lett. 18(1), 160–162 (2006).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

S. K. Hoeffgen, H. Henschel, J. Kuhnhenn, U. Weinand, C. Caucheteur, D. Grobnic, and S. J. Mihailov, “Comparison of the radiation sensitivity of fiber Bragg gratings made by four different manufacturers,” IEEE Trans. Nucl. Sci. 58(3), 906–909 (2011).
[CrossRef]

J. Lightwave Technol. (7)

Meas. Sci. Technol. (3)

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, and C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17(5), 980–984 (2006).
[CrossRef]

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[CrossRef]

Opt. Commun. (2)

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191(3-6), 333–339 (2001).
[CrossRef]

Opt. Express (6)

Opt. Lett. (11)

G. Androz, D. Faucher, M. Bernier, and R. Vallée, “Monolithic fluoride-fiber laser at 1480 nm using fiber Bragg gratings,” Opt. Lett. 32(10), 1302–1304 (2007).
[CrossRef] [PubMed]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
[CrossRef] [PubMed]

Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006).
[CrossRef] [PubMed]

E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006).
[CrossRef] [PubMed]

M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
[CrossRef] [PubMed]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “High-temperature multiparameter sensor based on sapphire fiber Bragg gratings,” Opt. Lett. 35(16), 2810–2812 (2010).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[CrossRef] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[CrossRef] [PubMed]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett. 29(18), 2127–2129 (2004).
[CrossRef] [PubMed]

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Proc. SPIE (2)

D. Grobnic, S. J. Mihailov, and C. W. Smelser, “Bragg gratings made with ultrafast radiation in crystal waveguides, lithium niobate, sapphire and YAG Bragg gratings,” Proc. SPIE 6790, 679620, 679620-8 (2007).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K, 67961K-9 (2007).
[CrossRef]

Reports Res. Lab. Asahi Glass Co, Ltd. (1)

A. Koike and N. Sugimoto, “Temperature dependences of optical path length inorganic glasses,” Reports Res. Lab. Asahi Glass Co, Ltd. 56, 1–6 (2006).

Smart Mater. Struct. (1)

A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Sapphire optical fiber-based interferometer for high temperature environmental applications,” Smart Mater. Struct. 4(2), 147–151 (1995).
[CrossRef]

Other (5)

C. W. Smelser, F. Bilodeau, B. Malo, D. Grobnic, and S. J. Mihailov, “Novel phase mask apparatus for ‘through the jacket’ inscription of FBG’s in unloaded SMF-28 fiber,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BThD3.

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and P. Lu, “Low order mode excitation of Bragg gratings made with ultrafast IR radiation in large core area multimode fibres,” in Proc. 32nd European Conference on Optical Communications (ECOC 2006), Cannes, France, Sept 24–28 2006, paper We3.P.35.

T. Hasegawa, T. Nagashima, S. Ohara, and N. Sugimoto, “High nonlinearity bismuth fibers and their applications,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuH5.

S. Kreger, S. Calvert, and E. Udd, “High pressure sensing using fiber Bragg gratings written in birefringent side hole fiber,” in Proceedings of the 15th Optical Fiber Sensors Conference Technical Digest, (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 355–358.

D. Grobnic, S. J. Mihailov, R. B. Walker, and C. W. Smelser, “Strong Bragg gratings made with IR femtosecond radiation in heavily doped Er3+and Yb3+silica fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper BTuC4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics