J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).

[Crossref]

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29, 123002 (2017).

[Crossref]

V. Skarka, N. B. Aleksić, W. Krolikowski, D. N. Christodoulides, S. Rakotoarimalala, B. N. Aleksić, and M. Belić, “Self-structuring of stable dissipative breathing vortex solitons in a colloidal nanosuspension,” Opt. Express 25, 10090–10102 (2017).

[Crossref]

A. S. Reyna, E. Bergmann, P.-F. Brevet, and C. B. de Araújo, “Nonlinear polarization instability in cubic-quintic photonic nanocomposites,” Opt. Express 25, 21049–21067 (2017).

[Crossref]

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).

[Crossref]

A. S. Reyna and C. B. de Araújo, “Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium,” Opt. Lett. 41, 191–194 (2016).

[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).

[Crossref]

V. A. Markel, “Introduction to the Maxwell-Garnett approximation: tutorial,” J. Opt. Soc. Am. A 33, 1244–1256 (2016).

[Crossref]

T. S. Kelly, Y.-X. Ren, A. Samadi, A. Bezryadina, D. Christodoulides, and Z. Chen, “Guiding and nonlinear coupling of light in plasmonic nanosuspensions,” Opt. Lett. 41, 3817–3820 (2016).

[Crossref]

V. A. Markel, “Maxwell-Garnet approximation (advanced topics): tutorial,” J. Opt. Soc. Am. A 33, 2237–2255 (2016).

[Crossref]

D. Gall, “Electron mean free path in elemental metals,” J. Appl. Phys. 119, 085101 (2016).

[Crossref]

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).

[Crossref]

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79, 036401 (2016).

[Crossref]

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).

[Crossref]

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).

[Crossref]

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).

[Crossref]

A. S. Reyna, B. A. Malomed, and C. B. de Araújo, “Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media,” Phys. Rev. A 92, 033810 (2015).

[Crossref]

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).

[Crossref]

A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 23, 7659–7666 (2015).

[Crossref]

K. C. Jorge, H. A. García, A. M. Amaral, A. S. Reyna, L. S. Menezes, and C. B. de Araújo, “Measurements of the nonlinear refractive index in scattering media using the scattered light imaging method—SLIM,” Opt. Express 23, 19512–19521 (2015).

[Crossref]

Y. Liu, Y. L. Xue, and C. Yu, “Modulation instability induced by cross-phase modulation in negative index materials with higher-order nonlinearity,” Opt. Commun. 339, 66–73 (2015).

[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).

[Crossref]

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).

[Crossref]

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).

[Crossref]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: nonlinear metamaterials,” Rev. Mod. Phys. 86, 1093–1123 (2014).

[Crossref]

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3, 177–192 (2014).

[Crossref]

K. C. Jorge, R. Riva, N. A. S. Rodrigues, J. M. S. Sakamoto, and M. G. Destro, “Scattered light imaging method (SLIM) for characterization of arbitrary laser beam intensity profiles,” Appl. Opt. 53, 4555–4564 (2014).

[Crossref]

A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22, 22456–22469 (2014).

[Crossref]

A. M. Amaral, E. L. Falcão-Filho, and C. B. de Araújo, “Characterization of topological charge and orbital angular momentum of shaped optical vórtices,” Opt. Express 22, 30315–30324 (2014).

[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).

[Crossref]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).

[Crossref]

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).

[Crossref]

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90, 063835 (2014).

[Crossref]

J. Borhanian, “Nonlinear birefringence in plasmas: polarization dynamics, vector modulational instability, and vector solitons,” Phys. Plasmas 21, 062312 (2014).

[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).

[Crossref]

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization,” Phys. Rev. B 90, 125417 (2014).

[Crossref]

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).

[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).

[Crossref]

J. Saade and C. B. de Araújo, “Synthesis of silver nanoprisms: a photochemical approach using light emission diodes,” Mater. Chem. Phys. 148, 1184–1193 (2014).

[Crossref]

M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D 47, 213001 (2014).

[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).

[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).

[Crossref]

R. Kuladeep, K. S. Alee, L. Jyothi, and D. N. Rao, “Synthesis, characterization and nonlinear optical properties of laser-induced Au coloidal nanoparticles,” Adv. Mater. Lett. 4, 482–487 (2013).

[Crossref]

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7, 197–204 (2013).

[Crossref]

R. Chattopadhyay and S. K. Bhadra, “Dispersion tailoring in single mode optical fiber by doping silver nanoparticles,” Appl. Phys. B 111, 399–406 (2013).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).

[Crossref]

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).

[Crossref]

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).

[Crossref]

M. Saha and A. K. Sarma, “Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher order dispersive effects,” Opt. Commun. 291, 321–325 (2013).

[Crossref]

S. Wang and L. Zhang, “An efficient split-step compact finite difference method for cubic-quintic complex Ginzburg-Landau equations,” Comp. Phys. Commun. 184, 1511–1521 (2013).

[Crossref]

J. B. Khurgin and G. Sun, “Third-order nonlinear plasmonic materials: enhancement and limitations,” Phys. Rev. A 88, 053838 (2013).

[Crossref]

J. Zeng and B. A. Malomed, “Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity,” Phys. Rev. E 86, 036607 (2012).

[Crossref]

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).

[Crossref]

J. Zeng and B. A. Malomed, “Stabilization of one-dimensional solitons against the critical collapse by quintic nonlinear lattices,” Phys. Rev. A 85, 023824 (2012).

[Crossref]

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).

[Crossref]

R. Gupta, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Modulational instability of copropagating light beams induced by cubic-quintic nonlinearity in nonlinear negative-index material,” J. Opt. Soc. Am. B 29, 3360–3366 (2012).

[Crossref]

S. Mohan, J. Lange, H. Graener, and G. Seifert, “Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass,” Opt. Express 20, 28655–28663 (2012).

[Crossref]

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).

[Crossref]

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75, 086401 (2012).

[Crossref]

S. Toroghi and P. G. Kik, “Cascaded plasmonic metamaterials for phase-controlled enhancement of nonlinear absorption and refraction,” Phys. Rev. B 85, 045432 (2012).

[Crossref]

K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photonics 4, 1–77 (2012).

[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).

[Crossref]

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112, 103524 (2012).

[Crossref]

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).

[Crossref]

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).

[Crossref]

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).

[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).

[Crossref]

J. Lermé, “Size evolution of the surface plasmon resonance damping in silver nanoparticles: confinement and dielectric effects,” J. Phys. Chem. C 115, 14098–14110 (2011).

[Crossref]

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D 44, 283001 (2011).

[Crossref]

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22, 275203 (2011).

[Crossref]

Y. Chung and P. M. Lushnikov, “Strong collapse turbulence in a quintic nonlinear Schrödinger equation,” Phys. Rev. E 84, 036602 (2011).

[Crossref]

R. Passier, M. Chauvet, B. Wacogne, and F. Devaux, “Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium,” J. Opt. 13, 085502 (2011).

[Crossref]

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).

[Crossref]

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13, 055707 (2011).

[Crossref]

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284, 2370–2375 (2011).

[Crossref]

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).

[Crossref]

R. Yang and Y. Zhang, “Exact combined solitary wave solutions in nonlinear metamaterials,” J. Opt. Soc. Am. B 28, 123–127 (2011).

[Crossref]

G. Stegeman, D. G. Papazoglou, R. Boyd, and S. Tzortzakis, “Nonlinear birefringence due to non-resonant, higher-order Kerr effect in isotropic media,” Opt. Express 19, 6387–6399 (2011).

[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).

[Crossref]

J. Jayabalan, “Origin and time dependence of higher-order nonlinearities in metal nanocomposites,” J. Opt. Soc. Am. B 28, 2448–2455 (2011).

[Crossref]

G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress,” J. Opt. Soc. Am. B 28, A1–A10 (2011).

[Crossref]

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).

[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).

[Crossref]

A. D. Boardman, R. C. Mitchell-Thomas, N. J. King, and Y. G. Rapoport, “Bright spatial solitons in controlled negative phase metamaterials,” Opt. Commun. 283, 1585–1597 (2010).

[Crossref]

K.-H. Kim, A. Husakou, and J. Herrmann, “Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes,” Opt. Express 18, 7488–7496 (2010).

[Crossref]

T. Myint and R. R. Alfano, “Spatial phase modulation from permanent memory in doped glass,” Opt. Lett. 35, 1275–1277 (2010).

[Crossref]

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18, 21636–21644 (2010).

[Crossref]

J. Z. Anvari, R. Karimzadeh, and N. Mansour, “Thermo-optic properties and nonlinear responses of copper nanoparticles in polysiloxane oil,” J. Opt. 12, 035212 (2010).

[Crossref]

P. S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, “Nonlinear birefringence and time-resolved Kerr measurement of spin lifetimes in (110) GaAs/AlyGa1-yAs quantum wells,” Phys. Rev. B 81, 033302 (2010).

[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).

[Crossref]

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).

[Crossref]

A. M. Brito-Silva, L. A. Gomez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 1–7 (2010).

[Crossref]

P. W. de Oliveira, C. Becker-Willinger, and M. H. Jilavi, “Sol-gel derivednanocomposites for optical applications,” Adv. Eng. Mater. 12, 349–361 (2010).

[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).

[Crossref]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).

[Crossref]

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. R 65, 1–38 (2009).

[Crossref]

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A 11, 105201 (2009).

[Crossref]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).

[Crossref]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express 17, 13429–13434 (2009).

[Crossref]

Z. Mao, L. Qiao, F. He, Y. Liao, C. Wang, and Y. Cheng, “Thermal-induced nonlinear optical characteristics of ethanol solution doped with silver nanoparticles,” Chin. Opt. Lett. 7, 949–952 (2009).

[Crossref]

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).

[Crossref]

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. 48, 60–103 (2008).

[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).

[Crossref]

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).

[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

[Crossref]

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophotonics 1, 012501 (2007).

[Crossref]

P. K. Jain and M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).

[Crossref]

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).

[Crossref]

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3, 46–51 (2007).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).

[Crossref]

R. El-Ganainy, D. N. Christodoulides, C. Rotschild, and M. Segev, “Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Express 15, 10207–10218 (2007).

[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24, 2136–2140 (2007).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).

[Crossref]

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).

[Crossref]

Y. Kivshar, “Spatial solitons: bending light at will,” Nat. Phys. 2, 729–730 (2006).

[Crossref]

R. Carretero-Gonzáles, J. D. Talley, C. Chong, and B. A. Malomed, “Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,” Phys. D 216, 77–89 (2006).

[Crossref]

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).

[Crossref]

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).

[Crossref]

N. N. Rozanov, “Modulation instability in a medium with a nonlocal nonlinearity,” Opt. Spectrosc. 100, 609–612 (2006).

[Crossref]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quantum Spectrosc. Radiat. Transfer 100, 444–456 (2006).

[Crossref]

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).

[Crossref]

S. Prusty, H. S. Mavi, and A. K. Shukla, “Optical nonlinearity in silicon nanoparticles: effect of size and probing intensity,” Phys. Rev. B 71, 113313 (2005).

[Crossref]

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A 7, 409–415 (2005).

[Crossref]

T. Passota, C. Sulem, and P. L. Sulem, “Linear versus nonlinear dissipation for critical NLS equation,” Phys. D 203, 167–184 (2005).

[Crossref]

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).

[Crossref]

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).

[Crossref]

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).

[Crossref]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).

[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).

[Crossref]

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).

[Crossref]

A. Pinchuck, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).

[Crossref]

A. Pinchuk, G. von Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139 (2004).

[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).

[Crossref]

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).

[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).

[Crossref]

V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, “Light scattering by multilayered nonspherical particles: a set of methods,” J. Quantum Spectrosc. Radiat. Transfer 79–80, 599–626 (2003).

[Crossref]

H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).

[Crossref]

B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett. 63, 642–648 (2003).

[Crossref]

D. Kip, M. Soljačić, M. Segev, S. M. Sears, and D. N. Christodoulides, “(1 + 1)-Dimensional modulation instability of spatially incoherent light,” J. Opt. Soc. Am. B 19, 502–512 (2002).

[Crossref]

I. Towers and B. A. Malomed, “Stable (2 + 1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity,” J. Opt. Soc. Am. B 19, 537–543 (2002).

[Crossref]

S. Wen and D. Fan, “Spatiotemporal instabilities in nonlinear Kerr media in the presence of arbitrary higher-order dispersions,” J. Opt. Soc. Am. B 19, 1653–1659 (2002).

[Crossref]

W.-P. Hong, “Modulational instability of optical waves in the high dispersive cubic-quintic nonlinear Schrödinger equation,” Opt. Commun. 213, 173–182 (2002).

[Crossref]

A. N. Korolevich and M. Belsley, “Simultaneous measurements of thermally induced birefringence and thermal refraction in absorptive glass filters,” J. Opt. B 3, S173–S179 (2001).

[Crossref]

G. Fibich, “Self-focusing in the damped nonlinear Schrödinger equation,” SIAM J. Appl. Math. 61, 1680–1705 (2001).

[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).

[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).

[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).

[Crossref]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).

[Crossref]

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).

[Crossref]

T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quantum Spectrosc. Radiat. Transfer 60, 411–423 (1998).

[Crossref]

G. I. Stegeman, E. M. Wright, N. Finlayson, and R. Zanoni, “Third order nonlinear integrated optics,” J. Mater. Sci. 33, 2235–2249 (1998).

[Crossref]

D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev, “Internal modes of envelope solitons,” Phys. D 116, 121–142 (1998).

[Crossref]

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).

[Crossref]

D. D. Smith, G. Fisher, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticles composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625–1631 (1997).

[Crossref]

R. J. Gehr, G. L. Fisher, and R. W. Boyd, “Nonlinear-optical response of porous-glass based composite materials,” J. Opt. Soc. Am. B 14, 2310–2314 (1997).

[Crossref]

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).

[Crossref]

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 56, 8035–8046 (1997).

[Crossref]

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” J. Lightwave Technol. 15, 2232–2241 (1997).

[Crossref]

R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139, 69–72 (1997).

[Crossref]

K. Ogusu, Y. Kohtani, and H. Shao, “Laser-induced diffraction rings from an absorbing solution,” Opt. Rev. 3, 232–234 (1996).

[Crossref]

R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996).

[Crossref]

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).

[Crossref]

V. Tikhonenko, J. Christou, B. Luther-Davies, and Y. S. Kivshar, “Observation of vortex solitons created by the instability of dark soliton stripes,” Opt. Lett. 21, 1129–1131 (1996).

[Crossref]

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).

[Crossref]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, “Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).

[Crossref]

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).

[Crossref]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).

[Crossref]

W. A. de Heer, “The physics of simple metal clusters: experimental aspects and simple models,” Rev. Mod. Phys. 65, 611–676 (1993).

[Crossref]

Y. S. Kivshar, D. Anderson, and M. Lisak, “Modulation instabilities and dark solitons in a generalized nonlinear Schrödinger equation,” Phys. Scripta 47, 679–681 (1993).

[Crossref]

N. Akhmediev and J. M. Soto-Crespo, “Generation of a train of three-dimensional optical solitons in a self-focusing medium,” Phys. Rev. A 47, 1358–1364 (1993).

[Crossref]

Y. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993).

[Crossref]

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992).

[Crossref]

J. M. Hickmann, A. S. L. Gomes, and C. B. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68, 3547–3550 (1992).

[Crossref]

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell-Garnet model,” Phys. Rev. A 46, 1614–1629 (1992).

[Crossref]

R. Kashiap and N. Finlayson, “Nonlinear polarization coupling and instabilities in single-mode liquid-cored optical fibers,” Opt. Lett. 17, 405–407 (1992).

[Crossref]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).

[Crossref]

G. P. Agrawal, “Induced focusing of optical beams in self-defocusing media,” Phys. Rev. Lett. 64, 2487–2490 (1990).

[Crossref]

N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: exact results for spherical grains,” Phys. Rev. A 41, 4486–4492 (1990).

[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).

[Crossref]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990).

[Crossref]

H.-J. Zhang, J.-H. Dai, P.-Y. Wang, and L.-A. Wu, “Self-focusing and self-trapping in new types of Kerr media with large nonlinearities,” Opt. Lett. 14, 695–696 (1989).

[Crossref]

V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).

[Crossref]

E. A. Kuznetsov and S. K. Turitsyn, “Instability and collapse of solitons in media with a defocusing nonlinearity,” J. Exp. Theor. Phys. 67, 1583–1588 (1988).

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027–5030 (1987).

[Crossref]

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).

[Crossref]

F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986).

[Crossref]

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).

[Crossref]

H. G. Winful, “Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices,” Opt. Lett. 11, 33–35 (1986).

[Crossref]

W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys. 58, 533–606 (1986).

[Crossref]

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).

[Crossref]

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de kerr,” Opt. Commun. 55, 201–206 (1985).

[Crossref]

D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).

[Crossref]

P. C. Lee and D. Meisel, “Adsorbed and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).

[Crossref]

B. N. J. Persson and A. Liebsch, “Optical properties of inhomogeneous media,” Solid State Commun. 44, 1637–1640 (1982).

[Crossref]

N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Y. Zel’dovich, “The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment),” Opt. Commun. 37, 280–284 (1981).

[Crossref]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic-liquid-crystal film,” Opt. Lett. 6, 411–413 (1981).

[Crossref]

A. Zangwill and P. Soven, “Density-functional approach to local-field effects in finite systems: photoabsorption in the rare gases,” Phys. Rev. A 21, 1561–1572 (1980).

[Crossref]

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).

[Crossref]

R. J. Elliott, J. A. Krumhansl, and P. L. Leath, “The theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46, 465–543 (1974).

[Crossref]

J. R. Birchak, L. G. Gardner, J. W. Hipp, and J. M. Victor, “High dielectric constant microwave probes for sensing soil moisture,” Proc. IEEE 62, 93–98 (1974).

[Crossref]

N. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973).

[Crossref]

D. Grischkowsk, “Self-focusing of light by potassium vapor,” Phys. Rev. Lett. 24, 866–869 (1970).

[Crossref]

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).

[Crossref]

E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).

[Crossref]

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).

[Crossref]

W. R. Callen, B. G. Huth, and R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).

[Crossref]

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” J. Exp. Theor. Phys. Lett. 3, 307–310 (1966).

A. Kawataba and R. Kubo, “Electronic properties of fine metallic particles. II. Plasma resonance absorption,” J. Phys. Soc. Jpn. 21, 1765–1772 (1966).

[Crossref]

H. Looyenga, “Dielectric constants of mixtures,” Physica 31, 401–406 (1965).

[Crossref]

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).

[Crossref]

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).

[Crossref]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).

[Crossref]

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik 416, 636–664 (1935).

[Crossref]

M. Faraday, “The Bakerian lecture: experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. London 147, 145–181 (1857).

[Crossref]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).

[Crossref]

D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev, “Internal modes of envelope solitons,” Phys. D 116, 121–142 (1998).

[Crossref]

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).

[Crossref]

G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress,” J. Opt. Soc. Am. B 28, A1–A10 (2011).

[Crossref]

G. P. Agrawal, “Induced focusing of optical beams in self-defocusing media,” Phys. Rev. Lett. 64, 2487–2490 (1990).

[Crossref]

Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).

[Crossref]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990).

[Crossref]

N. Akhmediev and J. M. Soto-Crespo, “Generation of a train of three-dimensional optical solitons in a self-focusing medium,” Phys. Rev. A 47, 1358–1364 (1993).

[Crossref]

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).

[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).

[Crossref]

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284, 2370–2375 (2011).

[Crossref]

R. Kuladeep, K. S. Alee, L. Jyothi, and D. N. Rao, “Synthesis, characterization and nonlinear optical properties of laser-induced Au coloidal nanoparticles,” Adv. Mater. Lett. 4, 482–487 (2013).

[Crossref]

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).

[Crossref]

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).

[Crossref]

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).

[Crossref]

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).

[Crossref]

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).

[Crossref]

K. C. Jorge, H. A. García, A. M. Amaral, A. S. Reyna, L. S. Menezes, and C. B. de Araújo, “Measurements of the nonlinear refractive index in scattering media using the scattered light imaging method—SLIM,” Opt. Express 23, 19512–19521 (2015).

[Crossref]

A. M. Amaral, E. L. Falcão-Filho, and C. B. de Araújo, “Characterization of topological charge and orbital angular momentum of shaped optical vórtices,” Opt. Express 22, 30315–30324 (2014).

[Crossref]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).

[Crossref]

Y. S. Kivshar, D. Anderson, and M. Lisak, “Modulation instabilities and dark solitons in a generalized nonlinear Schrödinger equation,” Phys. Scripta 47, 679–681 (1993).

[Crossref]

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).

[Crossref]

J. Z. Anvari, R. Karimzadeh, and N. Mansour, “Thermo-optic properties and nonlinear responses of copper nanoparticles in polysiloxane oil,” J. Opt. 12, 035212 (2010).

[Crossref]

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).

[Crossref]

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).

[Crossref]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, “Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).

[Crossref]

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).

[Crossref]

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).

[Crossref]

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).

[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).

[Crossref]

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).

[Crossref]

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).

[Crossref]

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).

[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).

[Crossref]

B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett. 63, 642–648 (2003).

[Crossref]

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).

[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).

[Crossref]

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).

[Crossref]

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).

[Crossref]

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de kerr,” Opt. Commun. 55, 201–206 (1985).

[Crossref]

P. W. de Oliveira, C. Becker-Willinger, and M. H. Jilavi, “Sol-gel derivednanocomposites for optical applications,” Adv. Eng. Mater. 12, 349–361 (2010).

[Crossref]

A. N. Korolevich and M. Belsley, “Simultaneous measurements of thermally induced birefringence and thermal refraction in absorptive glass filters,” J. Opt. B 3, S173–S179 (2001).

[Crossref]

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” J. Exp. Theor. Phys. Lett. 3, 307–310 (1966).

R. Chattopadhyay and S. K. Bhadra, “Dispersion tailoring in single mode optical fiber by doping silver nanoparticles,” Appl. Phys. B 111, 399–406 (2013).

[Crossref]

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).

[Crossref]

J. R. Birchak, L. G. Gardner, J. W. Hipp, and J. M. Victor, “High dielectric constant microwave probes for sensing soil moisture,” Proc. IEEE 62, 93–98 (1974).

[Crossref]

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).

[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).

[Crossref]

N. Bloembergen, Nonlinear Optics (W. A. Benjamin, 1965).

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).

[Crossref]

A. D. Boardman, R. C. Mitchell-Thomas, N. J. King, and Y. G. Rapoport, “Bright spatial solitons in controlled negative phase metamaterials,” Opt. Commun. 283, 1585–1597 (2010).

[Crossref]

C. F. Bohren and D. H. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag, 1998).

J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).

[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).

[Crossref]

J. Borhanian, “Nonlinear birefringence in plasmas: polarization dynamics, vector modulational instability, and vector solitons,” Phys. Plasmas 21, 062312 (2014).

[Crossref]

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79, 036401 (2016).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).

[Crossref]

K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photonics 4, 1–77 (2012).

[Crossref]

D. D. Smith, G. Fisher, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticles composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625–1631 (1997).

[Crossref]

R. J. Gehr, G. L. Fisher, and R. W. Boyd, “Nonlinear-optical response of porous-glass based composite materials,” J. Opt. Soc. Am. B 14, 2310–2314 (1997).

[Crossref]

R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996).

[Crossref]

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell-Garnet model,” Phys. Rev. A 46, 1614–1629 (1992).

[Crossref]

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” J. Lightwave Technol. 15, 2232–2241 (1997).

[Crossref]

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027–5030 (1987).

[Crossref]

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).

[Crossref]

A. M. Brito-Silva, L. A. Gomez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 1–7 (2010).

[Crossref]

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18, 21636–21644 (2010).

[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).

[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24, 2136–2140 (2007).

[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).

[Crossref]

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik 416, 636–664 (1935).

[Crossref]

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).

[Crossref]

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).

W. R. Callen, B. G. Huth, and R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).

[Crossref]

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).

[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).

[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).

[Crossref]

R. Carretero-Gonzáles, J. D. Talley, C. Chong, and B. A. Malomed, “Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,” Phys. D 216, 77–89 (2006).

[Crossref]

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).

[Crossref]

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).

[Crossref]

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).

[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).

[Crossref]

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112, 103524 (2012).

[Crossref]

R. Chattopadhyay and S. K. Bhadra, “Dispersion tailoring in single mode optical fiber by doping silver nanoparticles,” Appl. Phys. B 111, 399–406 (2013).

[Crossref]

R. Passier, M. Chauvet, B. Wacogne, and F. Devaux, “Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium,” J. Opt. 13, 085502 (2011).

[Crossref]

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).

[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).

[Crossref]

T. S. Kelly, Y.-X. Ren, A. Samadi, A. Bezryadina, D. Christodoulides, and Z. Chen, “Guiding and nonlinear coupling of light in plasmonic nanosuspensions,” Opt. Lett. 41, 3817–3820 (2016).

[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).

[Crossref]

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75, 086401 (2012).

[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).

[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).

[Crossref]

Z. Mao, L. Qiao, F. He, Y. Liao, C. Wang, and Y. Cheng, “Thermal-induced nonlinear optical characteristics of ethanol solution doped with silver nanoparticles,” Chin. Opt. Lett. 7, 949–952 (2009).

[Crossref]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).

[Crossref]

R. Carretero-Gonzáles, J. D. Talley, C. Chong, and B. A. Malomed, “Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,” Phys. D 216, 77–89 (2006).

[Crossref]

T. C. Choy, Effective Medium Theory: Principles and Applications in Fundamentals and Applications of Nanophotonics (Oxford University, 2016).

V. Skarka, N. B. Aleksić, W. Krolikowski, D. N. Christodoulides, S. Rakotoarimalala, B. N. Aleksić, and M. Belić, “Self-structuring of stable dissipative breathing vortex solitons in a colloidal nanosuspension,” Opt. Express 25, 10090–10102 (2017).

[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).

[Crossref]

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7, 197–204 (2013).

[Crossref]

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75, 086401 (2012).

[Crossref]

R. El-Ganainy, D. N. Christodoulides, C. Rotschild, and M. Segev, “Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Express 15, 10207–10218 (2007).

[Crossref]

D. Kip, M. Soljačić, M. Segev, S. M. Sears, and D. N. Christodoulides, “(1 + 1)-Dimensional modulation instability of spatially incoherent light,” J. Opt. Soc. Am. B 19, 502–512 (2002).

[Crossref]

Y. Chung and P. M. Lushnikov, “Strong collapse turbulence in a quintic nonlinear Schrödinger equation,” Phys. Rev. E 84, 036602 (2011).

[Crossref]

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).

[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).

[Crossref]

T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quantum Spectrosc. Radiat. Transfer 60, 411–423 (1998).

[Crossref]

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).

[Crossref]

J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).

[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).

[Crossref]

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).

[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).

[Crossref]

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29, 123002 (2017).

[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).

[Crossref]

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).

[Crossref]

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).

[Crossref]

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).

[Crossref]

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).

[Crossref]

R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139, 69–72 (1997).

[Crossref]

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).

[Crossref]

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).

[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).

[Crossref]

E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).

[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).

[Crossref]

A. S. Reyna, E. Bergmann, P.-F. Brevet, and C. B. de Araújo, “Nonlinear polarization instability in cubic-quintic photonic nanocomposites,” Opt. Express 25, 21049–21067 (2017).

[Crossref]

A. S. Reyna and C. B. de Araújo, “Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium,” Opt. Lett. 41, 191–194 (2016).

[Crossref]

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).

[Crossref]

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79, 036401 (2016).

[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).

[Crossref]

K. C. Jorge, H. A. García, A. M. Amaral, A. S. Reyna, L. S. Menezes, and C. B. de Araújo, “Measurements of the nonlinear refractive index in scattering media using the scattered light imaging method—SLIM,” Opt. Express 23, 19512–19521 (2015).

[Crossref]

A. S. Reyna, B. A. Malomed, and C. B. de Araújo, “Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media,” Phys. Rev. A 92, 033810 (2015).

[Crossref]

A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 23, 7659–7666 (2015).

[Crossref]

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90, 063835 (2014).

[Crossref]

A. M. Amaral, E. L. Falcão-Filho, and C. B. de Araújo, “Characterization of topological charge and orbital angular momentum of shaped optical vórtices,” Opt. Express 22, 30315–30324 (2014).

[Crossref]

A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22, 22456–22469 (2014).

[Crossref]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).

[Crossref]

J. Saade and C. B. de Araújo, “Synthesis of silver nanoprisms: a photochemical approach using light emission diodes,” Mater. Chem. Phys. 148, 1184–1193 (2014).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).

[Crossref]

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).

[Crossref]

A. M. Brito-Silva, L. A. Gomez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 1–7 (2010).

[Crossref]

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18, 21636–21644 (2010).

[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).

[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24, 2136–2140 (2007).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).

[Crossref]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).

[Crossref]

J. M. Hickmann, A. S. L. Gomes, and C. B. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68, 3547–3550 (1992).

[Crossref]

M. A. Vincent and D. de Ceglia, “Effective medium theories,” in Fundamentals and Applications of Nanophotonics, J. W. Haus, ed. (Elsevier, 2016), pp. 211.

W. A. de Heer, “The physics of simple metal clusters: experimental aspects and simple models,” Rev. Mod. Phys. 65, 611–676 (1993).

[Crossref]

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).

[Crossref]

P. W. de Oliveira, C. Becker-Willinger, and M. H. Jilavi, “Sol-gel derivednanocomposites for optical applications,” Adv. Eng. Mater. 12, 349–361 (2010).

[Crossref]

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).

[Crossref]

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).

[Crossref]

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).

[Crossref]

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).

[Crossref]

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29, 123002 (2017).

[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).

[Crossref]

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A 7, 409–415 (2005).

[Crossref]

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).

[Crossref]

R. Passier, M. Chauvet, B. Wacogne, and F. Devaux, “Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium,” J. Opt. 13, 085502 (2011).

[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).

[Crossref]

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).

[Crossref]

K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photonics 4, 1–77 (2012).

[Crossref]

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).

[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).

[Crossref]

B. Draine and P. Flatau, “User guide for the discrete dipole approximation code DDSCAT.6.0,” arXiv:astro-ph/0309069 (2003).

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).

[Crossref]

B. T. Draine, “The discrete dipole approximation for light scattering by irregular targets,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), Chap. 5, pp. 131–145.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).

[Crossref]

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).

[Crossref]

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).

[Crossref]

C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. V. Duyne, “Nanoparticles with tunable localized surface plasmon resonance,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz and C. D. Geddes, eds. (Springer, 2005), pp. 47–99.

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).

[Crossref]

P. S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, “Nonlinear birefringence and time-resolved Kerr measurement of spin lifetimes in (110) GaAs/AlyGa1-yAs quantum wells,” Phys. Rev. B 81, 033302 (2010).

[Crossref]

R. J. Elliott, J. A. Krumhansl, and P. L. Leath, “The theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46, 465–543 (1974).

[Crossref]

P. K. Jain and M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).

[Crossref]

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).

[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).

[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quantum Spectrosc. Radiat. Transfer 100, 444–456 (2006).

[Crossref]

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).

[Crossref]

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).

[Crossref]

A. M. Amaral, E. L. Falcão-Filho, and C. B. de Araújo, “Characterization of topological charge and orbital angular momentum of shaped optical vórtices,” Opt. Express 22, 30315–30324 (2014).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).

[Crossref]

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18, 21636–21644 (2010).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).

[Crossref]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).

[Crossref]

M. Faraday, “The Bakerian lecture: experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. London 147, 145–181 (1857).

[Crossref]

V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, “Light scattering by multilayered nonspherical particles: a set of methods,” J. Quantum Spectrosc. Radiat. Transfer 79–80, 599–626 (2003).

[Crossref]

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).

[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).

[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).

[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

G. Fibich, “Self-focusing in the damped nonlinear Schrödinger equation,” SIAM J. Appl. Math. 61, 1680–1705 (2001).

[Crossref]

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).

[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

B. Draine and P. Flatau, “User guide for the discrete dipole approximation code DDSCAT.6.0,” arXiv:astro-ph/0309069 (2003).

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3, 46–51 (2007).

[Crossref]

F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986).

[Crossref]

D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).

[Crossref]

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).

[Crossref]

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).

[Crossref]

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).

[Crossref]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).

[Crossref]

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de kerr,” Opt. Commun. 55, 201–206 (1985).

[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).

[Crossref]

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).

[Crossref]

A. M. Brito-Silva, L. A. Gomez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 1–7 (2010).

[Crossref]

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18, 21636–21644 (2010).

[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).

[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24, 2136–2140 (2007).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).

[Crossref]

D. Gall, “Electron mean free path in elemental metals,” J. Appl. Phys. 119, 085101 (2016).

[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).

[Crossref]

R. A. Ganeev, Nonlinear Optical Properties of Materials (Springer, 2013).

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).

[Crossref]

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D 44, 283001 (2011).

[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).

[Crossref]

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).

[Crossref]

J. R. Birchak, L. G. Gardner, J. W. Hipp, and J. M. Victor, “High dielectric constant microwave probes for sensing soil moisture,” Proc. IEEE 62, 93–98 (1974).

[Crossref]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).

[Crossref]

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).

[Crossref]

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13, 055707 (2011).

[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).

[Crossref]

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).

[Crossref]

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).

[Crossref]

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A 11, 105201 (2009).

[Crossref]

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).

[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).

[Crossref]

Y. Gogotsi, Nanomaterials Handbook (CRC Press, 2006).

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79, 036401 (2016).

[Crossref]

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).

[Crossref]

J. M. Hickmann, A. S. L. Gomes, and C. B. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68, 3547–3550 (1992).

[Crossref]

A. M. Brito-Silva, L. A. Gomez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 1–7 (2010).

[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).

[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24, 2136–2140 (2007).

[Crossref]

M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D 47, 213001 (2014).

[Crossref]

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).

[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).

[Crossref]

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophotonics 1, 012501 (2007).

[Crossref]

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).

[Crossref]

D. Grischkowsk, “Self-focusing of light by potassium vapor,” Phys. Rev. Lett. 24, 866–869 (1970).

[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).

[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).

[Crossref]

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).

[Crossref]

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).

[Crossref]

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).

[Crossref]

C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. V. Duyne, “Nanoparticles with tunable localized surface plasmon resonance,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz and C. D. Geddes, eds. (Springer, 2005), pp. 47–99.

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).

[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).

[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).

[Crossref]

W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys. 58, 533–606 (1986).

[Crossref]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).

[Crossref]

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).

[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).

[Crossref]

P. S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, “Nonlinear birefringence and time-resolved Kerr measurement of spin lifetimes in (110) GaAs/AlyGa1-yAs quantum wells,” Phys. Rev. B 81, 033302 (2010).

[Crossref]

R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139, 69–72 (1997).

[Crossref]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, “Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).

[Crossref]

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22, 275203 (2011).

[Crossref]

C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. V. Duyne, “Nanoparticles with tunable localized surface plasmon resonance,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz and C. D. Geddes, eds. (Springer, 2005), pp. 47–99.

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A 7, 409–415 (2005).

[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).

[Crossref]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quantum Spectrosc. Radiat. Transfer 100, 444–456 (2006).

[Crossref]

P. S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, “Nonlinear birefringence and time-resolved Kerr measurement of spin lifetimes in (110) GaAs/AlyGa1-yAs quantum wells,” Phys. Rev. B 81, 033302 (2010).

[Crossref]

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).

[Crossref]

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).

[Crossref]

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).

[Crossref]

J. M. Hickmann, A. S. L. Gomes, and C. B. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68, 3547–3550 (1992).

[Crossref]

A. Pinchuck, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).

[Crossref]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).

[Crossref]

J. R. Birchak, L. G. Gardner, J. W. Hipp, and J. M. Victor, “High dielectric constant microwave probes for sensing soil moisture,” Proc. IEEE 62, 93–98 (1974).

[Crossref]

W.-P. Hong, “Modulational instability of optical waves in the high dispersive cubic-quintic nonlinear Schrödinger equation,” Opt. Commun. 213, 173–182 (2002).

[Crossref]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).

[Crossref]

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).

[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).

[Crossref]

C. F. Bohren and D. H. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag, 1998).

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).

[Crossref]

W. R. Callen, B. G. Huth, and R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).

[Crossref]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, “Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).

[Crossref]

V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, “Light scattering by multilayered nonspherical particles: a set of methods,” J. Quantum Spectrosc. Radiat. Transfer 79–80, 599–626 (2003).

[Crossref]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990).

[Crossref]

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

P. K. Jain and M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).

[Crossref]

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).

[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).

[Crossref]

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3, 46–51 (2007).

[Crossref]

P. W. de Oliveira, C. Becker-Willinger, and M. H. Jilavi, “Sol-gel derivednanocomposites for optical applications,” Adv. Eng. Mater. 12, 349–361 (2010).

[Crossref]

K. C. Jorge, H. A. García, A. M. Amaral, A. S. Reyna, L. S. Menezes, and C. B. de Araújo, “Measurements of the nonlinear refractive index in scattering media using the scattered light imaging method—SLIM,” Opt. Express 23, 19512–19521 (2015).

[Crossref]

K. C. Jorge, R. Riva, N. A. S. Rodrigues, J. M. S. Sakamoto, and M. G. Destro, “Scattered light imaging method (SLIM) for characterization of arbitrary laser beam intensity profiles,” Appl. Opt. 53, 4555–4564 (2014).

[Crossref]

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90, 063835 (2014).

[Crossref]

R. Kuladeep, K. S. Alee, L. Jyothi, and D. N. Rao, “Synthesis, characterization and nonlinear optical properties of laser-induced Au coloidal nanoparticles,” Adv. Mater. Lett. 4, 482–487 (2013).

[Crossref]

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophotonics 1, 012501 (2007).

[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).

[Crossref]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, “Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).

[Crossref]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).

[Crossref]

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284, 2370–2375 (2011).

[Crossref]

J. Z. Anvari, R. Karimzadeh, and N. Mansour, “Thermo-optic properties and nonlinear responses of copper nanoparticles in polysiloxane oil,” J. Opt. 12, 035212 (2010).

[Crossref]

B. Karmakar, K. Radermann, and A. L. Stepanov, Glass Nanocomposites (Synthesis, Properties and Applications), Micro & Nano Technologies Series (Elsevier, 2016).

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).

[Crossref]

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).

[Crossref]

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).

[Crossref]

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22, 275203 (2011).

[Crossref]

A. Kawataba and R. Kubo, “Electronic properties of fine metallic particles. II. Plasma resonance absorption,” J. Phys. Soc. Jpn. 21, 1765–1772 (1966).

[Crossref]

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).

[Crossref]

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).

[Crossref]

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).

[Crossref]

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112, 103524 (2012).

[Crossref]

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).

[Crossref]

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).

[Crossref]

J. B. Khurgin and G. Sun, “Third-order nonlinear plasmonic materials: enhancement and limitations,” Phys. Rev. A 88, 053838 (2013).

[Crossref]

S. Toroghi and P. G. Kik, “Cascaded plasmonic metamaterials for phase-controlled enhancement of nonlinear absorption and refraction,” Phys. Rev. B 85, 045432 (2012).

[Crossref]

A. D. Boardman, R. C. Mitchell-Thomas, N. J. King, and Y. G. Rapoport, “Bright spatial solitons in controlled negative phase metamaterials,” Opt. Commun. 283, 1585–1597 (2010).

[Crossref]

Y. Kivshar, “Spatial solitons: bending light at will,” Nat. Phys. 2, 729–730 (2006).

[Crossref]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: nonlinear metamaterials,” Rev. Mod. Phys. 86, 1093–1123 (2014).

[Crossref]

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).

[Crossref]

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).

[Crossref]

D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev, “Internal modes of envelope solitons,” Phys. D 116, 121–142 (1998).

[Crossref]

V. Tikhonenko, J. Christou, B. Luther-Davies, and Y. S. Kivshar, “Observation of vortex solitons created by the instability of dark soliton stripes,” Opt. Lett. 21, 1129–1131 (1996).

[Crossref]

Y. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993).

[Crossref]

Y. S. Kivshar, D. Anderson, and M. Lisak, “Modulation instabilities and dark solitons in a generalized nonlinear Schrödinger equation,” Phys. Scripta 47, 679–681 (1993).

[Crossref]

Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).

[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).

[Crossref]

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).

[Crossref]

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).

[Crossref]

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).

[Crossref]

K. Ogusu, Y. Kohtani, and H. Shao, “Laser-induced diffraction rings from an absorbing solution,” Opt. Rev. 3, 232–234 (1996).

[Crossref]

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).

[Crossref]

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).

[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).

[Crossref]

N. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973).

[Crossref]

A. N. Korolevich and M. Belsley, “Simultaneous measurements of thermally induced birefringence and thermal refraction in absorptive glass filters,” J. Opt. B 3, S173–S179 (2001).

[Crossref]

N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: exact results for spherical grains,” Phys. Rev. A 41, 4486–4492 (1990).

[Crossref]

A. Pinchuck, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).

[Crossref]

A. Pinchuk, G. von Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139 (2004).

[Crossref]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).

[Crossref]

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027–5030 (1987).

[Crossref]

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).

[Crossref]

U. Kreibig and M. Völlmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer, 1995).

V. Skarka, N. B. Aleksić, W. Krolikowski, D. N. Christodoulides, S. Rakotoarimalala, B. N. Aleksić, and M. Belić, “Self-structuring of stable dissipative breathing vortex solitons in a colloidal nanosuspension,” Opt. Express 25, 10090–10102 (2017).

[Crossref]

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).

[Crossref]

R. J. Elliott, J. A. Krumhansl, and P. L. Leath, “The theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46, 465–543 (1974).

[Crossref]

A. Kawataba and R. Kubo, “Electronic properties of fine metallic particles. II. Plasma resonance absorption,” J. Phys. Soc. Jpn. 21, 1765–1772 (1966).

[Crossref]

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).

[Crossref]

R. Kuladeep, K. S. Alee, L. Jyothi, and D. N. Rao, “Synthesis, characterization and nonlinear optical properties of laser-induced Au coloidal nanoparticles,” Adv. Mater. Lett. 4, 482–487 (2013).

[Crossref]

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophotonics 1, 012501 (2007).

[Crossref]

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).

[Crossref]

R. Gupta, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Modulational instability of copropagating light beams induced by cubic-quintic nonlinearity in nonlinear negative-index material,” J. Opt. Soc. Am. B 29, 3360–3366 (2012).

[Crossref]

E. A. Kuznetsov and S. K. Turitsyn, “Instability and collapse of solitons in media with a defocusing nonlinearity,” J. Exp. Theor. Phys. 67, 1583–1588 (1988).

P. S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, “Nonlinear birefringence and time-resolved Kerr measurement of spin lifetimes in (110) GaAs/AlyGa1-yAs quantum wells,” Phys. Rev. B 81, 033302 (2010).

[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).

[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

[Crossref]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: nonlinear metamaterials,” Rev. Mod. Phys. 86, 1093–1123 (2014).

[Crossref]

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).

[Crossref]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990).

[Crossref]

R. J. Elliott, J. A. Krumhansl, and P. L. Leath, “The theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46, 465–543 (1974).

[Crossref]

J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).

[Crossref]

P. C. Lee and D. Meisel, “Adsorbed and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).

[Crossref]

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).

[Crossref]

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).

[Crossref]

J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).

[Crossref]

J. Lermé, “Size evolution of the surface plasmon resonance damping in silver nanoparticles: confinement and dielectric effects,” J. Phys. Chem. C 115, 14098–14110 (2011).

[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).

[Crossref]

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).

[Crossref]

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 56, 8035–8046 (1997).

[Crossref]

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A 7, 409–415 (2005).

[Crossref]

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).

[Crossref]

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).

[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).

[Crossref]

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).

[Crossref]

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).

[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).

[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).

[Crossref]

B. N. J. Persson and A. Liebsch, “Optical properties of inhomogeneous media,” Solid State Commun. 44, 1637–1640 (1982).

[Crossref]

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. 48, 60–103 (2008).

[Crossref]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).

[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).

[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

[Crossref]

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).

[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).

[Crossref]

Y. S. Kivshar, D. Anderson, and M. Lisak, “Modulation instabilities and dark solitons in a generalized nonlinear Schrödinger equation,” Phys. Scripta 47, 679–681 (1993).

[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).

[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).

[Crossref]

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).

[Crossref]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).

[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).

[Crossref]

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).

[Crossref]

Y. Liu, Y. L. Xue, and C. Yu, “Modulation instability induced by cross-phase modulation in negative index materials with higher-order nonlinearity,” Opt. Commun. 339, 66–73 (2015).

[Crossref]

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3, 177–192 (2014).

[Crossref]

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).

[Crossref]

H. Looyenga, “Dielectric constants of mixtures,” Physica 31, 401–406 (1965).

[Crossref]

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).

[Crossref]

R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139, 69–72 (1997).

[Crossref]

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).

[Crossref]

Y. Chung and P. M. Lushnikov, “Strong collapse turbulence in a quintic nonlinear Schrödinger equation,” Phys. Rev. E 84, 036602 (2011).

[Crossref]

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).

[Crossref]

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).

[Crossref]

S. A. Maier, Plasmonics–Fundamentals and Applications (Springer, 2007).

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29, 123002 (2017).

[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).

[Crossref]

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).

[Crossref]

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).

[Crossref]

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).

[Crossref]

A. S. Reyna, B. A. Malomed, and C. B. de Araújo, “Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media,” Phys. Rev. A 92, 033810 (2015).

[Crossref]

J. Zeng and B. A. Malomed, “Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity,” Phys. Rev. E 86, 036607 (2012).

[Crossref]

J. Zeng and B. A. Malomed, “Stabilization of one-dimensional solitons against the critical collapse by quintic nonlinear lattices,” Phys. Rev. A 85, 023824 (2012).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).

[Crossref]

R. Carretero-Gonzáles, J. D. Talley, C. Chong, and B. A. Malomed, “Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,” Phys. D 216, 77–89 (2006).

[Crossref]

B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett. 63, 642–648 (2003).

[Crossref]

I. Towers and B. A. Malomed, “Stable (2 + 1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity,” J. Opt. Soc. Am. B 19, 537–543 (2002).

[Crossref]

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de kerr,” Opt. Commun. 55, 201–206 (1985).

[Crossref]

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284, 2370–2375 (2011).

[Crossref]

J. Z. Anvari, R. Karimzadeh, and N. Mansour, “Thermo-optic properties and nonlinear responses of copper nanoparticles in polysiloxane oil,” J. Opt. 12, 035212 (2010).

[Crossref]

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).

[Crossref]

E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).

[Crossref]

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).

[Crossref]

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).

[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).

[Crossref]

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).

[Crossref]

S. Prusty, H. S. Mavi, and A. K. Shukla, “Optical nonlinearity in silicon nanoparticles: effect of size and probing intensity,” Phys. Rev. B 71, 113313 (2005).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).

[Crossref]

C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. V. Duyne, “Nanoparticles with tunable localized surface plasmon resonance,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz and C. D. Geddes, eds. (Springer, 2005), pp. 47–99.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).

[Crossref]

P. C. Lee and D. Meisel, “Adsorbed and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).

[Crossref]

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).

[Crossref]

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).

[Crossref]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).

[Crossref]

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).

[Crossref]

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).

[Crossref]

A. D. Boardman, R. C. Mitchell-Thomas, N. J. King, and Y. G. Rapoport, “Bright spatial solitons in controlled negative phase metamaterials,” Opt. Commun. 283, 1585–1597 (2010).

[Crossref]

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).

[Crossref]

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).

[Crossref]

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).

[Crossref]

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).

[Crossref]

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).

[Crossref]

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A 11, 105201 (2009).

[Crossref]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, “Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).

[Crossref]

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).

[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).

[Crossref]

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22, 275203 (2011).

[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).

[Crossref]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).

[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).

[Crossref]

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).

[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

K. Ogusu, Y. Kohtani, and H. Shao, “Laser-induced diffraction rings from an absorbing solution,” Opt. Rev. 3, 232–234 (1996).

[Crossref]

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization,” Phys. Rev. B 90, 125417 (2014).

[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).

[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).

[Crossref]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990).

[Crossref]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, “Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).

[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).

[Crossref]

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).

[Crossref]

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization,” Phys. Rev. B 90, 125417 (2014).

[Crossref]

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13, 055707 (2011).

[Crossref]

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).

[Crossref]

R. Gupta, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Modulational instability of copropagating light beams induced by cubic-quintic nonlinearity in nonlinear negative-index material,” J. Opt. Soc. Am. B 29, 3360–3366 (2012).

[Crossref]

W. R. Callen, B. G. Huth, and R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).

[Crossref]

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. R 65, 1–38 (2009).

[Crossref]

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).

[Crossref]

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).

[Crossref]

R. Passier, M. Chauvet, B. Wacogne, and F. Devaux, “Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium,” J. Opt. 13, 085502 (2011).

[Crossref]

T. Passota, C. Sulem, and P. L. Sulem, “Linear versus nonlinear dissipation for critical NLS equation,” Phys. D 203, 167–184 (2005).

[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).

[Crossref]

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).

[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” J. Lightwave Technol. 15, 2232–2241 (1997).

[Crossref]

D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev, “Internal modes of envelope solitons,” Phys. D 116, 121–142 (1998).

[Crossref]

J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).

[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).

[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).

[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).

[Crossref]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).

[Crossref]

B. N. J. Persson and A. Liebsch, “Optical properties of inhomogeneous media,” Solid State Commun. 44, 1637–1640 (1982).

[Crossref]

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).

[Crossref]

N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Y. Zel’dovich, “The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment),” Opt. Commun. 37, 280–284 (1981).

[Crossref]

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A 11, 105201 (2009).

[Crossref]

A. Pinchuck, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).

[Crossref]

A. Pinchuk, G. von Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139 (2004).

[Crossref]

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).

[Crossref]

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).

[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).

[Crossref]

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).

[Crossref]

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).

[Crossref]

P. N. Prasad, Nanophotonics (Wiley, 2004).

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).

[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).

[Crossref]

V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, “Light scattering by multilayered nonspherical particles: a set of methods,” J. Quantum Spectrosc. Radiat. Transfer 79–80, 599–626 (2003).

[Crossref]

S. Prusty, H. S. Mavi, and A. K. Shukla, “Optical nonlinearity in silicon nanoparticles: effect of size and probing intensity,” Phys. Rev. B 71, 113313 (2005).

[Crossref]

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).

[Crossref]

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).

[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).

[Crossref]

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).

[Crossref]

B. Karmakar, K. Radermann, and A. L. Stepanov, Glass Nanocomposites (Synthesis, Properties and Applications), Micro & Nano Technologies Series (Elsevier, 2016).

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).

[Crossref]

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).

[Crossref]

R. Gupta, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Modulational instability of copropagating light beams induced by cubic-quintic nonlinearity in nonlinear negative-index material,” J. Opt. Soc. Am. B 29, 3360–3366 (2012).

[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).

[Crossref]

R. Kuladeep, K. S. Alee, L. Jyothi, and D. N. Rao, “Synthesis, characterization and nonlinear optical properties of laser-induced Au coloidal nanoparticles,” Adv. Mater. Lett. 4, 482–487 (2013).

[Crossref]

A. D. Boardman, R. C. Mitchell-Thomas, N. J. King, and Y. G. Rapoport, “Bright spatial solitons in controlled negative phase metamaterials,” Opt. Commun. 283, 1585–1597 (2010).

[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).

[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).

[Crossref]

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).

[Crossref]

A. S. Reyna, E. Bergmann, P.-F. Brevet, and C. B. de Araújo, “Nonlinear polarization instability in cubic-quintic photonic nanocomposites,” Opt. Express 25, 21049–21067 (2017).

[Crossref]

A. S. Reyna and C. B. de Araújo, “Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium,” Opt. Lett. 41, 191–194 (2016).

[Crossref]

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).

[Crossref]

A. S. Reyna, B. A. Malomed, and C. B. de Araújo, “Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media,” Phys. Rev. A 92, 033810 (2015).

[Crossref]

K. C. Jorge, H. A. García, A. M. Amaral, A. S. Reyna, L. S. Menezes, and C. B. de Araújo, “Measurements of the nonlinear refractive index in scattering media using the scattered light imaging method—SLIM,” Opt. Express 23, 19512–19521 (2015).

[Crossref]

A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 23, 7659–7666 (2015).

[Crossref]

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90, 063835 (2014).

[Crossref]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).

[Crossref]

A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22, 22456–22469 (2014).

[Crossref]

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).

[Crossref]

F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986).

[Crossref]

D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).

[Crossref]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).

[Crossref]

N. N. Rozanov, “Modulation instability in a medium with a nonlocal nonlinearity,” Opt. Spectrosc. 100, 609–612 (2006).

[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).

[Crossref]

J. Saade and C. B. de Araújo, “Synthesis of silver nanoprisms: a photochemical approach using light emission diodes,” Mater. Chem. Phys. 148, 1184–1193 (2014).

[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).

[Crossref]

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).

[Crossref]

M. Saha and A. K. Sarma, “Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher order dispersive effects,” Opt. Commun. 291, 321–325 (2013).

[Crossref]

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).

[Crossref]

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).

[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).

[Crossref]

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).

[Crossref]

H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).

[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).

[Crossref]

B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett. 63, 642–648 (2003).

[Crossref]

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).

[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).

[Crossref]

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).

[Crossref]

M. Saha and A. K. Sarma, “Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher order dispersive effects,” Opt. Commun. 291, 321–325 (2013).

[Crossref]

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization,” Phys. Rev. B 90, 125417 (2014).

[Crossref]

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).

[Crossref]

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).

[Crossref]

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).

[Crossref]

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).

[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).

[Crossref]

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027–5030 (1987).

[Crossref]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quantum Spectrosc. Radiat. Transfer 100, 444–456 (2006).

[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).

[Crossref]

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).

[Crossref]

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7, 197–204 (2013).

[Crossref]

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75, 086401 (2012).

[Crossref]

R. El-Ganainy, D. N. Christodoulides, C. Rotschild, and M. Segev, “Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Express 15, 10207–10218 (2007).

[Crossref]

D. Kip, M. Soljačić, M. Segev, S. M. Sears, and D. N. Christodoulides, “(1 + 1)-Dimensional modulation instability of spatially incoherent light,” J. Opt. Soc. Am. B 19, 502–512 (2002).

[Crossref]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).

[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: nonlinear metamaterials,” Rev. Mod. Phys. 86, 1093–1123 (2014).

[Crossref]

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).

[Crossref]

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).

[Crossref]

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).

[Crossref]

K. Ogusu, Y. Kohtani, and H. Shao, “Laser-induced diffraction rings from an absorbing solution,” Opt. Rev. 3, 232–234 (1996).

[Crossref]

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. R 65, 1–38 (2009).

[Crossref]

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).

[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).

[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).

[Crossref]

E. Santamato and Y. R. Shen, “Field-curvature effect on the diffraction ring pattern of a laser beam dressed by spatial self-phase modulation in a nematic film,” Opt. Lett. 9, 564–566 (1984).

[Crossref]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic-liquid-crystal film,” Opt. Lett. 6, 411–413 (1981).

[Crossref]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

S. Prusty, H. S. Mavi, and A. K. Shukla, “Optical nonlinearity in silicon nanoparticles: effect of size and probing intensity,” Phys. Rev. B 71, 113313 (2005).

[Crossref]

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).

[Crossref]

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7, 197–204 (2013).

[Crossref]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990).

[Crossref]

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112, 103524 (2012).

[Crossref]

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell-Garnet model,” Phys. Rev. A 46, 1614–1629 (1992).

[Crossref]

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).

[Crossref]

V. Skarka, N. B. Aleksić, W. Krolikowski, D. N. Christodoulides, S. Rakotoarimalala, B. N. Aleksić, and M. Belić, “Self-structuring of stable dissipative breathing vortex solitons in a colloidal nanosuspension,” Opt. Express 25, 10090–10102 (2017).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).

[Crossref]

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. 48, 60–103 (2008).

[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).

[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).

[Crossref]

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).

[Crossref]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990).

[Crossref]

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).

[Crossref]

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).

[Crossref]

N. Akhmediev and J. M. Soto-Crespo, “Generation of a train of three-dimensional optical solitons in a self-focusing medium,” Phys. Rev. A 47, 1358–1364 (1993).

[Crossref]

A. Zangwill and P. Soven, “Density-functional approach to local-field effects in finite systems: photoabsorption in the rare gases,” Phys. Rev. A 21, 1561–1572 (1980).

[Crossref]

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. R 65, 1–38 (2009).

[Crossref]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).

[Crossref]

G. I. Stegeman, E. M. Wright, N. Finlayson, and R. Zanoni, “Third order nonlinear integrated optics,” J. Mater. Sci. 33, 2235–2249 (1998).

[Crossref]

V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).

[Crossref]

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).

[Crossref]

B. Karmakar, K. Radermann, and A. L. Stepanov, Glass Nanocomposites (Synthesis, Properties and Applications), Micro & Nano Technologies Series (Elsevier, 2016).

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).

[Crossref]

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 56, 8035–8046 (1997).

[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Y. Zel’dovich, “The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment),” Opt. Commun. 37, 280–284 (1981).

[Crossref]

T. Passota, C. Sulem, and P. L. Sulem, “Linear versus nonlinear dissipation for critical NLS equation,” Phys. D 203, 167–184 (2005).

[Crossref]

T. Passota, C. Sulem, and P. L. Sulem, “Linear versus nonlinear dissipation for critical NLS equation,” Phys. D 203, 167–184 (2005).

[Crossref]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).

[Crossref]

J. B. Khurgin and G. Sun, “Third-order nonlinear plasmonic materials: enhancement and limitations,” Phys. Rev. A 88, 053838 (2013).

[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).

[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).

[Crossref]

C. T. Law, X. Zhang, and G. A. Swartzlander, “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55–57 (2000).

[Crossref]

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992).

[Crossref]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).

[Crossref]

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).

[Crossref]

N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Y. Zel’dovich, “The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment),” Opt. Commun. 37, 280–284 (1981).

[Crossref]

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).

[Crossref]

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization,” Phys. Rev. B 90, 125417 (2014).

[Crossref]

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” J. Exp. Theor. Phys. Lett. 3, 307–310 (1966).

R. Carretero-Gonzáles, J. D. Talley, C. Chong, and B. A. Malomed, “Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,” Phys. D 216, 77–89 (2006).

[Crossref]

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).

[Crossref]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, “Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).

[Crossref]

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).

[Crossref]

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).

[Crossref]

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).

[Crossref]

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).

[Crossref]

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophotonics 1, 012501 (2007).

[Crossref]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, “Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).

[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).

[Crossref]

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).

[Crossref]

S. Toroghi and P. G. Kik, “Cascaded plasmonic metamaterials for phase-controlled enhancement of nonlinear absorption and refraction,” Phys. Rev. B 85, 045432 (2012).

[Crossref]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).

[Crossref]

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).

[Crossref]

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).

[Crossref]

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22, 275203 (2011).

[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).

[Crossref]

E. A. Kuznetsov and S. K. Turitsyn, “Instability and collapse of solitons in media with a defocusing nonlinearity,” J. Exp. Theor. Phys. 67, 1583–1588 (1988).

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, “Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).

[Crossref]

H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).

[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).

[Crossref]

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).

[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).

[Crossref]

N. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973).

[Crossref]

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29, 123002 (2017).

[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).

[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).

[Crossref]

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).

[Crossref]

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).

[Crossref]

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).

[Crossref]

J. R. Birchak, L. G. Gardner, J. W. Hipp, and J. M. Victor, “High dielectric constant microwave probes for sensing soil moisture,” Proc. IEEE 62, 93–98 (1974).

[Crossref]

M. A. Vincent and D. de Ceglia, “Effective medium theories,” in Fundamentals and Applications of Nanophotonics, J. W. Haus, ed. (Elsevier, 2016), pp. 211.

J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990).

[Crossref]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).

[Crossref]

U. Kreibig and M. Völlmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer, 1995).

A. Pinchuk, G. von Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139 (2004).

[Crossref]

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).

[Crossref]

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).

[Crossref]

R. Passier, M. Chauvet, B. Wacogne, and F. Devaux, “Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium,” J. Opt. 13, 085502 (2011).

[Crossref]

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).

[Crossref]

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3, 46–51 (2007).

[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).

[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).

[Crossref]

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).

[Crossref]

S. Wang and L. Zhang, “An efficient split-step compact finite difference method for cubic-quintic complex Ginzburg-Landau equations,” Comp. Phys. Commun. 184, 1511–1521 (2013).

[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).

[Crossref]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).

[Crossref]

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).

[Crossref]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).

[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).

[Crossref]

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).

[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).

[Crossref]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990).

[Crossref]

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).

[Crossref]

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).

[Crossref]

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).

[Crossref]

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).

[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).

[Crossref]

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).

[Crossref]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quantum Spectrosc. Radiat. Transfer 100, 444–456 (2006).

[Crossref]

T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quantum Spectrosc. Radiat. Transfer 60, 411–423 (1998).

[Crossref]

G. I. Stegeman, E. M. Wright, N. Finlayson, and R. Zanoni, “Third order nonlinear integrated optics,” J. Mater. Sci. 33, 2235–2249 (1998).

[Crossref]

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).

[Crossref]

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).

[Crossref]

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. 48, 60–103 (2008).

[Crossref]

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).

[Crossref]

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).

[Crossref]

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. 48, 60–103 (2008).

[Crossref]

Y. Liu, Y. L. Xue, and C. Yu, “Modulation instability induced by cross-phase modulation in negative index materials with higher-order nonlinearity,” Opt. Commun. 339, 66–73 (2015).

[Crossref]

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3, 177–192 (2014).

[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).

[Crossref]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).

[Crossref]

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).

[Crossref]

Y. Liu, Y. L. Xue, and C. Yu, “Modulation instability induced by cross-phase modulation in negative index materials with higher-order nonlinearity,” Opt. Commun. 339, 66–73 (2015).

[Crossref]

R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139, 69–72 (1997).

[Crossref]

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).

[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).

[Crossref]

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).

[Crossref]

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).

[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).

[Crossref]

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).

[Crossref]

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).

[Crossref]

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).

[Crossref]

A. Zangwill and P. Soven, “Density-functional approach to local-field effects in finite systems: photoabsorption in the rare gases,” Phys. Rev. A 21, 1561–1572 (1980).

[Crossref]

G. I. Stegeman, E. M. Wright, N. Finlayson, and R. Zanoni, “Third order nonlinear integrated optics,” J. Mater. Sci. 33, 2235–2249 (1998).

[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).

[Crossref]

N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Y. Zel’dovich, “The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment),” Opt. Commun. 37, 280–284 (1981).

[Crossref]

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13, 055707 (2011).

[Crossref]

J. Zeng and B. A. Malomed, “Stabilization of one-dimensional solitons against the critical collapse by quintic nonlinear lattices,” Phys. Rev. A 85, 023824 (2012).

[Crossref]

J. Zeng and B. A. Malomed, “Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity,” Phys. Rev. E 86, 036607 (2012).

[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).

[Crossref]

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).

[Crossref]

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).

[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).

[Crossref]

S. Wang and L. Zhang, “An efficient split-step compact finite difference method for cubic-quintic complex Ginzburg-Landau equations,” Comp. Phys. Commun. 184, 1511–1521 (2013).

[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).

[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).

[Crossref]

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).

[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).

[Crossref]

C. T. Law, X. Zhang, and G. A. Swartzlander, “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55–57 (2000).

[Crossref]

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).

[Crossref]

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).

[Crossref]

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).

[Crossref]

R. Yang and Y. Zhang, “Exact combined solitary wave solutions in nonlinear metamaterials,” J. Opt. Soc. Am. B 28, 123–127 (2011).

[Crossref]

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).

[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).

[Crossref]

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).

[Crossref]

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).

[Crossref]

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).

[Crossref]

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).

[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).

[Crossref]

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A 7, 409–415 (2005).

[Crossref]

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).

[Crossref]

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).

[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).

[Crossref]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).

[Crossref]

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008).

[Crossref]

R. E. P. de Oliveira, N. Sjödin, M. Fokine, W. Margulis, C. J. S. de Matos, and L. Norin, “Fabrication and optical characterization of silica optical fibers containing gold nanoparticles,” ACS Appl. Mater. Interface 7, 370–375 (2015).

[Crossref]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).

[Crossref]

P. W. de Oliveira, C. Becker-Willinger, and M. H. Jilavi, “Sol-gel derivednanocomposites for optical applications,” Adv. Eng. Mater. 12, 349–361 (2010).

[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “Nanoparticle direct doping: novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23, 3443–3451 (2013).

[Crossref]

R. Kuladeep, K. S. Alee, L. Jyothi, and D. N. Rao, “Synthesis, characterization and nonlinear optical properties of laser-induced Au coloidal nanoparticles,” Adv. Mater. Lett. 4, 482–487 (2013).

[Crossref]

K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photonics 4, 1–77 (2012).

[Crossref]

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. 48, 60–103 (2008).

[Crossref]

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).

[Crossref]

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik 416, 636–664 (1935).

[Crossref]

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).

[Crossref]

K. C. Jorge, R. Riva, N. A. S. Rodrigues, J. M. S. Sakamoto, and M. G. Destro, “Scattered light imaging method (SLIM) for characterization of arbitrary laser beam intensity profiles,” Appl. Opt. 53, 4555–4564 (2014).

[Crossref]

R. Chattopadhyay and S. K. Bhadra, “Dispersion tailoring in single mode optical fiber by doping silver nanoparticles,” Appl. Phys. B 111, 399–406 (2013).

[Crossref]

M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B 105, 149–162 (2011).

[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).

[Crossref]

E. Almeida, A. C. L. Moreira, A. M. Brito-Silva, A. Galembeck, C. P. Melo, L. de S. Menezes, and C. B. de Araújo, “Ultrafast dephasing of localized surface plasmons in colloidal silver nanoparticles: the influence of stabilizing agents,” Appl. Phys. B 108, 9–16 (2012).

[Crossref]

W. R. Callen, B. G. Huth, and R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11, 103–105 (1967).

[Crossref]

F. W. Dabby, T. K. Gustafson, J. R. Whinnery, Y. Kohanzadeh, and P. L. Kelley, “Thermally self-induced phase modulation of laser beams,” Appl. Phys. Lett. 16, 362–365 (1970).

[Crossref]

G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, and J. Wang, “Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation,” Appl. Phys. Lett. 104, 141909 (2014).

[Crossref]

M. Trejo-Durán, J. A. Andrade-Lucio, A. Martínez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett. 90, 091112 (2007).

[Crossref]

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. I. Stegeman, “Experimental observation of polarization instability in a birefringent optical fiber,” Appl. Phys. Lett. 49, 1224–1226 (1986).

[Crossref]

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).

[Crossref]

R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996).

[Crossref]

E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).

[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).

[Crossref]

S. Wang and L. Zhang, “An efficient split-step compact finite difference method for cubic-quintic complex Ginzburg-Landau equations,” Comp. Phys. Commun. 184, 1511–1521 (2013).

[Crossref]

B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett. 63, 642–648 (2003).

[Crossref]

S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).

[Crossref]

Y. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993).

[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).

[Crossref]

D. Gall, “Electron mean free path in elemental metals,” J. Appl. Phys. 119, 085101 (2016).

[Crossref]

J. Jayabalan, A. Singh, S. Khan, and R. Chari, “Third-order nonlinearity of metal nanoparticles: isolation of instantaneous and delayed contributions,” J. Appl. Phys. 112, 103524 (2012).

[Crossref]

H. P. S. Castro, H. Wender, M. A. R. C. Alencar, S. R. Teixeira, J. Dupont, and J. M. Hickmann, “Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition,” J. Appl. Phys. 114, 183104 (2013).

[Crossref]

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95, 2755–2762 (2004).

[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).

[Crossref]

Q. Zhou, Q. Zhu, Y. Liu, H. Yu, Z. Wu, J. Lu, C. Wei, and A. Biswas, “Analytical study of combo-solitons in optical metamaterials with cubic-quintic nonlinearity,” J. Comput. Theor. Nanosci. 12, 5278–5282 (2015).

[Crossref]

N. Faraji, W. M. M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, “Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites,” J. Eur. Opt. Soc. 7, 12040 (2012).

[Crossref]

E. A. Kuznetsov and S. K. Turitsyn, “Instability and collapse of solitons in media with a defocusing nonlinearity,” J. Exp. Theor. Phys. 67, 1583–1588 (1988).

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” J. Exp. Theor. Phys. Lett. 3, 307–310 (1966).

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra series transfer function of single-mode fibers,” J. Lightwave Technol. 15, 2232–2241 (1997).

[Crossref]

C. B. de Araújo, L. R. P. Kassab, C. T. Dominguez, S. J. L. Ribeiro, A. S. L. Gomes, and A. S. Reyna, “Photoluminescence and nonlinear optical phenomena in plasmonic random media: a review of recent works,” J. Lumin. 169, 492–496 (2016).

[Crossref]

G. I. Stegeman, E. M. Wright, N. Finlayson, and R. Zanoni, “Third order nonlinear integrated optics,” J. Mater. Sci. 33, 2235–2249 (1998).

[Crossref]

H. Tagwo, C. G. L. Tiofack, O. Dafounansou, A. Mohamadou, and T. C. Kofane, “Effect of competing cubic-quintic nonlinearities on the modulational instability in nonlocal Kerr-type media,” J. Mod. Opt. 63, 558–565 (2016).

[Crossref]

J. Zhang, Y. Li, Y. Xiang, D. Lei, and L. Zhang, “Collapse of optical wave by cross-phase modulation in nonlinear metamaterials,” J. Mod. Opt. 63, 605–612 (2016).

[Crossref]

J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010).

[Crossref]

A. M. Brito-Silva, L. A. Gomez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 1–7 (2010).

[Crossref]

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophotonics 1, 012501 (2007).

[Crossref]

J. Z. Anvari, R. Karimzadeh, and N. Mansour, “Thermo-optic properties and nonlinear responses of copper nanoparticles in polysiloxane oil,” J. Opt. 12, 035212 (2010).

[Crossref]

Y. E. Geints, N. S. Panamarev, and A. A. Zemlyanov, “Transient behavior of far-field diffraction patterns of a Gaussian laser beam due to the thermo-optical effect in metal nanocolloids,” J. Opt. 13, 055707 (2011).

[Crossref]

R. Passier, M. Chauvet, B. Wacogne, and F. Devaux, “Light-induced waveguide by a finite self-trapped vortex beam in a photorefractive medium,” J. Opt. 13, 085502 (2011).

[Crossref]

C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A 8, 947–951 (2006).

[Crossref]

V. Pilla, E. Munin, and M. R. R. Gesualdi, “Measurement of the thermo-optic coefficient in liquids by laser-induced conical diffraction and thermal lens techniques,” J. Opt. A 11, 105201 (2009).

[Crossref]

L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A 7, 409–415 (2005).

[Crossref]

A. N. Korolevich and M. Belsley, “Simultaneous measurements of thermally induced birefringence and thermal refraction in absorptive glass filters,” J. Opt. B 3, S173–S179 (2001).

[Crossref]

F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986).

[Crossref]

L. A. Gomez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles,” J. Opt. Soc. Am. B 24, 2136–2140 (2007).

[Crossref]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokisaki, and A. Nakamura, “Optical nonlinearities of high concentration of small metal particles dispersed in glass: copper and silver particles,” J. Opt. Soc. Am. B 11, 1236–1243 (1994).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).

[Crossref]

J. Jayabalan, “Origin and time dependence of higher-order nonlinearities in metal nanocomposites,” J. Opt. Soc. Am. B 28, 2448–2455 (2011).

[Crossref]

I. Towers and B. A. Malomed, “Stable (2 + 1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity,” J. Opt. Soc. Am. B 19, 537–543 (2002).

[Crossref]

D. D. Smith, G. Fisher, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticles composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625–1631 (1997).

[Crossref]

R. J. Gehr, G. L. Fisher, and R. W. Boyd, “Nonlinear-optical response of porous-glass based composite materials,” J. Opt. Soc. Am. B 14, 2310–2314 (1997).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).

[Crossref]

S. Wen and D. Fan, “Spatiotemporal instabilities in nonlinear Kerr media in the presence of arbitrary higher-order dispersions,” J. Opt. Soc. Am. B 19, 1653–1659 (2002).

[Crossref]

D. Kip, M. Soljačić, M. Segev, S. M. Sears, and D. N. Christodoulides, “(1 + 1)-Dimensional modulation instability of spatially incoherent light,” J. Opt. Soc. Am. B 19, 502–512 (2002).

[Crossref]

G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress,” J. Opt. Soc. Am. B 28, A1–A10 (2011).

[Crossref]

R. Gupta, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Modulational instability of copropagating light beams induced by cubic-quintic nonlinearity in nonlinear negative-index material,” J. Opt. Soc. Am. B 29, 3360–3366 (2012).

[Crossref]

R. Yang and Y. Zhang, “Exact combined solitary wave solutions in nonlinear metamaterials,” J. Opt. Soc. Am. B 28, 123–127 (2011).

[Crossref]

P. C. Lee and D. Meisel, “Adsorbed and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).

[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).

[Crossref]

M. M. Alvarez, J. T. Khoury, G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,” J. Phys. Chem. B 101, 3706–3712 (1997).

[Crossref]

J. Lermé, “Size evolution of the surface plasmon resonance damping in silver nanoparticles: confinement and dielectric effects,” J. Phys. Chem. C 115, 14098–14110 (2011).

[Crossref]

J. Lermé, C. Bonnet, M.-A. Lebeault, M. Pellarin, and E. Cottancin, “Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences,” J. Phys. Chem. C 121, 5693–5708 (2017).

[Crossref]

P. K. Jain and M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).

[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116, 13731–13737 (2012).

[Crossref]

J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, and M. Pellarin, “Size dependence of the surface plasmon resonance damping in metal nanospheres,” J. Phys. Chem. Lett. 1, 2922–2928 (2010).

[Crossref]

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29, 123002 (2017).

[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D 34, 1602–1611 (2001).

[Crossref]

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D 44, 283001 (2011).

[Crossref]

A. Pinchuk, G. von Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D 37, 3133–3139 (2004).

[Crossref]

M. R. Gonçalves, “Plasmonic nanoparticles: fabrication, simulation and experiments,” J. Phys. D 47, 213001 (2014).

[Crossref]

A. Kawataba and R. Kubo, “Electronic properties of fine metallic particles. II. Plasma resonance absorption,” J. Phys. Soc. Jpn. 21, 1765–1772 (1966).

[Crossref]

M. H. M. Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, and F. Divsar, “Diffraction patterns and nonlinear optical properties of gold nanoparticles,” J. Quant. Spectrosc. Radiat. Transfer 113, 366–372 (2012).

[Crossref]

V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, “Light scattering by multilayered nonspherical particles: a set of methods,” J. Quantum Spectrosc. Radiat. Transfer 79–80, 599–626 (2003).

[Crossref]

T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quantum Spectrosc. Radiat. Transfer 60, 411–423 (1998).

[Crossref]

J. W. Hovenier, K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, “Computations of scattering matrices of four types of non-spherical particles using diverse methods,” J. Quantum Spectrosc. Radiat. Transfer 55, 695–705 (1996).

[Crossref]

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quantum Spectrosc. Radiat. Transfer 100, 444–456 (2006).

[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructure for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).

[Crossref]

J. Saade and C. B. de Araújo, “Synthesis of silver nanoprisms: a photochemical approach using light emission diodes,” Mater. Chem. Phys. 148, 1184–1193 (2014).

[Crossref]

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. R 65, 1–38 (2009).

[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. De Angelis, E. Di Fabrizio, and R. P. Zaccaria, “Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature,” Materials 6, 4879–4910 (2013).

[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).

[Crossref]

H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012).

[Crossref]

L.-D. Wang, T. Zhang, X.-Y. Zhang, Y.-J. Song, R.-Z. Li, and S.-Q. Zhu, “Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film,” Nano. Res. Lett. 9, 155–167 (2014).

[Crossref]

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3, 177–192 (2014).

[Crossref]

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22, 275203 (2011).

[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).

[Crossref]

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7, 197–204 (2013).

[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239–245 (2011).

[Crossref]

Y. Kivshar, “Spatial solitons: bending light at will,” Nat. Phys. 2, 729–730 (2006).

[Crossref]

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3, 46–51 (2007).

[Crossref]

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).

[Crossref]

Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, and H. Zhang, “Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion,” Nonlinear Dyn. 80, 1365–1371 (2015).

[Crossref]

A. D. Boardman, R. C. Mitchell-Thomas, N. J. King, and Y. G. Rapoport, “Bright spatial solitons in controlled negative phase metamaterials,” Opt. Commun. 283, 1585–1597 (2010).

[Crossref]

Y. Liu, Y. L. Xue, and C. Yu, “Modulation instability induced by cross-phase modulation in negative index materials with higher-order nonlinearity,” Opt. Commun. 339, 66–73 (2015).

[Crossref]

A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Kokhkharov, and E. A. Zakhidov, “Self-induced polarization rotation of laser beam in fullerene (C70) solutions,” Opt. Commun. 285, 2947–2951 (2012).

[Crossref]

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de kerr,” Opt. Commun. 55, 201–206 (1985).

[Crossref]

M. Saha and A. K. Sarma, “Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher order dispersive effects,” Opt. Commun. 291, 321–325 (2013).

[Crossref]

W.-P. Hong, “Modulational instability of optical waves in the high dispersive cubic-quintic nonlinear Schrödinger equation,” Opt. Commun. 213, 173–182 (2002).

[Crossref]

N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Y. Zel’dovich, “The orientational mechanism of nonlinearity and the self-focusing of He-Ne laser radiation in nematic liquid crystal mesophase (theory and experiment),” Opt. Commun. 37, 280–284 (1981).

[Crossref]

Z. Liu, S. Liu, R. Guo, Y. Gao, X. Qi, L. Zhou, and Y. Li, “Modulation instability with incoherent white light in self-defocusing photorefractive crystal,” Opt. Commun. 281, 3171–3176 (2008).

[Crossref]

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284, 2370–2375 (2011).

[Crossref]

R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139, 69–72 (1997).

[Crossref]

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. M. Otón, “Metal nanoparticles–PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2, 1–6 (2016).

[Crossref]

A. M. Amaral, E. L. Falcão-Filho, and C. B. de Araújo, “Characterization of topological charge and orbital angular momentum of shaped optical vórtices,” Opt. Express 22, 30315–30324 (2014).

[Crossref]

A. S. Reyna and C. B. de Araújo, “An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites,” Opt. Express 23, 7659–7666 (2015).

[Crossref]

A. S. Reyna, E. Bergmann, P.-F. Brevet, and C. B. de Araújo, “Nonlinear polarization instability in cubic-quintic photonic nanocomposites,” Opt. Express 25, 21049–21067 (2017).

[Crossref]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express 17, 13429–13434 (2009).

[Crossref]

G. Stegeman, D. G. Papazoglou, R. Boyd, and S. Tzortzakis, “Nonlinear birefringence due to non-resonant, higher-order Kerr effect in isotropic media,” Opt. Express 19, 6387–6399 (2011).

[Crossref]

K. C. Jorge, H. A. García, A. M. Amaral, A. S. Reyna, L. S. Menezes, and C. B. de Araújo, “Measurements of the nonlinear refractive index in scattering media using the scattered light imaging method—SLIM,” Opt. Express 23, 19512–19521 (2015).

[Crossref]

R. El-Ganainy, D. N. Christodoulides, C. Rotschild, and M. Segev, “Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Express 15, 10207–10218 (2007).

[Crossref]

V. Skarka, N. B. Aleksić, W. Krolikowski, D. N. Christodoulides, S. Rakotoarimalala, B. N. Aleksić, and M. Belić, “Self-structuring of stable dissipative breathing vortex solitons in a colloidal nanosuspension,” Opt. Express 25, 10090–10102 (2017).

[Crossref]

A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22, 22456–22469 (2014).

[Crossref]

E. L. Falcão-Filho, R. Barbosa-Silva, R. G. Sobral-Filho, A. M. Brito-Silva, A. Galembeck, and C. B. de Araújo, “High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm,” Opt. Express 18, 21636–21644 (2010).

[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).

[Crossref]

S. Mohan, J. Lange, H. Graener, and G. Seifert, “Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass,” Opt. Express 20, 28655–28663 (2012).

[Crossref]

K.-H. Kim, A. Husakou, and J. Herrmann, “Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes,” Opt. Express 18, 7488–7496 (2010).

[Crossref]

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007).

[Crossref]

V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, “Spatial, temporal, and spatio-temporal modulational instabilities in a planar dual-core waveguide,” Opt. Fiber Technol. 24, 119–126 (2015).

[Crossref]

E. Santamato and Y. R. Shen, “Field-curvature effect on the diffraction ring pattern of a laser beam dressed by spatial self-phase modulation in a nematic film,” Opt. Lett. 9, 564–566 (1984).

[Crossref]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic-liquid-crystal film,” Opt. Lett. 6, 411–413 (1981).

[Crossref]

T. Myint and R. R. Alfano, “Spatial phase modulation from permanent memory in doped glass,” Opt. Lett. 35, 1275–1277 (2010).

[Crossref]

H.-J. Zhang, J.-H. Dai, P.-Y. Wang, and L.-A. Wu, “Self-focusing and self-trapping in new types of Kerr media with large nonlinearities,” Opt. Lett. 14, 695–696 (1989).

[Crossref]

D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).

[Crossref]

T. S. Kelly, Y.-X. Ren, A. Samadi, A. Bezryadina, D. Christodoulides, and Z. Chen, “Guiding and nonlinear coupling of light in plasmonic nanosuspensions,” Opt. Lett. 41, 3817–3820 (2016).

[Crossref]

V. Tikhonenko, J. Christou, B. Luther-Davies, and Y. S. Kivshar, “Observation of vortex solitons created by the instability of dark soliton stripes,” Opt. Lett. 21, 1129–1131 (1996).

[Crossref]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471–473 (1990).

[Crossref]

H. G. Winful, “Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices,” Opt. Lett. 11, 33–35 (1986).

[Crossref]

V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).

[Crossref]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germane-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).

[Crossref]

C. T. Law, X. Zhang, and G. A. Swartzlander, “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55–57 (2000).

[Crossref]

A. S. Reyna and C. B. de Araújo, “Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium,” Opt. Lett. 41, 191–194 (2016).

[Crossref]

R. Kashiap and N. Finlayson, “Nonlinear polarization coupling and instabilities in single-mode liquid-cored optical fibers,” Opt. Lett. 17, 405–407 (1992).

[Crossref]

K. Ogusu, Y. Kohtani, and H. Shao, “Laser-induced diffraction rings from an absorbing solution,” Opt. Rev. 3, 232–234 (1996).

[Crossref]

N. N. Rozanov, “Modulation instability in a medium with a nonlocal nonlinearity,” Opt. Spectrosc. 100, 609–612 (2006).

[Crossref]

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1, 436–445 (2014).

[Crossref]

R. Zamiri, A. Zakaria, M. B. Ahmad, A. R. Sadrolhosseini, K. Shameli, M. Darroudi, and M. A. Mahdi, “Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension,” Optik (Stuttgart) 122, 836–838 (2011).

[Crossref]

M. Faraday, “The Bakerian lecture: experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. London 147, 145–181 (1857).

[Crossref]

D. E. Pelinovsky, Y. S. Kivshar, and V. V. Afanasjev, “Internal modes of envelope solitons,” Phys. D 116, 121–142 (1998).

[Crossref]

R. Carretero-Gonzáles, J. D. Talley, C. Chong, and B. A. Malomed, “Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation,” Phys. D 216, 77–89 (2006).

[Crossref]

T. Passota, C. Sulem, and P. L. Sulem, “Linear versus nonlinear dissipation for critical NLS equation,” Phys. D 203, 167–184 (2005).

[Crossref]

J. Borhanian, “Nonlinear birefringence in plasmas: polarization dynamics, vector modulational instability, and vector solitons,” Phys. Plasmas 21, 062312 (2014).

[Crossref]

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).

[Crossref]

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431, 87–172 (2006).

[Crossref]

E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).

[Crossref]

Z. Wu, Y. Zhang, C. Yuan, F. Wen, H. Zheng, and Y. Zhang, “Cubic-quintic condensate solitons in four-wave mixing,” Phys. Rev. A 88, 063828 (2013).

[Crossref]

N. Akhmediev and J. M. Soto-Crespo, “Generation of a train of three-dimensional optical solitons in a self-focusing medium,” Phys. Rev. A 47, 1358–1364 (1993).

[Crossref]

A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90, 063835 (2014).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007).

[Crossref]

A. S. Reyna, B. A. Malomed, and C. B. de Araújo, “Stability conditions for one-dimensional optical solitons in cubic-quintic-septimal media,” Phys. Rev. A 92, 033810 (2015).

[Crossref]

J. Zeng and B. A. Malomed, “Stabilization of one-dimensional solitons against the critical collapse by quintic nonlinear lattices,” Phys. Rev. A 85, 023824 (2012).

[Crossref]

J. B. Khurgin and G. Sun, “Third-order nonlinear plasmonic materials: enhancement and limitations,” Phys. Rev. A 88, 053838 (2013).

[Crossref]

N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: exact results for spherical grains,” Phys. Rev. A 41, 4486–4492 (1990).

[Crossref]

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell-Garnet model,” Phys. Rev. A 46, 1614–1629 (1992).

[Crossref]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).

[Crossref]

B. K. Esbensen, A. Wlotzka, M. Bache, O. Bang, and W. Krolikowski, “Modulational instability and solitons in nonlocal media with competing nonlinearities,” Phys. Rev. A 84, 053854 (2011).

[Crossref]

A. Zangwill and P. Soven, “Density-functional approach to local-field effects in finite systems: photoabsorption in the rare gases,” Phys. Rev. A 21, 1561–1572 (1980).

[Crossref]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).

[Crossref]

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027–5030 (1987).

[Crossref]

S. Prusty, H. S. Mavi, and A. K. Shukla, “Optical nonlinearity in silicon nanoparticles: effect of size and probing intensity,” Phys. Rev. B 71, 113313 (2005).

[Crossref]

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization,” Phys. Rev. B 90, 125417 (2014).

[Crossref]

S. Toroghi and P. G. Kik, “Cascaded plasmonic metamaterials for phase-controlled enhancement of nonlinear absorption and refraction,” Phys. Rev. B 85, 045432 (2012).

[Crossref]

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 56, 8035–8046 (1997).

[Crossref]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues, C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B 70, 161401(R) (2004).

[Crossref]

P. S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, “Nonlinear birefringence and time-resolved Kerr measurement of spin lifetimes in (110) GaAs/AlyGa1-yAs quantum wells,” Phys. Rev. B 81, 033302 (2010).

[Crossref]

J. Zeng and B. A. Malomed, “Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity,” Phys. Rev. E 86, 036607 (2012).

[Crossref]

D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006).

[Crossref]

Y. Chung and P. M. Lushnikov, “Strong collapse turbulence in a quintic nonlinear Schrödinger equation,” Phys. Rev. E 84, 036602 (2011).

[Crossref]

B. G. O. Essama, J. Atangana, B. M. Frederick, B. Mokhtari, N. C. Eddeqaqi, and T. C. Kofane, “Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion,” Phys. Rev. E 90, 032911 (2014).

[Crossref]

M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005).

[Crossref]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).

[Crossref]

A. Pasquazi, M. Peccianti, M. Clerici, C. Conti, and R. Morandotti, “Collapse arrest in instantaneous Kerr media via parametric interactions,” Phys. Rev. Lett. 113, 133901 (2014).

[Crossref]

E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, “Robust two-dimensional spatial solitons in liquid carbon disulfide,” Phys. Rev. Lett. 110, 013901 (2013).

[Crossref]

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).

[Crossref]

G. P. Agrawal, “Induced focusing of optical beams in self-defocusing media,” Phys. Rev. Lett. 64, 2487–2490 (1990).

[Crossref]

J. M. Hickmann, A. S. L. Gomes, and C. B. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68, 3547–3550 (1992).

[Crossref]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).

[Crossref]

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).

[Crossref]

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992).

[Crossref]

H. Saito and M. Ueda, “Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate,” Phys. Rev. Lett. 90, 040403 (2003).

[Crossref]

M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006).

[Crossref]

D. Grischkowsk, “Self-focusing of light by potassium vapor,” Phys. Rev. Lett. 24, 866–869 (1970).

[Crossref]

R. X. Bian, R. C. Dunn, X. S. Xie, and P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).

[Crossref]

Y. S. Kivshar, D. Anderson, and M. Lisak, “Modulation instabilities and dark solitons in a generalized nonlinear Schrödinger equation,” Phys. Scripta 47, 679–681 (1993).

[Crossref]

H. Looyenga, “Dielectric constants of mixtures,” Physica 31, 401–406 (1965).

[Crossref]

S. Mohapatra, Y. K. Mishra, A. M. Warrier, R. Philip, S. Sahoo, A. K. Arora, and D. K. Avasthi, “Plasmonic, low-frequency Raman, and nonlinear optical-limiting studies in copper-silica nanocomposites,” Plasmonics 7, 25–31 (2012).

[Crossref]

J. R. Birchak, L. G. Gardner, J. W. Hipp, and J. M. Victor, “High dielectric constant microwave probes for sensing soil moisture,” Proc. IEEE 62, 93–98 (1974).

[Crossref]

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).

[Crossref]

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975).

[Crossref]

N. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973).

[Crossref]

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75, 086401 (2012).

[Crossref]

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79, 036401 (2016).

[Crossref]

R. J. Elliott, J. A. Krumhansl, and P. L. Leath, “The theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46, 465–543 (1974).

[Crossref]

W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys. 58, 533–606 (1986).

[Crossref]

W. A. de Heer, “The physics of simple metal clusters: experimental aspects and simple models,” Rev. Mod. Phys. 65, 611–676 (1993).

[Crossref]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: nonlinear metamaterials,” Rev. Mod. Phys. 86, 1093–1123 (2014).

[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).

[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).

[Crossref]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).

[Crossref]

G. Fibich, “Self-focusing in the damped nonlinear Schrödinger equation,” SIAM J. Appl. Math. 61, 1680–1705 (2001).

[Crossref]

B. N. J. Persson and A. Liebsch, “Optical properties of inhomogeneous media,” Solid State Commun. 44, 1637–1640 (1982).

[Crossref]

A. Pinchuck, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).

[Crossref]

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).

[Crossref]

C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. V. Duyne, “Nanoparticles with tunable localized surface plasmon resonance,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz and C. D. Geddes, eds. (Springer, 2005), pp. 47–99.

R. A. Ganeev, Nonlinear Optical Properties of Materials (Springer, 2013).

C. F. Bohren and D. H. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag, 1998).

N. Bloembergen, Nonlinear Optics (W. A. Benjamin, 1965).

S. A. Maier, Plasmonics–Fundamentals and Applications (Springer, 2007).

B. Karmakar, K. Radermann, and A. L. Stepanov, Glass Nanocomposites (Synthesis, Properties and Applications), Micro & Nano Technologies Series (Elsevier, 2016).

Y. Gogotsi, Nanomaterials Handbook (CRC Press, 2006).

B. T. Draine, “The discrete dipole approximation for light scattering by irregular targets,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), Chap. 5, pp. 131–145.

B. Draine and P. Flatau, “User guide for the discrete dipole approximation code DDSCAT.6.0,” arXiv:astro-ph/0309069 (2003).

U. Kreibig and M. Völlmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer, 1995).

P. N. Prasad, Nanophotonics (Wiley, 2004).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

M. A. Vincent and D. de Ceglia, “Effective medium theories,” in Fundamentals and Applications of Nanophotonics, J. W. Haus, ed. (Elsevier, 2016), pp. 211.

T. C. Choy, Effective Medium Theory: Principles and Applications in Fundamentals and Applications of Nanophotonics (Oxford University, 2016).

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).