Abstract

Flexibility in engineering holey structures and controlling the wave guiding properties in photonic crystal fibers (PCFs) has enabled a wide variety of PCF-based plasmonic structures and devices with attractive application potential. Metal thin films, nanowires, and nanoparticles are embedded for achieving surface plasmon resonance (SPR) or localized SPR within PCF structures. This paper begins with an outline of plasmonic sensing principles. This is followed by an overview of fabrication and experimental investigation of plasmonic PCFs. Reported plasmonic PCF designs are categorized based on their target application areas, including optical/biochemical sensors, polarization splitters, and couplers. Finally, design and fabrication considerations, as well as limitations due to the structural features of PCFs, are discussed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber

Tiesheng Wu, Yu Shao, Ying Wang, Shaoqing Cao, Weiping Cao, Feng Zhang, Changrui Liao, Jun He, Yijian Huang, Maoxiang Hou, and Yiping Wang
Opt. Express 25(17) 20313-20322 (2017)

Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor

Ahmmed A. Rifat, G. A. Mahdiraji, Yong Meng Sua, Rajib Ahmed, Y. G. Shee, and F. R. Mahamd Adikan
Opt. Express 24(3) 2485-2495 (2016)

Thermally tunable polarization by nanoparticle plasmonic resonance in photonic crystal fibers

David Poudereux, Manuel Caño-García, José F. Algorri, Braulio García-Cámara, José M. Sánchez-Pena, Xabier Quintana, Morten A. Geday, and José M. Otón
Opt. Express 23(22) 28935-28944 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
    [Crossref]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref]
  3. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12, 213–220 (1993).
    [Crossref]
  4. R. Slavík, J. Homola, and J. Čtyroký, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B Chem. 54, 74–79 (1999).
    [Crossref]
  5. W.-H. Lin, Y.-C. Tsai, Y.-C. Tsao, and J.-K. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
    [Crossref]
  6. A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
    [Crossref]
  7. B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013).
    [Crossref]
  8. R. J. Whelan and R. N. Zare, “Surface plasmon resonance detection for capillary electrophoresis separations,” Anal. Chem. 75, 1542–1547 (2003).
    [Crossref]
  9. R. Jha, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a Teflon layer between core and metal layer,” Plasmonics 3, 151–156 (2008).
    [Crossref]
  10. Y.-C. Kim, W. Peng, S. Banerji, and K. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett. 30, 2218–2220 (2005).
    [Crossref]
  11. H.-Y. Lin, C.-H. Huang, G.-L. Cheng, N.-K. Chen, and H.-C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20, 21693–21701 (2012).
    [Crossref]
  12. S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
    [Crossref]
  13. R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
    [Crossref]
  14. A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor,” IEEE Photon. Technol. Lett. 27, 2437–2440 (2015).
    [Crossref]
  15. N. Rezaei and A. Yahaghi, “A high sensitivity surface plasmon resonance D-shaped fiber sensor based on a waveguide-coupled bimetallic structure: modeling and optimization,” IEEE Sens. J. 14, 3611–3615 (2014).
    [Crossref]
  16. H.-Y. Lin, W.-H. Tsai, Y.-C. Tsao, and B.-C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt. 46, 800–806 (2007).
    [Crossref]
  17. H.-Y. Lin, Y.-C. Tsao, W.-H. Tsai, Y.-W. Yang, T.-R. Yan, and B.-C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850  nm-LED,” Sens. Actuators A 138, 299–305 (2007).
    [Crossref]
  18. T.-J. Lin and C.-T. Lou, “Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions,” J. Supercrit. Fluids 41, 317–325 (2007).
    [Crossref]
  19. Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2, 478–484 (2011).
    [Crossref]
  20. L.-Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18, 11464–11471 (2010).
    [Crossref]
  21. C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104, 071106 (2014).
    [Crossref]
  22. T. Schuster, R. Herschel, N. Neumann, and C. G. Schäffer, “Miniaturized long-period fiber grating assisted surface plasmon resonance sensor,” J. Lightwave Technol. 30, 1003–1008 (2012).
    [Crossref]
  23. Y. J. He, “Investigation of LPG-SPR sensors using the finite element method and eigenmode expansion method,” Opt. Express 21, 13875–13895 (2013).
    [Crossref]
  24. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
    [Crossref]
  25. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref]
  26. J. Villatoro and J. Zubia, “New perspectives in photonic crystal fibre sensors,” Opt. Laser Technol. 78, 67–75 (2016).
    [Crossref]
  27. Y. Zhao, Z. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B 202, 557–567 (2014).
    [Crossref]
  28. B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
    [Crossref]
  29. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
    [Crossref]
  30. X. Yang, C. Gu, F. Qian, Y. Li, and J. Z. Zhang, “Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers,” Anal. Chem. 83, 5888–5894 (2011).
    [Crossref]
  31. A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber sensors based on nanoparticle-embedded coatings,” J. Sens. 2015, 1–18 (2015).
    [Crossref]
  32. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
    [Crossref]
  33. E. Kretschmann and H. Z. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  34. M.-H. Chiu, C.-H. Shih, and M.-H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sens. Actuators B 123, 1120–1124 (2007).
    [Crossref]
  35. L. Coelho, J. M. M. M. de Almeida, J. L. Santos, R. A. S. Ferreira, P. S. André, and D. Viegas, “Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres,” Plasmonics 10, 319–327(2015).
    [Crossref]
  36. M. Born and E. Wolf, “Basic properties of the electromagnetic field,” in Principles of Optics, 7th ed. (Cambridge University, 1999), pp. 752–758.
  37. P. Yeh, Optical Waves in Layered Media (Wiley, 1998).
  38. A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19, 3799–3808 (2011).
    [Crossref]
  39. J. N. Dash and R. Jha, “SPR biosensor based on polymer PCF coated with conducting metal oxide,” IEEE Photon. Technol. Lett. 26, 594–598 (2014).
    [Crossref]
  40. C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmonic resonators,” Phys. Rev. Lett. 110, 237401 (2013).
    [Crossref]
  41. M. Sun, Y. Wang, Z. N. Chen, Y. Gong, J. Lim, and X. Qing, “Nanostars on a fiber facet with near field enhancement for surface-enhanced Raman scattering detection,” Appl. Phys. A 115, 87–91 (2014).
    [Crossref]
  42. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
    [Crossref]
  43. A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
    [Crossref]
  44. C. E. Finlayson, A. Amezcua-Correa, and P. J. A. Sazio, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett. 90, 132110 (2007).
    [Crossref]
  45. M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
    [Crossref]
  46. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St.J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
    [Crossref]
  47. H. W. Lee, M. A. Schmidt, R. F. Russel, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St.J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19, 12180–12189(2011).
    [Crossref]
  48. I. W. Donald and B. L. Metcalfe, “The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process,” J. Mater. Sci. 31, 1139–1149 (1996).
    [Crossref]
  49. X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20, 1310–1314 (2008).
    [Crossref]
  50. M. Yaman, T. Khudiyev, E. Ozgur, M. Kanik, O. Aktas, E. O. Ozgur, H. Deniz, E. Korkut, and M. Bayindir, “Arrays of indefinitely long uniform nanowires and nanotubes,” Nat. Mater. 10, 494–501 (2011).
    [Crossref]
  51. H. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St.J. Russell, “Plasmon resonances on gold nanowires directly,” Opt. Lett. 35, 2573–2575 (2010).
    [Crossref]
  52. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett. 31, 2672–2674(2006).
    [Crossref]
  53. P. Uebel, M. A. Schmidt, H. W. Lee, and P. St.J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20, 28409–28417 (2012).
    [Crossref]
  54. H. W. Lee, M. A. Schmidt, and P. St.J. Russell, “Excitation of a nanowire ‘molecule’ in gold-filled photonic crystal fiber,” Opt. Lett. 37, 2946–2948 (2012).
    [Crossref]
  55. C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Express 6, 1790–1799 (2016).
    [Crossref]
  56. Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6, 680137 (2014).
    [Crossref]
  57. X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires,” IEEE Photon. J. 8, 6803309 (2016).
    [Crossref]
  58. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
    [Crossref]
  59. J. Boehm, A. Francois, H. Ebendorff-Heidepriem, and T. M. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6, 133–136 (2011).
    [Crossref]
  60. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15, 16270–16278 (2007).
    [Crossref]
  61. E. Klantsataya, A. Francois, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
    [Crossref]
  62. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34, 3890–3892 (2009).
    [Crossref]
  63. X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B 160, 196–201 (2011).
    [Crossref]
  64. D. J. J. Hu, J. L. Lim, M. K. Park, L. T. H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1293–1297(2012).
    [Crossref]
  65. D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37, 2283–2285 (2012).
    [Crossref]
  66. W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization,” IEEE J. Sel. Top. Quantum Electron. 19, 460217 (2013).
    [Crossref]
  67. H. E. Arabi, M. Pournoury, J. H. Park, S. Im, and K. Oh, “Plasmonically enhanced optical transmission through a metalized nanostructured photonic crystal fiber taper,” Opt. Lett. 36, 2029–2031 (2011).
    [Crossref]
  68. T. K. Sau and C. J. Murphy, “Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes,” Langmuir 21, 2923–2929 (2005).
    [Crossref]
  69. H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300–8305 (2008).
    [Crossref]
  70. Z. Xie, Y. Lu, H. Wei, J. Yan, P. Wang, and H. Ming, “Broad spectral photonic crystal fiber surface enhanced Raman scattering probe,” Appl. Phys. B 95, 751–755 (2009).
    [Crossref]
  71. N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
    [Crossref]
  72. H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhao, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
    [Crossref]
  73. F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Opt. Express 15, 13675–13681 (2007).
    [Crossref]
  74. Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
    [Crossref]
  75. V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nanoparticle within hollow core photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 20, 7300608 (2014).
    [Crossref]
  76. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
    [Crossref]
  77. J. Irizar, J. Dinglasan, J. B. Goh, A. Khetani, H. Anis, D. Anderson, C. Goh, and A. S. Helmy, “Raman spectroscopy of nanoparticles using hollow-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 14, 1214–1222 (2008).
    [Crossref]
  78. X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27, 977–984 (2010).
    [Crossref]
  79. C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
    [Crossref]
  80. X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow-core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt. 2011, 751610 (2010).
    [Crossref]
  81. M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent field surface enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
    [Crossref]
  82. M. K. K. Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles,” Opt. Lett. 34, 968–970 (2009).
    [Crossref]
  83. Y. Zhang, D. Yong, X. Yu, L. Xia, D. Liu, and Y. Zhang, “Amplification of surface-enhance Raman scattering in photonic crystal fiber using offset launch method,” Plasmonics 8, 209–215 (2013).
    [Crossref]
  84. A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, and H. Anis, “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express 21, 12340–12350 (2013).
    [Crossref]
  85. A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
    [Crossref]
  86. K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
    [Crossref]
  87. A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacor, J. Hayes, P. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024–2030 (2007).
    [Crossref]
  88. A. C. Peacock, A. Amezcua-Correa, J. Yang, P. J. A. Sazio, and S. M. Howdle, “Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions,” Appl. Phys. Lett. 92, 141113 (2008).
    [Crossref]
  89. L. Bigot, H. E. Hamzaoui, A. L. Rouge, G. Bouwmans, F. Chassagneux, B. Capoen, and M. Bouazaoui, “Linear and nonlinear optical properties of gold nanoparticle-doped photonic crystal fiber,” Opt. Express 19, 19061–19066 (2011).
    [Crossref]
  90. U. S. Dinish, C. Y. Fu, K. S. Soh, R. Bhuvaneswari, A. Kumar, and M. Olivo, “Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber,” Biosens. Bioelectron. 33, 293–298(2012).
    [Crossref]
  91. U. S. Dinish, G. Balasundara, Y. T. Chang, and M. Olivo, “Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe,” J. Biophoton. 7, 956–965 (2014).
    [Crossref]
  92. A. Khetani, A. Momenpour, E. I. Alarcon, and H. Anis, “Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS),” Opt. Express 6, 4599–4609 (2015).
    [Crossref]
  93. T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, and M. Olivo, “Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles,” Biosens. Bioelectron. 64, 227–233 (2015).
    [Crossref]
  94. P. Pinkhasova, H. Chen, J. Kanka, P. Mergo, and H. Du, “Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform,” Appl. Phys. Lett. 106, 071106 (2015).
    [Crossref]
  95. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14, 11616–11621 (2006).
    [Crossref]
  96. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24, 1423–1429 (2007).
    [Crossref]
  97. L. Zheng, X. Zhang, X. Ren, J. Gao, L. Shi, X. Liu, Q. Wang, and Y. Huang, “Surface plasmon resonance sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Opt. Laser Technol. 43, 960–964 (2011).
    [Crossref]
  98. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
    [Crossref]
  99. W. Wei, X. Zhang, X. Guo, L. Zheng, J. Gao, W. Shi, Q. Wang, Y. Huang, and X. Ren, “Refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Optik 123, 1167–1170 (2012).
    [Crossref]
  100. E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48, 1403–1410 (2012).
    [Crossref]
  101. S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
    [Crossref]
  102. Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
    [Crossref]
  103. R. Otupiri, S. K. Akowuah, S. Haxha, H. Ademgil, F. Abdelmalek, and A. Aggoun, “A novel birefringent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photon. J. 6, 6801711 (2014).
    [Crossref]
  104. A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27, 1628–1631(2015).
    [Crossref]
  105. M. F. O. Hameed, Y. K. A. Alrayk, and S. S. A. Obayya, “Self-calibration highly sensitive photonic crystal fiber biosensor,” IEEE Photon. J. 8, 1–12 (2016).
    [Crossref]
  106. N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23, 8576–8582 (2015).
    [Crossref]
  107. C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional,” Opt. Commun. 285, 2466–2471 (2012).
    [Crossref]
  108. G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Hao, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12, 465–471(2016).
    [Crossref]
  109. D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
    [Crossref]
  110. M. Napiorkowski and W. Urbanczyk, “Effect of bending on surface plasmon resonance spectrum in microstructured optical fibers,” Opt. Express 21, 22762–22772 (2013).
    [Crossref]
  111. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
    [Crossref]
  112. Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
    [Crossref]
  113. X. Yang, Y. Lu, M. Wang, and J. Yao, “An exposed-core grapefruit fibers based surface plasmon resonance sensor,” Sensors 15, 17106–17114 (2015).
    [Crossref]
  114. N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photon. J. 8, 4800508 (2016).
    [Crossref]
  115. C. J. Hao, Y. Lu, M. T. Wang, B. Q. Wu, L. C. Duan, and J. Q. Yao, “Surface plasmon resonance refractive index sensor based on active photonic crystal fiber,” IEEE Photon. J. 5, 4801108 (2013).
    [Crossref]
  116. G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9, 1355–1360 (2014).
    [Crossref]
  117. G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48, 46 (2016).
    [Crossref]
  118. L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photon. J. 7, 4801309 (2015).
    [Crossref]
  119. Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22, 15049–15063 (2014).
    [Crossref]
  120. F. Shi, L. Peng, G. Zhou, X. Cang, Z. Hou, and C. Xia, “An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit,” Plasmonics 10, 1263–1268 (2015).
    [Crossref]
  121. J. N. Dash and R. Jha, “Highly sensitive D shaped PCF sensor based on SPR for near IR,” Opt. Quantum Electron. 48, 137 (2016).
    [Crossref]
  122. J. N. Dash and R. Jha, “Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR,” Plasmonics 11, 1505–1509(2016).
    [Crossref]
  123. T. Huang, “Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength,” Plasmonics, 1–6 (2016).
    [Crossref]
  124. N. M. Y. Zhang, D. J. J. Hu, P. P. Shum, Z. Wu, K. Li, T. Huang, and L. Wei, “Design and analysis of surface plasmon resonance sensor based on high birefringent microstructured optical fiber,” J. Opt. 18, 065005 (2016).
    [Crossref]
  125. X. Yu, S. Zhang, Y. Zhang, H.-P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express 18, 17950–17957(2010).
    [Crossref]
  126. C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” J. Mod. Opt. 63, 1189–1195 (2016).
    [Crossref]
  127. S. Ge, F. Shi, G. Zhou, S. Liu, Z. Hou, and L. Peng, “U-shaped photonic crystal fiber based surface plasmon resonance sensors,” Plasmonics 11, 1307–1312 (2016).
    [Crossref]
  128. J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26, 1092–1095 (2014).
    [Crossref]
  129. J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10, 1123–1131 (2015).
    [Crossref]
  130. A. A. Rifat, G. A. Mahdiragi, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15, 11499–11510 (2015).
    [Crossref]
  131. X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance,” Plasmonics 12, 489–496 (2017).
    [Crossref]
  132. A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene-based photonic crystal fiber plasmonics biosensor,” IEEE Photon. J. 8, 4800408 (2016).
    [Crossref]
  133. Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
    [Crossref]
  134. B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20, 5974 (2012).
    [Crossref]
  135. C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, H. Mu, and P. K. Chu, “Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing,” J. Nanophoton. 9, 093050 (2015).
    [Crossref]
  136. B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Express 20, 25858–25866 (2012).
    [Crossref]
  137. W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Laser Eng. 58, 1–8 (2014).
    [Crossref]
  138. M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
    [Crossref]
  139. Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photon. J. 7, 4800809 (2015).
    [Crossref]
  140. Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
    [Crossref]
  141. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413–11426 (2007).
    [Crossref]
  142. A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213(2008).
    [Crossref]
  143. M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
    [Crossref]
  144. Y. Zhang, C. Zhou, L. Xia, X. Yu, and D. Liu, “Wagon wheel fiber based multichannel plasmonic sensor,” Opt. Express 19, 22863–22873 (2011).
    [Crossref]
  145. R. Otupiri, E. K. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Express 23, 15716–15727 (2015).
    [Crossref]
  146. N. J. Florous, K. Saitoh, and M. Koshiba, “Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers,” IEEE Photon. Technol. Lett. 19, 324–326 (2007).
    [Crossref]
  147. N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
    [Crossref]
  148. M. Wang, Y. Lu, C. Hao, X. Yang, and J. Yao, “Simulation analysis of a temperature sensor based on photonic crystal fiber filled with different shapes of nanowires,” Optik 126, 3687–3691 (2015).
    [Crossref]
  149. Y. Peng, J. Hou, Z. Huang, and Q. Li, “Temperature sensor based on surface plasmon resonance within selective coated photonic crystal fiber,” Appl. Opt. 51, 6361–6367 (2012).
    [Crossref]
  150. Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
    [Crossref]
  151. D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photon. J. 4, 1248–1255 (2012).
    [Crossref]
  152. D. Hu, P. Shum, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4, 2010–2016(2012).
    [Crossref]
  153. M. F. O. Hameed, M. Y. Azab, A. M. Heikal, S. M. El-Hefnawy, and S. S. A. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
    [Crossref]
  154. N. Luan, C. Ding, and J. Yao, “A refractive index and temperature sensor based on surface plasmon resonance in an exposed-core microstructured optical fiber,” IEEE Photon. J. 8, 4801608 (2016).
    [Crossref]
  155. J. Li, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
    [Crossref]
  156. Y. Du, S.-G. Li, S. Liu, X.-P. Zhu, and X.-X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B 109, 65–74 (2012).
    [Crossref]
  157. Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An, J. Li, and Y. Bao, “Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance,” Plasmonics 10, 675–680(2015).
    [Crossref]
  158. S. Yogalakshmi, S. Selvendran, and A. S. Raja, “Design and analysis of a photonic crystal fiber based polarization filter using surface plasmon resonance,” Laser Phys. 26, 056201 (2016).
    [Crossref]
  159. F. Shi, G. Zhou, D. Li, L. Peng, Z. Hou, and C. Xia, “Surface plasmon mode coupling in photonic crystal fiber symmetrically filled with Ag/Au alloy wires,” Plasmonics 10, 335–340 (2015).
    [Crossref]
  160. H. Chen, S. Li, M. Ma, J. Li, Z. Fan, and M. Shi, “Surface plasmon induced polarization filter based on Au wires and liquid crystal infiltrated photonic crystal fibers,” Plasmonics 11, 459–464 (2016).
    [Crossref]
  161. M. F. O. Hameed, A. M. Heikal, B. M. Younis, M. Abdelrazzak, and S. S. A. Obayya, “Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter,” Opt. Express 23, 7007–7020 (2015).
    [Crossref]
  162. Q. Liu, S. Li, J. Li, C. Dou, X. Wang, G. Wang, and M. Shi, “Tunable fiber polarization filter by filling different index liquids and gold wire into photonic crystal fiber,” IEEE J. Lightwave Technol. 34, 2484–2490(2016).
    [Crossref]
  163. W. Zhang, S. Li, G.-W. An, Z.-K. Fan, and Y.-J. Bao, “Polarization filter characteristics of photonic crystal fibers with square lattice and selectively filled gold wires,” Appl. Opt. 53, 2441–2445 (2014).
    [Crossref]
  164. G. An, S. Li, X. Yan, Z. Yuan, and X. Zhang, “High-birefringence photonic crystal fiber polarization filter based on surface plasmon resonance,” Appl. Opt. 55, 1262–1266 (2016).
    [Crossref]
  165. L.-H. Jiang, Y. Zheng, J.-J. Yang, L.-T. Hou, J.-Y. Peng, and X.-T. Zhang, “Design of an ultrashort single-polarization wavelength splitter based on gold-filled square-lattice photonic crystal fiber,” Opt. Quantum Electron. 48, 409 (2016).
    [Crossref]
  166. L. Jiang, Y. Zheng, J. Yang, L. Hou, Z. Li, and X. Zhao, “An ultra-broadband single polarization filter based on plasmonic photonic crystal fiber with a liquid crystal core,” Plasmonics 12, 411–417 (2017).
    [Crossref]
  167. A. M. Heikal, F. F. K. Hussain, M. F. O. Hameed, and S. S. A. Obayya, “Efficient polarization filter design based on plasmonic photonic crystal fiber,” J. Lightwave Technol. 33, 2868–2875 (2015).
    [Crossref]
  168. S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
    [Crossref]
  169. P. Li and J. Zhao, “Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers,” Opt. Express 21, 5232–5238 (2013).
    [Crossref]
  170. B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
    [Crossref]
  171. B. Sun, M.-Y. Chen, Y.-K. Zhang, and J. Zhou, “Polarization-dependent coupling characteristics of metal-wire filled dual-core photonic crystal fiber,” Opt. Quantum Electron. 47, 441–451 (2015).
    [Crossref]
  172. A. Khaleque, E. G. Mironov, and H. T. Hattori, “Analysis of the properties of a dual-core plasmonic photonic crystal fiber polarization splitter,” Appl. Phys. B 121, 523–532 (2015).
    [Crossref]
  173. A. Khaleque and H. T. Hattori, “Ultra-broadband and compact polarization splitter based on gold filled dual-core photonic crystal fiber,” J. Appl. Phys. 118, 143101 (2015).
    [Crossref]
  174. Z. Fan, S. Li, Q. Liu, H. Chen, and X. Wang, “Plasmonic broadband polarization splitter based on dual-core photonic crystal fiber with elliptical metallic nanowires,” Plasmonics 11, 1565–1572 (2016).
    [Crossref]
  175. Q. Liu, S. Li, Z.-K. Fan, W. Zhang, H. Li, J.-C. Zi, and G.-W. An, “Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber,” Opt. Commun. 334, 46–50(2015).
    [Crossref]
  176. L. Jiang, Y. Zheng, L. Hou, K. Zheng, J. Peng, and X. Zhao, “An ultrabroadband polarization splitter based on square-lattice dual-core photonic crystal fiber with a gold wire,” Opt. Commun. 351, 50–56 (2015).
    [Crossref]
  177. M. F. O. Hameed, R. T. Balat, A. M. Heikal, M. M. Abo-Elkhier, M. I. A. E. Maaty, and S. S. A. Obayya, “Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer-demultiplexer,” IEEE Photon. J. 7, 4801110 (2015).
    [Crossref]
  178. L. Chen, W. Zhang, Q. Zhou, Y. Liu, J. Sieg, Y. Zhang, L. Wang, B. Wang, and T. Yan, “Polarization rotator based on hybrid plasmonics photonic crystal fiber,” IEEE Photon. Technol. Lett. 26, 2291–2294 (2014).
    [Crossref]
  179. C. Dou, X. Jing, S. Li, Q. Liu, and J. Bian, “A photonic crystal fiber polarized filter at 1.55 μm based on surface plasmon resonance,” Plasmonics 11, 1163–1168 (2015).
    [Crossref]
  180. X. Hao, S. Li, X. Yan, X. Zhang, G. An, H. Wang, Y. Shao, and Z. Han, “Photonic crystal fibre polarization filter with round lattice based on surface plasmon resonance,” J. Modern Opt. 64, 205–209 (2017).
  181. G. Wang, S. Li, G. An, X. Wang, and Y. Zhao, “Design of a polarization filtering photonic crystal fiber with a big gold-coated air hole,” Opt. Quantum Electron. 48, 457 (2016).
    [Crossref]
  182. L. Jiang, Y. Zheng, L. Hou, K. Zheng, and J. Peng, “Surface plasmon induced polarization filter of the gold-coated photonic crystal fiber with a liquid core,” Opt. Fiber Technol. 23, 42–47 (2015).
    [Crossref]
  183. J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21, 13733–13740 (2013).
    [Crossref]
  184. X. Wang, S. Li, H. Chen, Q. Liu, G. Wang, and Y. Zhao, “Compatibility of temperature sensor and polarization filter based on Au film and glycerin selectively infilling photonic crystal fibers,” Plasmonics 11, 1265–1271 (2016).
    [Crossref]
  185. Q. Liu, S. Li, and H. Chen, “Two kinds of polarization filter based on photonic crystal fiber with nanoscale gold film,” IEEE Photon. J. 7, 2700210(2015).
    [Crossref]
  186. G. Wang, S. Li, X. Wang, Y. Zhao, Q. Liu, J. Zi, H. Li, and H. Chen, “A kind of broadband polarization filter based on photonic crystal fiber with nanoscale gold film,” Plasmonics 12, 377–382 (2017).
  187. Y. Han, L. Xia, Y.-T. Zhang, and W. Li, “Ultra-broad band single-polarization single-mode photonic crystal fiber based on the zero-order surface plasmon polariton mode,” Opt. Commun. 345, 141–148 (2015).
    [Crossref]
  188. H. Chen, S. Li, M. Ma, Z. Fan, and Y. Wu, “Ultrabroad bandwidth polarization filter based on D-shaped photonic crystal fibers with gold film,” Plasmonics 10, 1239–1242 (2015).
    [Crossref]
  189. H. Chen, S. Li, G. An, J. Li, Z. Fan, and Y. Han, “Polarization splitter based on D-shaped dual-core photonic crystal fibers with gold film,” Plasmonics 10, 57–61 (2015).
    [Crossref]
  190. Z. Fan, S. Li, Q. Liu, J. Li, and Y. Xie, “Plasmonic polarization beam splitter based on dual-core photonic crystal fiber,” Plasmonics 10, 1283–1289(2015).
    [Crossref]
  191. L. Chen, W. Zhang, Z. Zhang, Y. Liu, J. Sieg, L. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6, 2200909 (2014).
    [Crossref]
  192. Q. Liu, S. Li, J. Li, H. Chen, Z. Fan, G. An, H. Li, and J. Zi, “Photonic crystal fiber polarization filter based on coupling between core mode and SPP mode,” Plasmonics 11, 857–863 (2016).
    [Crossref]
  193. G. Wang, S. Li, G. An, X. Wang, Y. Zhao, and W. Zhang, “Design of a polarized filtering photonic-crystal fiber with gold-coated air holes,” Appl. Opt. 54, 8817–8820 (2015).
    [Crossref]
  194. J. Zi, S. Li, W. Zhang, and G. An, “Polarization filter characteristics of square lattice photonic crystal fiber with a large diameter gold-coated air hole,” Plasmonics 10, 1499–1504 (2015).
    [Crossref]
  195. J. Zi, S. Li, H. Chen, J. Li, and H. Li, “Photonic crystal fiber polarization filter based on surface plasmon polaritons,” Plasmonics 11, 65–69 (2016).
    [Crossref]
  196. Q. Liu, S. Li, H. Li, J. Zi, W. Zhang, Z. Fan, G. An, and Y. Bao, “Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter,” Plasmonics 10, 931–939 (2015).
    [Crossref]
  197. A. Khaleque and H. T. Hattori, “Polarizer based upon a plasmonic resonant thin layer on a squeezed photonic crystal fiber,” Appl. Opt. 54, 2543–2549 (2015).
    [Crossref]
  198. H. Li, S. Li, H. Chen, J. Li, G. An, and J. Zi, “A polarization filter based on photonic crystal fiber with asymmetry around gold-coated holes,” Plasmonics 11, 103–108 (2016).
    [Crossref]
  199. D. Poudereux, M. Caño-García, J. F. Algorri, B. García-Cámara, J. M. Sánchez-Pena, X. Quintana, M. A. Geday, and J. M. Otón, “Thermally tunable polarization by nanoparticle plasmonic resonance in photonic crystal fibers,” Opt. Express 23, 28935–28944 (2015).
    [Crossref]
  200. S. Bose, R. Chattopadhyay, S. Roy, and S. K. Bhadra, “Study of nonlinear dynamics in silver-nanoparticle-doped photonic crystal fiber,” J. Opt. Soc. Am. B 33, 1014–1021 (2016).
    [Crossref]
  201. M. Sadeghi, V. Ahmadi, and M. Ebnali-Heidari, “Metal-coated silicon nanowire embedded plasmonic photonic crystal fiber: Kerr nonlinearity and two-photon absorption,” Plasmonics, 1–9 (2016).
    [Crossref]
  202. A. Tuniz, B. T. Kuhlmey, P. Y. Chen, and S. C. Fleming, “Weaving the invisible thread: design of an optically invisible metamaterial fibre,” Opt. Express 18, 18095–18105 (2010).
    [Crossref]

2017 (4)

X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance,” Plasmonics 12, 489–496 (2017).
[Crossref]

X. Hao, S. Li, X. Yan, X. Zhang, G. An, H. Wang, Y. Shao, and Z. Han, “Photonic crystal fibre polarization filter with round lattice based on surface plasmon resonance,” J. Modern Opt. 64, 205–209 (2017).

G. Wang, S. Li, X. Wang, Y. Zhao, Q. Liu, J. Zi, H. Li, and H. Chen, “A kind of broadband polarization filter based on photonic crystal fiber with nanoscale gold film,” Plasmonics 12, 377–382 (2017).

L. Jiang, Y. Zheng, J. Yang, L. Hou, Z. Li, and X. Zhao, “An ultra-broadband single polarization filter based on plasmonic photonic crystal fiber with a liquid crystal core,” Plasmonics 12, 411–417 (2017).
[Crossref]

2016 (30)

J. Zi, S. Li, H. Chen, J. Li, and H. Li, “Photonic crystal fiber polarization filter based on surface plasmon polaritons,” Plasmonics 11, 65–69 (2016).
[Crossref]

X. Wang, S. Li, H. Chen, Q. Liu, G. Wang, and Y. Zhao, “Compatibility of temperature sensor and polarization filter based on Au film and glycerin selectively infilling photonic crystal fibers,” Plasmonics 11, 1265–1271 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, H. Chen, Z. Fan, G. An, H. Li, and J. Zi, “Photonic crystal fiber polarization filter based on coupling between core mode and SPP mode,” Plasmonics 11, 857–863 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, C. Dou, X. Wang, G. Wang, and M. Shi, “Tunable fiber polarization filter by filling different index liquids and gold wire into photonic crystal fiber,” IEEE J. Lightwave Technol. 34, 2484–2490(2016).
[Crossref]

L.-H. Jiang, Y. Zheng, J.-J. Yang, L.-T. Hou, J.-Y. Peng, and X.-T. Zhang, “Design of an ultrashort single-polarization wavelength splitter based on gold-filled square-lattice photonic crystal fiber,” Opt. Quantum Electron. 48, 409 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, and Y. Zhao, “Design of a polarization filtering photonic crystal fiber with a big gold-coated air hole,” Opt. Quantum Electron. 48, 457 (2016).
[Crossref]

M. F. O. Hameed, M. Y. Azab, A. M. Heikal, S. M. El-Hefnawy, and S. S. A. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
[Crossref]

N. Luan, C. Ding, and J. Yao, “A refractive index and temperature sensor based on surface plasmon resonance in an exposed-core microstructured optical fiber,” IEEE Photon. J. 8, 4801608 (2016).
[Crossref]

S. Yogalakshmi, S. Selvendran, and A. S. Raja, “Design and analysis of a photonic crystal fiber based polarization filter using surface plasmon resonance,” Laser Phys. 26, 056201 (2016).
[Crossref]

H. Chen, S. Li, M. Ma, J. Li, Z. Fan, and M. Shi, “Surface plasmon induced polarization filter based on Au wires and liquid crystal infiltrated photonic crystal fibers,” Plasmonics 11, 459–464 (2016).
[Crossref]

Z. Fan, S. Li, Q. Liu, H. Chen, and X. Wang, “Plasmonic broadband polarization splitter based on dual-core photonic crystal fiber with elliptical metallic nanowires,” Plasmonics 11, 1565–1572 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene-based photonic crystal fiber plasmonics biosensor,” IEEE Photon. J. 8, 4800408 (2016).
[Crossref]

M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
[Crossref]

M. F. O. Hameed, Y. K. A. Alrayk, and S. S. A. Obayya, “Self-calibration highly sensitive photonic crystal fiber biosensor,” IEEE Photon. J. 8, 1–12 (2016).
[Crossref]

N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photon. J. 8, 4800508 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48, 46 (2016).
[Crossref]

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Hao, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12, 465–471(2016).
[Crossref]

J. N. Dash and R. Jha, “Highly sensitive D shaped PCF sensor based on SPR for near IR,” Opt. Quantum Electron. 48, 137 (2016).
[Crossref]

J. N. Dash and R. Jha, “Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR,” Plasmonics 11, 1505–1509(2016).
[Crossref]

N. M. Y. Zhang, D. J. J. Hu, P. P. Shum, Z. Wu, K. Li, T. Huang, and L. Wei, “Design and analysis of surface plasmon resonance sensor based on high birefringent microstructured optical fiber,” J. Opt. 18, 065005 (2016).
[Crossref]

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” J. Mod. Opt. 63, 1189–1195 (2016).
[Crossref]

S. Ge, F. Shi, G. Zhou, S. Liu, Z. Hou, and L. Peng, “U-shaped photonic crystal fiber based surface plasmon resonance sensors,” Plasmonics 11, 1307–1312 (2016).
[Crossref]

J. Villatoro and J. Zubia, “New perspectives in photonic crystal fibre sensors,” Opt. Laser Technol. 78, 67–75 (2016).
[Crossref]

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Express 6, 1790–1799 (2016).
[Crossref]

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires,” IEEE Photon. J. 8, 6803309 (2016).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

H. Li, S. Li, H. Chen, J. Li, G. An, and J. Zi, “A polarization filter based on photonic crystal fiber with asymmetry around gold-coated holes,” Plasmonics 11, 103–108 (2016).
[Crossref]

G. An, S. Li, X. Yan, Z. Yuan, and X. Zhang, “High-birefringence photonic crystal fiber polarization filter based on surface plasmon resonance,” Appl. Opt. 55, 1262–1266 (2016).
[Crossref]

S. Bose, R. Chattopadhyay, S. Roy, and S. K. Bhadra, “Study of nonlinear dynamics in silver-nanoparticle-doped photonic crystal fiber,” J. Opt. Soc. Am. B 33, 1014–1021 (2016).
[Crossref]

2015 (42)

A. M. Heikal, F. F. K. Hussain, M. F. O. Hameed, and S. S. A. Obayya, “Efficient polarization filter design based on plasmonic photonic crystal fiber,” J. Lightwave Technol. 33, 2868–2875 (2015).
[Crossref]

M. F. O. Hameed, A. M. Heikal, B. M. Younis, M. Abdelrazzak, and S. S. A. Obayya, “Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter,” Opt. Express 23, 7007–7020 (2015).
[Crossref]

A. Khaleque and H. T. Hattori, “Polarizer based upon a plasmonic resonant thin layer on a squeezed photonic crystal fiber,” Appl. Opt. 54, 2543–2549 (2015).
[Crossref]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23, 8576–8582 (2015).
[Crossref]

R. Otupiri, E. K. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Express 23, 15716–15727 (2015).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, and W. Zhang, “Design of a polarized filtering photonic-crystal fiber with gold-coated air holes,” Appl. Opt. 54, 8817–8820 (2015).
[Crossref]

D. Poudereux, M. Caño-García, J. F. Algorri, B. García-Cámara, J. M. Sánchez-Pena, X. Quintana, M. A. Geday, and J. M. Otón, “Thermally tunable polarization by nanoparticle plasmonic resonance in photonic crystal fibers,” Opt. Express 23, 28935–28944 (2015).
[Crossref]

A. Khetani, A. Momenpour, E. I. Alarcon, and H. Anis, “Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS),” Opt. Express 6, 4599–4609 (2015).
[Crossref]

T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, and M. Olivo, “Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles,” Biosens. Bioelectron. 64, 227–233 (2015).
[Crossref]

P. Pinkhasova, H. Chen, J. Kanka, P. Mergo, and H. Du, “Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform,” Appl. Phys. Lett. 106, 071106 (2015).
[Crossref]

E. Klantsataya, A. Francois, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber sensors based on nanoparticle-embedded coatings,” J. Sens. 2015, 1–18 (2015).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, R. A. S. Ferreira, P. S. André, and D. Viegas, “Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres,” Plasmonics 10, 319–327(2015).
[Crossref]

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor,” IEEE Photon. Technol. Lett. 27, 2437–2440 (2015).
[Crossref]

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photon. J. 7, 4801309 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27, 1628–1631(2015).
[Crossref]

X. Yang, Y. Lu, M. Wang, and J. Yao, “An exposed-core grapefruit fibers based surface plasmon resonance sensor,” Sensors 15, 17106–17114 (2015).
[Crossref]

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photon. J. 7, 4800809 (2015).
[Crossref]

M. Wang, Y. Lu, C. Hao, X. Yang, and J. Yao, “Simulation analysis of a temperature sensor based on photonic crystal fiber filled with different shapes of nanowires,” Optik 126, 3687–3691 (2015).
[Crossref]

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, H. Mu, and P. K. Chu, “Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing,” J. Nanophoton. 9, 093050 (2015).
[Crossref]

F. Shi, L. Peng, G. Zhou, X. Cang, Z. Hou, and C. Xia, “An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit,” Plasmonics 10, 1263–1268 (2015).
[Crossref]

J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10, 1123–1131 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiragi, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15, 11499–11510 (2015).
[Crossref]

Q. Liu, S. Li, Z.-K. Fan, W. Zhang, H. Li, J.-C. Zi, and G.-W. An, “Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber,” Opt. Commun. 334, 46–50(2015).
[Crossref]

L. Jiang, Y. Zheng, L. Hou, K. Zheng, J. Peng, and X. Zhao, “An ultrabroadband polarization splitter based on square-lattice dual-core photonic crystal fiber with a gold wire,” Opt. Commun. 351, 50–56 (2015).
[Crossref]

M. F. O. Hameed, R. T. Balat, A. M. Heikal, M. M. Abo-Elkhier, M. I. A. E. Maaty, and S. S. A. Obayya, “Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer-demultiplexer,” IEEE Photon. J. 7, 4801110 (2015).
[Crossref]

B. Sun, M.-Y. Chen, Y.-K. Zhang, and J. Zhou, “Polarization-dependent coupling characteristics of metal-wire filled dual-core photonic crystal fiber,” Opt. Quantum Electron. 47, 441–451 (2015).
[Crossref]

A. Khaleque, E. G. Mironov, and H. T. Hattori, “Analysis of the properties of a dual-core plasmonic photonic crystal fiber polarization splitter,” Appl. Phys. B 121, 523–532 (2015).
[Crossref]

A. Khaleque and H. T. Hattori, “Ultra-broadband and compact polarization splitter based on gold filled dual-core photonic crystal fiber,” J. Appl. Phys. 118, 143101 (2015).
[Crossref]

F. Shi, G. Zhou, D. Li, L. Peng, Z. Hou, and C. Xia, “Surface plasmon mode coupling in photonic crystal fiber symmetrically filled with Ag/Au alloy wires,” Plasmonics 10, 335–340 (2015).
[Crossref]

L. Jiang, Y. Zheng, L. Hou, K. Zheng, and J. Peng, “Surface plasmon induced polarization filter of the gold-coated photonic crystal fiber with a liquid core,” Opt. Fiber Technol. 23, 42–47 (2015).
[Crossref]

Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An, J. Li, and Y. Bao, “Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance,” Plasmonics 10, 675–680(2015).
[Crossref]

C. Dou, X. Jing, S. Li, Q. Liu, and J. Bian, “A photonic crystal fiber polarized filter at 1.55 μm based on surface plasmon resonance,” Plasmonics 11, 1163–1168 (2015).
[Crossref]

Y. Han, L. Xia, Y.-T. Zhang, and W. Li, “Ultra-broad band single-polarization single-mode photonic crystal fiber based on the zero-order surface plasmon polariton mode,” Opt. Commun. 345, 141–148 (2015).
[Crossref]

H. Chen, S. Li, M. Ma, Z. Fan, and Y. Wu, “Ultrabroad bandwidth polarization filter based on D-shaped photonic crystal fibers with gold film,” Plasmonics 10, 1239–1242 (2015).
[Crossref]

H. Chen, S. Li, G. An, J. Li, Z. Fan, and Y. Han, “Polarization splitter based on D-shaped dual-core photonic crystal fibers with gold film,” Plasmonics 10, 57–61 (2015).
[Crossref]

Z. Fan, S. Li, Q. Liu, J. Li, and Y. Xie, “Plasmonic polarization beam splitter based on dual-core photonic crystal fiber,” Plasmonics 10, 1283–1289(2015).
[Crossref]

Q. Liu, S. Li, and H. Chen, “Two kinds of polarization filter based on photonic crystal fiber with nanoscale gold film,” IEEE Photon. J. 7, 2700210(2015).
[Crossref]

Q. Liu, S. Li, H. Li, J. Zi, W. Zhang, Z. Fan, G. An, and Y. Bao, “Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter,” Plasmonics 10, 931–939 (2015).
[Crossref]

J. Zi, S. Li, W. Zhang, and G. An, “Polarization filter characteristics of square lattice photonic crystal fiber with a large diameter gold-coated air hole,” Plasmonics 10, 1499–1504 (2015).
[Crossref]

2014 (19)

L. Chen, W. Zhang, Z. Zhang, Y. Liu, J. Sieg, L. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6, 2200909 (2014).
[Crossref]

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
[Crossref]

L. Chen, W. Zhang, Q. Zhou, Y. Liu, J. Sieg, Y. Zhang, L. Wang, B. Wang, and T. Yan, “Polarization rotator based on hybrid plasmonics photonic crystal fiber,” IEEE Photon. Technol. Lett. 26, 2291–2294 (2014).
[Crossref]

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9, 1355–1360 (2014).
[Crossref]

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Laser Eng. 58, 1–8 (2014).
[Crossref]

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
[Crossref]

U. S. Dinish, G. Balasundara, Y. T. Chang, and M. Olivo, “Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe,” J. Biophoton. 7, 956–965 (2014).
[Crossref]

R. Otupiri, S. K. Akowuah, S. Haxha, H. Ademgil, F. Abdelmalek, and A. Aggoun, “A novel birefringent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photon. J. 6, 6801711 (2014).
[Crossref]

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26, 1092–1095 (2014).
[Crossref]

N. Rezaei and A. Yahaghi, “A high sensitivity surface plasmon resonance D-shaped fiber sensor based on a waveguide-coupled bimetallic structure: modeling and optimization,” IEEE Sens. J. 14, 3611–3615 (2014).
[Crossref]

Y. Zhao, Z. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B 202, 557–567 (2014).
[Crossref]

J. N. Dash and R. Jha, “SPR biosensor based on polymer PCF coated with conducting metal oxide,” IEEE Photon. Technol. Lett. 26, 594–598 (2014).
[Crossref]

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104, 071106 (2014).
[Crossref]

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6, 680137 (2014).
[Crossref]

M. Sun, Y. Wang, Z. N. Chen, Y. Gong, J. Lim, and X. Qing, “Nanostars on a fiber facet with near field enhancement for surface-enhanced Raman scattering detection,” Appl. Phys. A 115, 87–91 (2014).
[Crossref]

V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nanoparticle within hollow core photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 20, 7300608 (2014).
[Crossref]

W. Zhang, S. Li, G.-W. An, Z.-K. Fan, and Y.-J. Bao, “Polarization filter characteristics of photonic crystal fibers with square lattice and selectively filled gold wires,” Appl. Opt. 53, 2441–2445 (2014).
[Crossref]

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22, 15049–15063 (2014).
[Crossref]

2013 (12)

P. Li and J. Zhao, “Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers,” Opt. Express 21, 5232–5238 (2013).
[Crossref]

A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, and H. Anis, “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express 21, 12340–12350 (2013).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21, 13733–13740 (2013).
[Crossref]

Y. J. He, “Investigation of LPG-SPR sensors using the finite element method and eigenmode expansion method,” Opt. Express 21, 13875–13895 (2013).
[Crossref]

M. Napiorkowski and W. Urbanczyk, “Effect of bending on surface plasmon resonance spectrum in microstructured optical fibers,” Opt. Express 21, 22762–22772 (2013).
[Crossref]

B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013).
[Crossref]

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization,” IEEE J. Sel. Top. Quantum Electron. 19, 460217 (2013).
[Crossref]

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Y. Zhang, D. Yong, X. Yu, L. Xia, D. Liu, and Y. Zhang, “Amplification of surface-enhance Raman scattering in photonic crystal fiber using offset launch method,” Plasmonics 8, 209–215 (2013).
[Crossref]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmonic resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref]

C. J. Hao, Y. Lu, M. T. Wang, B. Q. Wu, L. C. Duan, and J. Q. Yao, “Surface plasmon resonance refractive index sensor based on active photonic crystal fiber,” IEEE Photon. J. 5, 4801108 (2013).
[Crossref]

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[Crossref]

2012 (21)

Y. Du, S.-G. Li, S. Liu, X.-P. Zhu, and X.-X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B 109, 65–74 (2012).
[Crossref]

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[Crossref]

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref]

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional,” Opt. Commun. 285, 2466–2471 (2012).
[Crossref]

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photon. J. 4, 1248–1255 (2012).
[Crossref]

D. Hu, P. Shum, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4, 2010–2016(2012).
[Crossref]

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
[Crossref]

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

U. S. Dinish, C. Y. Fu, K. S. Soh, R. Bhuvaneswari, A. Kumar, and M. Olivo, “Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber,” Biosens. Bioelectron. 33, 293–298(2012).
[Crossref]

W. Wei, X. Zhang, X. Guo, L. Zheng, J. Gao, W. Shi, Q. Wang, Y. Huang, and X. Ren, “Refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Optik 123, 1167–1170 (2012).
[Crossref]

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48, 1403–1410 (2012).
[Crossref]

D. J. J. Hu, J. L. Lim, M. K. Park, L. T. H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1293–1297(2012).
[Crossref]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20, 5974 (2012).
[Crossref]

T. Schuster, R. Herschel, N. Neumann, and C. G. Schäffer, “Miniaturized long-period fiber grating assisted surface plasmon resonance sensor,” J. Lightwave Technol. 30, 1003–1008 (2012).
[Crossref]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37, 2283–2285 (2012).
[Crossref]

H. W. Lee, M. A. Schmidt, and P. St.J. Russell, “Excitation of a nanowire ‘molecule’ in gold-filled photonic crystal fiber,” Opt. Lett. 37, 2946–2948 (2012).
[Crossref]

Y. Peng, J. Hou, Z. Huang, and Q. Li, “Temperature sensor based on surface plasmon resonance within selective coated photonic crystal fiber,” Appl. Opt. 51, 6361–6367 (2012).
[Crossref]

H.-Y. Lin, C.-H. Huang, G.-L. Cheng, N.-K. Chen, and H.-C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20, 21693–21701 (2012).
[Crossref]

B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Express 20, 25858–25866 (2012).
[Crossref]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. St.J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20, 28409–28417 (2012).
[Crossref]

2011 (12)

Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2, 478–484 (2011).
[Crossref]

A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19, 3799–3808 (2011).
[Crossref]

H. E. Arabi, M. Pournoury, J. H. Park, S. Im, and K. Oh, “Plasmonically enhanced optical transmission through a metalized nanostructured photonic crystal fiber taper,” Opt. Lett. 36, 2029–2031 (2011).
[Crossref]

H. W. Lee, M. A. Schmidt, R. F. Russel, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St.J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19, 12180–12189(2011).
[Crossref]

L. Bigot, H. E. Hamzaoui, A. L. Rouge, G. Bouwmans, F. Chassagneux, B. Capoen, and M. Bouazaoui, “Linear and nonlinear optical properties of gold nanoparticle-doped photonic crystal fiber,” Opt. Express 19, 19061–19066 (2011).
[Crossref]

Y. Zhang, C. Zhou, L. Xia, X. Yu, and D. Liu, “Wagon wheel fiber based multichannel plasmonic sensor,” Opt. Express 19, 22863–22873 (2011).
[Crossref]

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B 160, 196–201 (2011).
[Crossref]

M. Yaman, T. Khudiyev, E. Ozgur, M. Kanik, O. Aktas, E. O. Ozgur, H. Deniz, E. Korkut, and M. Bayindir, “Arrays of indefinitely long uniform nanowires and nanotubes,” Nat. Mater. 10, 494–501 (2011).
[Crossref]

J. Boehm, A. Francois, H. Ebendorff-Heidepriem, and T. M. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6, 133–136 (2011).
[Crossref]

L. Zheng, X. Zhang, X. Ren, J. Gao, L. Shi, X. Liu, Q. Wang, and Y. Huang, “Surface plasmon resonance sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Opt. Laser Technol. 43, 960–964 (2011).
[Crossref]

X. Yang, C. Gu, F. Qian, Y. Li, and J. Z. Zhang, “Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers,” Anal. Chem. 83, 5888–5894 (2011).
[Crossref]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

2010 (11)

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[Crossref]

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow-core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt. 2011, 751610 (2010).
[Crossref]

M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent field surface enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
[Crossref]

X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27, 977–984 (2010).
[Crossref]

L.-Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18, 11464–11471 (2010).
[Crossref]

H. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St.J. Russell, “Plasmon resonances on gold nanowires directly,” Opt. Lett. 35, 2573–2575 (2010).
[Crossref]

X. Yu, S. Zhang, Y. Zhang, H.-P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express 18, 17950–17957(2010).
[Crossref]

A. Tuniz, B. T. Kuhlmey, P. Y. Chen, and S. C. Fleming, “Weaving the invisible thread: design of an optically invisible metamaterial fibre,” Opt. Express 18, 18095–18105 (2010).
[Crossref]

2009 (4)

M. K. K. Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles,” Opt. Lett. 34, 968–970 (2009).
[Crossref]

A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34, 3890–3892 (2009).
[Crossref]

Z. Xie, Y. Lu, H. Wei, J. Yan, P. Wang, and H. Ming, “Broad spectral photonic crystal fiber surface enhanced Raman scattering probe,” Appl. Phys. B 95, 751–755 (2009).
[Crossref]

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

2008 (14)

R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
[Crossref]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref]

W.-H. Lin, Y.-C. Tsai, Y.-C. Tsao, and J.-K. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
[Crossref]

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[Crossref]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St.J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
[Crossref]

X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20, 1310–1314 (2008).
[Crossref]

R. Jha, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a Teflon layer between core and metal layer,” Plasmonics 3, 151–156 (2008).
[Crossref]

J. Irizar, J. Dinglasan, J. B. Goh, A. Khetani, H. Anis, D. Anderson, C. Goh, and A. S. Helmy, “Raman spectroscopy of nanoparticles using hollow-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 14, 1214–1222 (2008).
[Crossref]

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[Crossref]

A. C. Peacock, A. Amezcua-Correa, J. Yang, P. J. A. Sazio, and S. M. Howdle, “Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions,” Appl. Phys. Lett. 92, 141113 (2008).
[Crossref]

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213(2008).
[Crossref]

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
[Crossref]

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300–8305 (2008).
[Crossref]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
[Crossref]

2007 (13)

H.-Y. Lin, W.-H. Tsai, Y.-C. Tsao, and B.-C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt. 46, 800–806 (2007).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24, 1423–1429 (2007).
[Crossref]

B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413–11426 (2007).
[Crossref]

F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Opt. Express 15, 13675–13681 (2007).
[Crossref]

X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15, 16270–16278 (2007).
[Crossref]

N. J. Florous, K. Saitoh, and M. Koshiba, “Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers,” IEEE Photon. Technol. Lett. 19, 324–326 (2007).
[Crossref]

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacor, J. Hayes, P. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024–2030 (2007).
[Crossref]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[Crossref]

M.-H. Chiu, C.-H. Shih, and M.-H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sens. Actuators B 123, 1120–1124 (2007).
[Crossref]

C. E. Finlayson, A. Amezcua-Correa, and P. J. A. Sazio, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett. 90, 132110 (2007).
[Crossref]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[Crossref]

H.-Y. Lin, Y.-C. Tsao, W.-H. Tsai, Y.-W. Yang, T.-R. Yan, and B.-C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850  nm-LED,” Sens. Actuators A 138, 299–305 (2007).
[Crossref]

T.-J. Lin and C.-T. Lou, “Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions,” J. Supercrit. Fluids 41, 317–325 (2007).
[Crossref]

2006 (4)

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhao, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett. 31, 2672–2674(2006).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14, 11616–11621 (2006).
[Crossref]

2005 (3)

Y.-C. Kim, W. Peng, S. Banerji, and K. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett. 30, 2218–2220 (2005).
[Crossref]

T. K. Sau and C. J. Murphy, “Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes,” Langmuir 21, 2923–2929 (2005).
[Crossref]

J. Li, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

2003 (4)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

R. J. Whelan and R. N. Zare, “Surface plasmon resonance detection for capillary electrophoresis separations,” Anal. Chem. 75, 1542–1547 (2003).
[Crossref]

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[Crossref]

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

1999 (1)

R. Slavík, J. Homola, and J. Čtyroký, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B Chem. 54, 74–79 (1999).
[Crossref]

1996 (2)

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[Crossref]

I. W. Donald and B. L. Metcalfe, “The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process,” J. Mater. Sci. 31, 1139–1149 (1996).
[Crossref]

1993 (1)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12, 213–220 (1993).
[Crossref]

1968 (1)

E. Kretschmann and H. Z. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Abdelmalek, F.

R. Otupiri, S. K. Akowuah, S. Haxha, H. Ademgil, F. Abdelmalek, and A. Aggoun, “A novel birefringent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photon. J. 6, 6801711 (2014).
[Crossref]

Abdelrazzak, M.

Abo-Elkhier, M. M.

M. F. O. Hameed, R. T. Balat, A. M. Heikal, M. M. Abo-Elkhier, M. I. A. E. Maaty, and S. S. A. Obayya, “Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer-demultiplexer,” IEEE Photon. J. 7, 4801110 (2015).
[Crossref]

Ademgil, H.

R. Otupiri, S. K. Akowuah, S. Haxha, H. Ademgil, F. Abdelmalek, and A. Aggoun, “A novel birefringent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photon. J. 6, 6801711 (2014).
[Crossref]

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48, 1403–1410 (2012).
[Crossref]

Adikan, F. R. M.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene-based photonic crystal fiber plasmonics biosensor,” IEEE Photon. J. 8, 4800408 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiragi, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15, 11499–11510 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27, 1628–1631(2015).
[Crossref]

Aggoun, A.

R. Otupiri, S. K. Akowuah, S. Haxha, H. Ademgil, F. Abdelmalek, and A. Aggoun, “A novel birefringent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photon. J. 6, 6801711 (2014).
[Crossref]

Ahmadi, V.

M. Sadeghi, V. Ahmadi, and M. Ebnali-Heidari, “Metal-coated silicon nanowire embedded plasmonic photonic crystal fiber: Kerr nonlinearity and two-photon absorption,” Plasmonics, 1–9 (2016).
[Crossref]

Ahmed, R.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene-based photonic crystal fiber plasmonics biosensor,” IEEE Photon. J. 8, 4800408 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiragi, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15, 11499–11510 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27, 1628–1631(2015).
[Crossref]

Akowuah, E. K.

R. Otupiri, E. K. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Express 23, 15716–15727 (2015).
[Crossref]

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48, 1403–1410 (2012).
[Crossref]

Akowuah, S. K.

R. Otupiri, S. K. Akowuah, S. Haxha, H. Ademgil, F. Abdelmalek, and A. Aggoun, “A novel birefringent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photon. J. 6, 6801711 (2014).
[Crossref]

Aktas, O.

M. Yaman, T. Khudiyev, E. Ozgur, M. Kanik, O. Aktas, E. O. Ozgur, H. Deniz, E. Korkut, and M. Bayindir, “Arrays of indefinitely long uniform nanowires and nanotubes,” Nat. Mater. 10, 494–501 (2011).
[Crossref]

Alarcon, E. I.

A. Khetani, A. Momenpour, E. I. Alarcon, and H. Anis, “Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS),” Opt. Express 6, 4599–4609 (2015).
[Crossref]

Albert, J.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104, 071106 (2014).
[Crossref]

L.-Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18, 11464–11471 (2010).
[Crossref]

Algorri, J. F.

Alrayk, Y. K. A.

M. F. O. Hameed, Y. K. A. Alrayk, and S. S. A. Obayya, “Self-calibration highly sensitive photonic crystal fiber biosensor,” IEEE Photon. J. 8, 1–12 (2016).
[Crossref]

Amezcua-Correa, A.

A. C. Peacock, A. Amezcua-Correa, J. Yang, P. J. A. Sazio, and S. M. Howdle, “Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions,” Appl. Phys. Lett. 92, 141113 (2008).
[Crossref]

C. E. Finlayson, A. Amezcua-Correa, and P. J. A. Sazio, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett. 90, 132110 (2007).
[Crossref]

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacor, J. Hayes, P. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024–2030 (2007).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

An, G.

X. Hao, S. Li, X. Yan, X. Zhang, G. An, H. Wang, Y. Shao, and Z. Han, “Photonic crystal fibre polarization filter with round lattice based on surface plasmon resonance,” J. Modern Opt. 64, 205–209 (2017).

G. Wang, S. Li, G. An, X. Wang, and Y. Zhao, “Design of a polarization filtering photonic crystal fiber with a big gold-coated air hole,” Opt. Quantum Electron. 48, 457 (2016).
[Crossref]

H. Li, S. Li, H. Chen, J. Li, G. An, and J. Zi, “A polarization filter based on photonic crystal fiber with asymmetry around gold-coated holes,” Plasmonics 11, 103–108 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, H. Chen, Z. Fan, G. An, H. Li, and J. Zi, “Photonic crystal fiber polarization filter based on coupling between core mode and SPP mode,” Plasmonics 11, 857–863 (2016).
[Crossref]

G. An, S. Li, X. Yan, Z. Yuan, and X. Zhang, “High-birefringence photonic crystal fiber polarization filter based on surface plasmon resonance,” Appl. Opt. 55, 1262–1266 (2016).
[Crossref]

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Hao, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12, 465–471(2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48, 46 (2016).
[Crossref]

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photon. J. 7, 4800809 (2015).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, and W. Zhang, “Design of a polarized filtering photonic-crystal fiber with gold-coated air holes,” Appl. Opt. 54, 8817–8820 (2015).
[Crossref]

J. Zi, S. Li, W. Zhang, and G. An, “Polarization filter characteristics of square lattice photonic crystal fiber with a large diameter gold-coated air hole,” Plasmonics 10, 1499–1504 (2015).
[Crossref]

Q. Liu, S. Li, H. Li, J. Zi, W. Zhang, Z. Fan, G. An, and Y. Bao, “Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter,” Plasmonics 10, 931–939 (2015).
[Crossref]

H. Chen, S. Li, G. An, J. Li, Z. Fan, and Y. Han, “Polarization splitter based on D-shaped dual-core photonic crystal fibers with gold film,” Plasmonics 10, 57–61 (2015).
[Crossref]

Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An, J. Li, and Y. Bao, “Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance,” Plasmonics 10, 675–680(2015).
[Crossref]

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9, 1355–1360 (2014).
[Crossref]

An, G.-W.

Q. Liu, S. Li, Z.-K. Fan, W. Zhang, H. Li, J.-C. Zi, and G.-W. An, “Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber,” Opt. Commun. 334, 46–50(2015).
[Crossref]

W. Zhang, S. Li, G.-W. An, Z.-K. Fan, and Y.-J. Bao, “Polarization filter characteristics of photonic crystal fibers with square lattice and selectively filled gold wires,” Appl. Opt. 53, 2441–2445 (2014).
[Crossref]

Anderson, D.

J. Irizar, J. Dinglasan, J. B. Goh, A. Khetani, H. Anis, D. Anderson, C. Goh, and A. S. Helmy, “Raman spectroscopy of nanoparticles using hollow-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 14, 1214–1222 (2008).
[Crossref]

André, P. S.

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, R. A. S. Ferreira, P. S. André, and D. Viegas, “Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres,” Plasmonics 10, 319–327(2015).
[Crossref]

Anis, H.

A. Khetani, A. Momenpour, E. I. Alarcon, and H. Anis, “Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS),” Opt. Express 6, 4599–4609 (2015).
[Crossref]

V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nanoparticle within hollow core photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 20, 7300608 (2014).
[Crossref]

A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, and H. Anis, “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express 21, 12340–12350 (2013).
[Crossref]

J. Irizar, J. Dinglasan, J. B. Goh, A. Khetani, H. Anis, D. Anderson, C. Goh, and A. S. Helmy, “Raman spectroscopy of nanoparticles using hollow-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 14, 1214–1222 (2008).
[Crossref]

Anthony, J.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

Arabi, H. E.

Argyros, A.

Arora, V.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
[Crossref]

Arregui, F. J.

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber sensors based on nanoparticle-embedded coatings,” J. Sens. 2015, 1–18 (2015).
[Crossref]

Auguste, J.-L.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, and M. Olivo, “Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles,” Biosens. Bioelectron. 64, 227–233 (2015).
[Crossref]

Azab, M. Y.

M. F. O. Hameed, M. Y. Azab, A. M. Heikal, S. M. El-Hefnawy, and S. S. A. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
[Crossref]

Azzam, S. I.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

Babu, P. R.

M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
[Crossref]

Badding, J. V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Balasundara, G.

U. S. Dinish, G. Balasundara, Y. T. Chang, and M. Olivo, “Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe,” J. Biophoton. 7, 956–965 (2014).
[Crossref]

Balat, R. T.

M. F. O. Hameed, R. T. Balat, A. M. Heikal, M. M. Abo-Elkhier, M. I. A. E. Maaty, and S. S. A. Obayya, “Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer-demultiplexer,” IEEE Photon. J. 7, 4801110 (2015).
[Crossref]

Banerji, S.

Bao, Y.

Q. Liu, S. Li, H. Li, J. Zi, W. Zhang, Z. Fan, G. An, and Y. Bao, “Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter,” Plasmonics 10, 931–939 (2015).
[Crossref]

Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An, J. Li, and Y. Bao, “Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance,” Plasmonics 10, 675–680(2015).
[Crossref]

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9, 1355–1360 (2014).
[Crossref]

Bao, Y.-J.

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Baumberg, J. J.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacor, J. Hayes, P. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024–2030 (2007).
[Crossref]

Bayindir, M.

M. Yaman, T. Khudiyev, E. Ozgur, M. Kanik, O. Aktas, E. O. Ozgur, H. Deniz, E. Korkut, and M. Bayindir, “Arrays of indefinitely long uniform nanowires and nanotubes,” Nat. Mater. 10, 494–501 (2011).
[Crossref]

Bhadra, S. K.

Bhuvaneswari, R.

U. S. Dinish, C. Y. Fu, K. S. Soh, R. Bhuvaneswari, A. Kumar, and M. Olivo, “Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber,” Biosens. Bioelectron. 33, 293–298(2012).
[Crossref]

Bian, J.

C. Dou, X. Jing, S. Li, Q. Liu, and J. Bian, “A photonic crystal fiber polarized filter at 1.55 μm based on surface plasmon resonance,” Plasmonics 11, 1163–1168 (2015).
[Crossref]

Bigot, L.

Bird, D.

Birks, T. A.

Boehm, J.

J. Boehm, A. Francois, H. Ebendorff-Heidepriem, and T. M. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6, 133–136 (2011).
[Crossref]

Boo, J. L.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization,” IEEE J. Sel. Top. Quantum Electron. 19, 460217 (2013).
[Crossref]

Booksh, K.

Born, M.

M. Born and E. Wolf, “Basic properties of the electromagnetic field,” in Principles of Optics, 7th ed. (Cambridge University, 1999), pp. 752–758.

Bose, S.

Bouazaoui, M.

Bouwmans, G.

Brugioni, S.

J. Li, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Cang, X.

F. Shi, L. Peng, G. Zhou, X. Cang, Z. Hou, and C. Xia, “An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit,” Plasmonics 10, 1263–1268 (2015).
[Crossref]

Caño-García, M.

Capoen, B.

Caucheteur, C.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

Chan, C. C.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization,” IEEE J. Sel. Top. Quantum Electron. 19, 460217 (2013).
[Crossref]

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B 160, 196–201 (2011).
[Crossref]

Chang, Y. T.

U. S. Dinish, G. Balasundara, Y. T. Chang, and M. Olivo, “Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe,” J. Biophoton. 7, 956–965 (2014).
[Crossref]

Chao, D.

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photon. J. 7, 4800809 (2015).
[Crossref]

Chassagneux, F.

Chattopadhyay, R.

Chen, B.

Chen, H.

G. Wang, S. Li, X. Wang, Y. Zhao, Q. Liu, J. Zi, H. Li, and H. Chen, “A kind of broadband polarization filter based on photonic crystal fiber with nanoscale gold film,” Plasmonics 12, 377–382 (2017).

X. Wang, S. Li, H. Chen, Q. Liu, G. Wang, and Y. Zhao, “Compatibility of temperature sensor and polarization filter based on Au film and glycerin selectively infilling photonic crystal fibers,” Plasmonics 11, 1265–1271 (2016).
[Crossref]

H. Chen, S. Li, M. Ma, J. Li, Z. Fan, and M. Shi, “Surface plasmon induced polarization filter based on Au wires and liquid crystal infiltrated photonic crystal fibers,” Plasmonics 11, 459–464 (2016).
[Crossref]

Z. Fan, S. Li, Q. Liu, H. Chen, and X. Wang, “Plasmonic broadband polarization splitter based on dual-core photonic crystal fiber with elliptical metallic nanowires,” Plasmonics 11, 1565–1572 (2016).
[Crossref]

H. Li, S. Li, H. Chen, J. Li, G. An, and J. Zi, “A polarization filter based on photonic crystal fiber with asymmetry around gold-coated holes,” Plasmonics 11, 103–108 (2016).
[Crossref]

J. Zi, S. Li, H. Chen, J. Li, and H. Li, “Photonic crystal fiber polarization filter based on surface plasmon polaritons,” Plasmonics 11, 65–69 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, H. Chen, Z. Fan, G. An, H. Li, and J. Zi, “Photonic crystal fiber polarization filter based on coupling between core mode and SPP mode,” Plasmonics 11, 857–863 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48, 46 (2016).
[Crossref]

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photon. J. 7, 4800809 (2015).
[Crossref]

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

P. Pinkhasova, H. Chen, J. Kanka, P. Mergo, and H. Du, “Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform,” Appl. Phys. Lett. 106, 071106 (2015).
[Crossref]

H. Chen, S. Li, G. An, J. Li, Z. Fan, and Y. Han, “Polarization splitter based on D-shaped dual-core photonic crystal fibers with gold film,” Plasmonics 10, 57–61 (2015).
[Crossref]

H. Chen, S. Li, M. Ma, Z. Fan, and Y. Wu, “Ultrabroad bandwidth polarization filter based on D-shaped photonic crystal fibers with gold film,” Plasmonics 10, 1239–1242 (2015).
[Crossref]

Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An, J. Li, and Y. Bao, “Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance,” Plasmonics 10, 675–680(2015).
[Crossref]

Q. Liu, S. Li, and H. Chen, “Two kinds of polarization filter based on photonic crystal fiber with nanoscale gold film,” IEEE Photon. J. 7, 2700210(2015).
[Crossref]

Chen, L.

L. Chen, W. Zhang, Q. Zhou, Y. Liu, J. Sieg, Y. Zhang, L. Wang, B. Wang, and T. Yan, “Polarization rotator based on hybrid plasmonics photonic crystal fiber,” IEEE Photon. Technol. Lett. 26, 2291–2294 (2014).
[Crossref]

L. Chen, W. Zhang, Z. Zhang, Y. Liu, J. Sieg, L. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6, 2200909 (2014).
[Crossref]

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

Chen, M.-Y.

B. Sun, M.-Y. Chen, Y.-K. Zhang, and J. Zhou, “Polarization-dependent coupling characteristics of metal-wire filled dual-core photonic crystal fiber,” Opt. Quantum Electron. 47, 441–451 (2015).
[Crossref]

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[Crossref]

Chen, N.-K.

Chen, P. Y.

Chen, S.

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[Crossref]

Chen, Y.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
[Crossref]

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22, 15049–15063 (2014).
[Crossref]

Chen, Z. N.

M. Sun, Y. Wang, Z. N. Chen, Y. Gong, J. Lim, and X. Qing, “Nanostars on a fiber facet with near field enhancement for surface-enhanced Raman scattering detection,” Appl. Phys. A 115, 87–91 (2014).
[Crossref]

Cheng, G.-L.

Chi, M.-H.

M.-H. Chiu, C.-H. Shih, and M.-H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sens. Actuators B 123, 1120–1124 (2007).
[Crossref]

Chiu, M.-H.

M.-H. Chiu, C.-H. Shih, and M.-H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sens. Actuators B 123, 1120–1124 (2007).
[Crossref]

Chow, D. M.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene-based photonic crystal fiber plasmonics biosensor,” IEEE Photon. J. 8, 4800408 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiragi, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15, 11499–11510 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27, 1628–1631(2015).
[Crossref]

Chu, P. K.

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” J. Mod. Opt. 63, 1189–1195 (2016).
[Crossref]

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, H. Mu, and P. K. Chu, “Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing,” J. Nanophoton. 9, 093050 (2015).
[Crossref]

Chui, H.-C.

Coelho, L.

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, R. A. S. Ferreira, P. S. André, and D. Viegas, “Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres,” Plasmonics 10, 319–327(2015).
[Crossref]

Cox, F. M.

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Csaki, A.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Csáki, A.

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

Ctyroký, J.

R. Slavík, J. Homola, and J. Čtyroký, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B Chem. 54, 74–79 (1999).
[Crossref]

Cui, Y.

T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, and M. Olivo, “Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles,” Biosens. Bioelectron. 64, 227–233 (2015).
[Crossref]

D. Hu, P. Shum, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4, 2010–2016(2012).
[Crossref]

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photon. J. 4, 1248–1255 (2012).
[Crossref]

Dash, J. N.

J. N. Dash and R. Jha, “Highly sensitive D shaped PCF sensor based on SPR for near IR,” Opt. Quantum Electron. 48, 137 (2016).
[Crossref]

J. N. Dash and R. Jha, “Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR,” Plasmonics 11, 1505–1509(2016).
[Crossref]

J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10, 1123–1131 (2015).
[Crossref]

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26, 1092–1095 (2014).
[Crossref]

J. N. Dash and R. Jha, “SPR biosensor based on polymer PCF coated with conducting metal oxide,” IEEE Photon. Technol. Lett. 26, 594–598 (2014).
[Crossref]

de Almeida, J. M. M. M.

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, R. A. S. Ferreira, P. S. André, and D. Viegas, “Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres,” Plasmonics 10, 319–327(2015).
[Crossref]

Deng, Z.

Y. Zhao, Z. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B 202, 557–567 (2014).
[Crossref]

Deniz, H.

M. Yaman, T. Khudiyev, E. Ozgur, M. Kanik, O. Aktas, E. O. Ozgur, H. Deniz, E. Korkut, and M. Bayindir, “Arrays of indefinitely long uniform nanowires and nanotubes,” Nat. Mater. 10, 494–501 (2011).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Ding, C.

N. Luan, C. Ding, and J. Yao, “A refractive index and temperature sensor based on surface plasmon resonance in an exposed-core microstructured optical fiber,” IEEE Photon. J. 8, 4801608 (2016).
[Crossref]

Dinglasan, J.

J. Irizar, J. Dinglasan, J. B. Goh, A. Khetani, H. Anis, D. Anderson, C. Goh, and A. S. Helmy, “Raman spectroscopy of nanoparticles using hollow-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 14, 1214–1222 (2008).
[Crossref]

Dinh, Q. X.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

Dinh, X.-Q.

T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, and M. Olivo, “Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles,” Biosens. Bioelectron. 64, 227–233 (2015).
[Crossref]

Dinish, U. S.

U. S. Dinish, G. Balasundara, Y. T. Chang, and M. Olivo, “Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe,” J. Biophoton. 7, 956–965 (2014).
[Crossref]

U. S. Dinish, C. Y. Fu, K. S. Soh, R. Bhuvaneswari, A. Kumar, and M. Olivo, “Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber,” Biosens. Bioelectron. 33, 293–298(2012).
[Crossref]

Docherty, A.

Donald, I. W.

I. W. Donald and B. L. Metcalfe, “The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process,” J. Mater. Sci. 31, 1139–1149 (1996).
[Crossref]

Dou, C.

Q. Liu, S. Li, J. Li, C. Dou, X. Wang, G. Wang, and M. Shi, “Tunable fiber polarization filter by filling different index liquids and gold wire into photonic crystal fiber,” IEEE J. Lightwave Technol. 34, 2484–2490(2016).
[Crossref]

C. Dou, X. Jing, S. Li, Q. Liu, and J. Bian, “A photonic crystal fiber polarized filter at 1.55 μm based on surface plasmon resonance,” Plasmonics 11, 1163–1168 (2015).
[Crossref]

Du, H.

P. Pinkhasova, H. Chen, J. Kanka, P. Mergo, and H. Du, “Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform,” Appl. Phys. Lett. 106, 071106 (2015).
[Crossref]

Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[Crossref]

M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent field surface enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
[Crossref]

M. K. K. Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles,” Opt. Lett. 34, 968–970 (2009).
[Crossref]

Du, Y.

Y. Du, S.-G. Li, S. Liu, X.-P. Zhu, and X.-X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B 109, 65–74 (2012).
[Crossref]

Duan, L. C.

C. J. Hao, Y. Lu, M. T. Wang, B. Q. Wu, L. C. Duan, and J. Q. Yao, “Surface plasmon resonance refractive index sensor based on active photonic crystal fiber,” IEEE Photon. J. 5, 4801108 (2013).
[Crossref]

Duan, L.-C.

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Ebendorff-Heidepriem, H.

E. Klantsataya, A. Francois, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

J. Boehm, A. Francois, H. Ebendorff-Heidepriem, and T. M. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6, 133–136 (2011).
[Crossref]

Ebnali-Heidari, M.

M. Sadeghi, V. Ahmadi, and M. Ebnali-Heidari, “Metal-coated silicon nanowire embedded plasmonic photonic crystal fiber: Kerr nonlinearity and two-photon absorption,” Plasmonics, 1–9 (2016).
[Crossref]

El-Hefnawy, S. M.

M. F. O. Hameed, M. Y. Azab, A. M. Heikal, S. M. El-Hefnawy, and S. S. A. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
[Crossref]

Faetti, S.

J. Li, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Fan, P.

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22, 15049–15063 (2014).
[Crossref]

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
[Crossref]

Fan, Z.

H. Chen, S. Li, M. Ma, J. Li, Z. Fan, and M. Shi, “Surface plasmon induced polarization filter based on Au wires and liquid crystal infiltrated photonic crystal fibers,” Plasmonics 11, 459–464 (2016).
[Crossref]

Z. Fan, S. Li, Q. Liu, H. Chen, and X. Wang, “Plasmonic broadband polarization splitter based on dual-core photonic crystal fiber with elliptical metallic nanowires,” Plasmonics 11, 1565–1572 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, H. Chen, Z. Fan, G. An, H. Li, and J. Zi, “Photonic crystal fiber polarization filter based on coupling between core mode and SPP mode,” Plasmonics 11, 857–863 (2016).
[Crossref]

H. Chen, S. Li, M. Ma, Z. Fan, and Y. Wu, “Ultrabroad bandwidth polarization filter based on D-shaped photonic crystal fibers with gold film,” Plasmonics 10, 1239–1242 (2015).
[Crossref]

H. Chen, S. Li, G. An, J. Li, Z. Fan, and Y. Han, “Polarization splitter based on D-shaped dual-core photonic crystal fibers with gold film,” Plasmonics 10, 57–61 (2015).
[Crossref]

Z. Fan, S. Li, Q. Liu, J. Li, and Y. Xie, “Plasmonic polarization beam splitter based on dual-core photonic crystal fiber,” Plasmonics 10, 1283–1289(2015).
[Crossref]

Q. Liu, S. Li, H. Li, J. Zi, W. Zhang, Z. Fan, G. An, and Y. Bao, “Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter,” Plasmonics 10, 931–939 (2015).
[Crossref]

Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An, J. Li, and Y. Bao, “Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance,” Plasmonics 10, 675–680(2015).
[Crossref]

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photon. J. 7, 4800809 (2015).
[Crossref]

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9, 1355–1360 (2014).
[Crossref]

Fan, Z.-K.

Q. Liu, S. Li, Z.-K. Fan, W. Zhang, H. Li, J.-C. Zi, and G.-W. An, “Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber,” Opt. Commun. 334, 46–50(2015).
[Crossref]

W. Zhang, S. Li, G.-W. An, Z.-K. Fan, and Y.-J. Bao, “Polarization filter characteristics of photonic crystal fibers with square lattice and selectively filled gold wires,” Appl. Opt. 53, 2441–2445 (2014).
[Crossref]

Fehri, M. F.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213(2008).
[Crossref]

B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413–11426 (2007).
[Crossref]

Ferreira, R. A. S.

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, R. A. S. Ferreira, P. S. André, and D. Viegas, “Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres,” Plasmonics 10, 319–327(2015).
[Crossref]

Finlayson, C. E.

C. E. Finlayson, A. Amezcua-Correa, and P. J. A. Sazio, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett. 90, 132110 (2007).
[Crossref]

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacor, J. Hayes, P. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024–2030 (2007).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Fleming, S. C.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

A. Tuniz, B. T. Kuhlmey, P. Y. Chen, and S. C. Fleming, “Weaving the invisible thread: design of an optically invisible metamaterial fibre,” Opt. Express 18, 18095–18105 (2010).
[Crossref]

Florous, N. J.

N. J. Florous, K. Saitoh, and M. Koshiba, “Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers,” IEEE Photon. Technol. Lett. 19, 324–326 (2007).
[Crossref]

Francois, A.

E. Klantsataya, A. Francois, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

J. Boehm, A. Francois, H. Ebendorff-Heidepriem, and T. M. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6, 133–136 (2011).
[Crossref]

Fritzsche, W.

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Fu, C. Y.

U. S. Dinish, C. Y. Fu, K. S. Soh, R. Bhuvaneswari, A. Kumar, and M. Olivo, “Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber,” Biosens. Bioelectron. 33, 293–298(2012).
[Crossref]

Fu, X.-Y.

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref]

Gagnaire, H.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[Crossref]

Gandhi, M. S. A.

M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
[Crossref]

Gao, D.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Gao, J.

W. Wei, X. Zhang, X. Guo, L. Zheng, J. Gao, W. Shi, Q. Wang, Y. Huang, and X. Ren, “Refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Optik 123, 1167–1170 (2012).
[Crossref]

L. Zheng, X. Zhang, X. Ren, J. Gao, L. Shi, X. Liu, Q. Wang, and Y. Huang, “Surface plasmon resonance sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Opt. Laser Technol. 43, 960–964 (2011).
[Crossref]

García-Cámara, B.

Gauvreau, B.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213(2008).
[Crossref]

B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413–11426 (2007).
[Crossref]

Ge, S.

S. Ge, F. Shi, G. Zhou, S. Liu, Z. Hou, and L. Peng, “U-shaped photonic crystal fiber based surface plasmon resonance sensors,” Plasmonics 11, 1307–1312 (2016).
[Crossref]

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photon. J. 7, 4801309 (2015).
[Crossref]

Geday, M. A.

George, A.

Godin, M.

Goh, C.

J. Irizar, J. Dinglasan, J. B. Goh, A. Khetani, H. Anis, D. Anderson, C. Goh, and A. S. Helmy, “Raman spectroscopy of nanoparticles using hollow-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 14, 1214–1222 (2008).
[Crossref]

Goh, D.

T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, and M. Olivo, “Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles,” Biosens. Bioelectron. 64, 227–233 (2015).
[Crossref]

Goh, J. B.

J. Irizar, J. Dinglasan, J. B. Goh, A. Khetani, H. Anis, D. Anderson, C. Goh, and A. S. Helmy, “Raman spectroscopy of nanoparticles using hollow-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 14, 1214–1222 (2008).
[Crossref]

Goicoechea, J.

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber sensors based on nanoparticle-embedded coatings,” J. Sens. 2015, 1–18 (2015).
[Crossref]

Gong, T.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, and M. Olivo, “Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles,” Biosens. Bioelectron. 64, 227–233 (2015).
[Crossref]

Gong, Y.

M. Sun, Y. Wang, Z. N. Chen, Y. Gong, J. Lim, and X. Qing, “Nanostars on a fiber facet with near field enhancement for surface-enhanced Raman scattering detection,” Appl. Phys. A 115, 87–91 (2014).
[Crossref]

Gopolan, V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Gorman, T.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48, 1403–1410 (2012).
[Crossref]

Gu, C.

X. Yang, C. Gu, F. Qian, Y. Li, and J. Z. Zhang, “Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers,” Anal. Chem. 83, 5888–5894 (2011).
[Crossref]

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow-core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt. 2011, 751610 (2010).
[Crossref]

X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27, 977–984 (2010).
[Crossref]

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300–8305 (2008).
[Crossref]

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[Crossref]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[Crossref]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhao, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[Crossref]

Guan, C.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

Guo, X.

W. Wei, X. Zhang, X. Guo, L. Zheng, J. Gao, W. Shi, Q. Wang, Y. Huang, and X. Ren, “Refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Optik 123, 1167–1170 (2012).
[Crossref]

Gupta, B. D.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
[Crossref]

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

R. Jha, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a Teflon layer between core and metal layer,” Plasmonics 3, 151–156 (2008).
[Crossref]

R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
[Crossref]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[Crossref]

Hameed, M. F. O.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

M. F. O. Hameed, Y. K. A. Alrayk, and S. S. A. Obayya, “Self-calibration highly sensitive photonic crystal fiber biosensor,” IEEE Photon. J. 8, 1–12 (2016).
[Crossref]

M. F. O. Hameed, M. Y. Azab, A. M. Heikal, S. M. El-Hefnawy, and S. S. A. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
[Crossref]

M. F. O. Hameed, R. T. Balat, A. M. Heikal, M. M. Abo-Elkhier, M. I. A. E. Maaty, and S. S. A. Obayya, “Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer-demultiplexer,” IEEE Photon. J. 7, 4801110 (2015).
[Crossref]

M. F. O. Hameed, A. M. Heikal, B. M. Younis, M. Abdelrazzak, and S. S. A. Obayya, “Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter,” Opt. Express 23, 7007–7020 (2015).
[Crossref]

A. M. Heikal, F. F. K. Hussain, M. F. O. Hameed, and S. S. A. Obayya, “Efficient polarization filter design based on plasmonic photonic crystal fiber,” J. Lightwave Technol. 33, 2868–2875 (2015).
[Crossref]

Hamzaoui, H. E.

Han, Y.

Y. Han, L. Xia, Y.-T. Zhang, and W. Li, “Ultra-broad band single-polarization single-mode photonic crystal fiber based on the zero-order surface plasmon polariton mode,” Opt. Commun. 345, 141–148 (2015).
[Crossref]

H. Chen, S. Li, G. An, J. Li, Z. Fan, and Y. Han, “Polarization splitter based on D-shaped dual-core photonic crystal fibers with gold film,” Plasmonics 10, 57–61 (2015).
[Crossref]

M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent field surface enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
[Crossref]

Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[Crossref]

M. K. K. Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles,” Opt. Lett. 34, 968–970 (2009).
[Crossref]

Han, Z.

X. Hao, S. Li, X. Yan, X. Zhang, G. An, H. Wang, Y. Shao, and Z. Han, “Photonic crystal fibre polarization filter with round lattice based on surface plasmon resonance,” J. Modern Opt. 64, 205–209 (2017).

Hao, C.

M. Wang, Y. Lu, C. Hao, X. Yang, and J. Yao, “Simulation analysis of a temperature sensor based on photonic crystal fiber filled with different shapes of nanowires,” Optik 126, 3687–3691 (2015).
[Crossref]

Hao, C. J.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6, 680137 (2014).
[Crossref]

C. J. Hao, Y. Lu, M. T. Wang, B. Q. Wu, L. C. Duan, and J. Q. Yao, “Surface plasmon resonance refractive index sensor based on active photonic crystal fiber,” IEEE Photon. J. 5, 4801108 (2013).
[Crossref]

Hao, C.-J.

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref]

Hao, X.

X. Hao, S. Li, X. Yan, X. Zhang, G. An, H. Wang, Y. Shao, and Z. Han, “Photonic crystal fibre polarization filter with round lattice based on surface plasmon resonance,” J. Modern Opt. 64, 205–209 (2017).

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Hao, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12, 465–471(2016).
[Crossref]

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22, 15049–15063 (2014).
[Crossref]

Hao, Z.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Hao, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12, 465–471(2016).
[Crossref]

Hassani, A.

Hattori, H. T.

A. Khaleque and H. T. Hattori, “Ultra-broadband and compact polarization splitter based on gold filled dual-core photonic crystal fiber,” J. Appl. Phys. 118, 143101 (2015).
[Crossref]

A. Khaleque, E. G. Mironov, and H. T. Hattori, “Analysis of the properties of a dual-core plasmonic photonic crystal fiber polarization splitter,” Appl. Phys. B 121, 523–532 (2015).
[Crossref]

A. Khaleque and H. T. Hattori, “Polarizer based upon a plasmonic resonant thin layer on a squeezed photonic crystal fiber,” Appl. Opt. 54, 2543–2549 (2015).
[Crossref]

Hautakorpi, M.

Haxha, S.

R. Otupiri, E. K. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Express 23, 15716–15727 (2015).
[Crossref]

R. Otupiri, S. K. Akowuah, S. Haxha, H. Ademgil, F. Abdelmalek, and A. Aggoun, “A novel birefringent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photon. J. 6, 6801711 (2014).
[Crossref]

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48, 1403–1410 (2012).
[Crossref]

Hayes, J.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacor, J. Hayes, P. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024–2030 (2007).
[Crossref]

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

He, Y. J.

Heikal, A. M.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

M. F. O. Hameed, M. Y. Azab, A. M. Heikal, S. M. El-Hefnawy, and S. S. A. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
[Crossref]

M. F. O. Hameed, A. M. Heikal, B. M. Younis, M. Abdelrazzak, and S. S. A. Obayya, “Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter,” Opt. Express 23, 7007–7020 (2015).
[Crossref]

A. M. Heikal, F. F. K. Hussain, M. F. O. Hameed, and S. S. A. Obayya, “Efficient polarization filter design based on plasmonic photonic crystal fiber,” J. Lightwave Technol. 33, 2868–2875 (2015).
[Crossref]

M. F. O. Hameed, R. T. Balat, A. M. Heikal, M. M. Abo-Elkhier, M. I. A. E. Maaty, and S. S. A. Obayya, “Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer-demultiplexer,” IEEE Photon. J. 7, 4801110 (2015).
[Crossref]

Helmy, A. S.

J. Irizar, J. Dinglasan, J. B. Goh, A. Khetani, H. Anis, D. Anderson, C. Goh, and A. S. Helmy, “Raman spectroscopy of nanoparticles using hollow-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 14, 1214–1222 (2008).
[Crossref]

Henkel, T.

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Herschel, R.

Ho, H.-P.

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B 160, 196–201 (2011).
[Crossref]

X. Yu, S. Zhang, Y. Zhang, H.-P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express 18, 17950–17957(2010).
[Crossref]

Hoffmann, P.

E. Klantsataya, A. Francois, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref]

R. Slavík, J. Homola, and J. Čtyroký, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B Chem. 54, 74–79 (1999).
[Crossref]

Hou, J.

Hou, L.

L. Jiang, Y. Zheng, J. Yang, L. Hou, Z. Li, and X. Zhao, “An ultra-broadband single polarization filter based on plasmonic photonic crystal fiber with a liquid crystal core,” Plasmonics 12, 411–417 (2017).
[Crossref]

L. Jiang, Y. Zheng, L. Hou, K. Zheng, and J. Peng, “Surface plasmon induced polarization filter of the gold-coated photonic crystal fiber with a liquid core,” Opt. Fiber Technol. 23, 42–47 (2015).
[Crossref]

L. Jiang, Y. Zheng, L. Hou, K. Zheng, J. Peng, and X. Zhao, “An ultrabroadband polarization splitter based on square-lattice dual-core photonic crystal fiber with a gold wire,” Opt. Commun. 351, 50–56 (2015).
[Crossref]

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300–8305 (2008).
[Crossref]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhao, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[Crossref]

Hou, L.-T.

L.-H. Jiang, Y. Zheng, J.-J. Yang, L.-T. Hou, J.-Y. Peng, and X.-T. Zhang, “Design of an ultrashort single-polarization wavelength splitter based on gold-filled square-lattice photonic crystal fiber,” Opt. Quantum Electron. 48, 409 (2016).
[Crossref]

Hou, Z.

S. Ge, F. Shi, G. Zhou, S. Liu, Z. Hou, and L. Peng, “U-shaped photonic crystal fiber based surface plasmon resonance sensors,” Plasmonics 11, 1307–1312 (2016).
[Crossref]

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photon. J. 7, 4801309 (2015).
[Crossref]

F. Shi, L. Peng, G. Zhou, X. Cang, Z. Hou, and C. Xia, “An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit,” Plasmonics 10, 1263–1268 (2015).
[Crossref]

F. Shi, G. Zhou, D. Li, L. Peng, Z. Hou, and C. Xia, “Surface plasmon mode coupling in photonic crystal fiber symmetrically filled with Ag/Au alloy wires,” Plasmonics 10, 335–340 (2015).
[Crossref]

Howdle, S. M.

A. C. Peacock, A. Amezcua-Correa, J. Yang, P. J. A. Sazio, and S. M. Howdle, “Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions,” Appl. Phys. Lett. 92, 141113 (2008).
[Crossref]

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacor, J. Hayes, P. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024–2030 (2007).
[Crossref]

Hu, D.

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photon. J. 4, 1248–1255 (2012).
[Crossref]

D. Hu, P. Shum, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4, 2010–2016(2012).
[Crossref]

Hu, D. J. J.

N. M. Y. Zhang, D. J. J. Hu, P. P. Shum, Z. Wu, K. Li, T. Huang, and L. Wei, “Design and analysis of surface plasmon resonance sensor based on high birefringent microstructured optical fiber,” J. Opt. 18, 065005 (2016).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

D. J. J. Hu, J. L. Lim, M. K. Park, L. T. H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1293–1297(2012).
[Crossref]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37, 2283–2285 (2012).
[Crossref]

Huang, C.-H.

Huang, T.

N. M. Y. Zhang, D. J. J. Hu, P. P. Shum, Z. Wu, K. Li, T. Huang, and L. Wei, “Design and analysis of surface plasmon resonance sensor based on high birefringent microstructured optical fiber,” J. Opt. 18, 065005 (2016).
[Crossref]

T. Huang, “Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength,” Plasmonics, 1–6 (2016).
[Crossref]

Huang, X.-H.

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref]

Huang, Y.

W. Wei, X. Zhang, X. Guo, L. Zheng, J. Gao, W. Shi, Q. Wang, Y. Huang, and X. Ren, “Refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Optik 123, 1167–1170 (2012).
[Crossref]

L. Zheng, X. Zhang, X. Ren, J. Gao, L. Shi, X. Liu, Q. Wang, and Y. Huang, “Surface plasmon resonance sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Opt. Laser Technol. 43, 960–964 (2011).
[Crossref]

Huang, Z.

Hugonin, J. P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmonic resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref]

Humbert, G.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, and M. Olivo, “Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles,” Biosens. Bioelectron. 64, 227–233 (2015).
[Crossref]

Hussain, F. F. K.

Im, S.

Irizar, J.

J. Irizar, J. Dinglasan, J. B. Goh, A. Khetani, H. Anis, D. Anderson, C. Goh, and A. S. Helmy, “Raman spectroscopy of nanoparticles using hollow-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 14, 1214–1222 (2008).
[Crossref]

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Jahn, F.

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Jain, C.

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Express 6, 1790–1799 (2016).
[Crossref]

Jha, R.

J. N. Dash and R. Jha, “Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR,” Plasmonics 11, 1505–1509(2016).
[Crossref]

J. N. Dash and R. Jha, “Highly sensitive D shaped PCF sensor based on SPR for near IR,” Opt. Quantum Electron. 48, 137 (2016).
[Crossref]

J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10, 1123–1131 (2015).
[Crossref]

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor,” IEEE Photon. Technol. Lett. 27, 2437–2440 (2015).
[Crossref]

J. N. Dash and R. Jha, “SPR biosensor based on polymer PCF coated with conducting metal oxide,” IEEE Photon. Technol. Lett. 26, 594–598 (2014).
[Crossref]

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26, 1092–1095 (2014).
[Crossref]

R. Jha, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a Teflon layer between core and metal layer,” Plasmonics 3, 151–156 (2008).
[Crossref]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[Crossref]

Jiang, L.

L. Jiang, Y. Zheng, J. Yang, L. Hou, Z. Li, and X. Zhao, “An ultra-broadband single polarization filter based on plasmonic photonic crystal fiber with a liquid crystal core,” Plasmonics 12, 411–417 (2017).
[Crossref]

L. Jiang, Y. Zheng, L. Hou, K. Zheng, and J. Peng, “Surface plasmon induced polarization filter of the gold-coated photonic crystal fiber with a liquid core,” Opt. Fiber Technol. 23, 42–47 (2015).
[Crossref]

L. Jiang, Y. Zheng, L. Hou, K. Zheng, J. Peng, and X. Zhao, “An ultrabroadband polarization splitter based on square-lattice dual-core photonic crystal fiber with a gold wire,” Opt. Commun. 351, 50–56 (2015).
[Crossref]

Jiang, L.-H.

L.-H. Jiang, Y. Zheng, J.-J. Yang, L.-T. Hou, J.-Y. Peng, and X.-T. Zhang, “Design of an ultrashort single-polarization wavelength splitter based on gold-filled square-lattice photonic crystal fiber,” Opt. Quantum Electron. 48, 409 (2016).
[Crossref]

Jiang, M.

Jiang, Y.-X.

Jin, G.

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300–8305 (2008).
[Crossref]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhao, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[Crossref]

Jing, X.

C. Dou, X. Jing, S. Li, Q. Liu, and J. Bian, “A photonic crystal fiber polarized filter at 1.55 μm based on surface plasmon resonance,” Plasmonics 11, 1163–1168 (2015).
[Crossref]

Joly, N.

Joly, N. Y.

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12, 213–220 (1993).
[Crossref]

Kabashin, A.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213(2008).
[Crossref]

B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413–11426 (2007).
[Crossref]

Kalluri, S.

Kanik, M.

M. Yaman, T. Khudiyev, E. Ozgur, M. Kanik, O. Aktas, E. O. Ozgur, H. Deniz, E. Korkut, and M. Bayindir, “Arrays of indefinitely long uniform nanowires and nanotubes,” Nat. Mater. 10, 494–501 (2011).
[Crossref]

Kanka, J.

P. Pinkhasova, H. Chen, J. Kanka, P. Mergo, and H. Du, “Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform,” Appl. Phys. Lett. 106, 071106 (2015).
[Crossref]

M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent field surface enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
[Crossref]

Kao, L. T. H.

D. J. J. Hu, J. L. Lim, M. K. Park, L. T. H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1293–1297(2012).
[Crossref]

Khaleque, A.

A. Khaleque and H. T. Hattori, “Ultra-broadband and compact polarization splitter based on gold filled dual-core photonic crystal fiber,” J. Appl. Phys. 118, 143101 (2015).
[Crossref]

A. Khaleque, E. G. Mironov, and H. T. Hattori, “Analysis of the properties of a dual-core plasmonic photonic crystal fiber polarization splitter,” Appl. Phys. B 121, 523–532 (2015).
[Crossref]

A. Khaleque and H. T. Hattori, “Polarizer based upon a plasmonic resonant thin layer on a squeezed photonic crystal fiber,” Appl. Opt. 54, 2543–2549 (2015).
[Crossref]

Khetani, A.

A. Khetani, A. Momenpour, E. I. Alarcon, and H. Anis, “Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS),” Opt. Express 6, 4599–4609 (2015).
[Crossref]

V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nanoparticle within hollow core photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 20, 7300608 (2014).
[Crossref]

A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, and H. Anis, “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express 21, 12340–12350 (2013).
[Crossref]

J. Irizar, J. Dinglasan, J. B. Goh, A. Khetani, H. Anis, D. Anderson, C. Goh, and A. S. Helmy, “Raman spectroscopy of nanoparticles using hollow-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 14, 1214–1222 (2008).
[Crossref]

Khudiyev, T.

M. Yaman, T. Khudiyev, E. Ozgur, M. Kanik, O. Aktas, E. O. Ozgur, H. Deniz, E. Korkut, and M. Bayindir, “Arrays of indefinitely long uniform nanowires and nanotubes,” Nat. Mater. 10, 494–501 (2011).
[Crossref]

Kim, Y.-C.

Klantsataya, E.

E. Klantsataya, A. Francois, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

Knight, J. C.

Korkut, E.

M. Yaman, T. Khudiyev, E. Ozgur, M. Kanik, O. Aktas, E. O. Ozgur, H. Deniz, E. Korkut, and M. Bayindir, “Arrays of indefinitely long uniform nanowires and nanotubes,” Nat. Mater. 10, 494–501 (2011).
[Crossref]

Koshiba, M.

A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19, 3799–3808 (2011).
[Crossref]

N. J. Florous, K. Saitoh, and M. Koshiba, “Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers,” IEEE Photon. Technol. Lett. 19, 324–326 (2007).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Z. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Kuhlmey, B. T.

Kumar, A.

U. S. Dinish, C. Y. Fu, K. S. Soh, R. Bhuvaneswari, A. Kumar, and M. Olivo, “Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber,” Biosens. Bioelectron. 33, 293–298(2012).
[Crossref]

Lai, K.

Lalanne, P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmonic resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref]

Large, M. C. J.

Latka, I.

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Lee, H. W.

Leong, K. C.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization,” IEEE J. Sel. Top. Quantum Electron. 19, 460217 (2013).
[Crossref]

Leonhardt, R.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

Leon-Saval, S. G.

Leviatan, Y.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

Li, C.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

Li, C. M.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization,” IEEE J. Sel. Top. Quantum Electron. 19, 460217 (2013).
[Crossref]

Li, D.

F. Shi, G. Zhou, D. Li, L. Peng, Z. Hou, and C. Xia, “Surface plasmon mode coupling in photonic crystal fiber symmetrically filled with Ag/Au alloy wires,” Plasmonics 10, 335–340 (2015).
[Crossref]

Li, H.

G. Wang, S. Li, X. Wang, Y. Zhao, Q. Liu, J. Zi, H. Li, and H. Chen, “A kind of broadband polarization filter based on photonic crystal fiber with nanoscale gold film,” Plasmonics 12, 377–382 (2017).

Q. Liu, S. Li, J. Li, H. Chen, Z. Fan, G. An, H. Li, and J. Zi, “Photonic crystal fiber polarization filter based on coupling between core mode and SPP mode,” Plasmonics 11, 857–863 (2016).
[Crossref]

H. Li, S. Li, H. Chen, J. Li, G. An, and J. Zi, “A polarization filter based on photonic crystal fiber with asymmetry around gold-coated holes,” Plasmonics 11, 103–108 (2016).
[Crossref]

J. Zi, S. Li, H. Chen, J. Li, and H. Li, “Photonic crystal fiber polarization filter based on surface plasmon polaritons,” Plasmonics 11, 65–69 (2016).
[Crossref]

Q. Liu, S. Li, H. Li, J. Zi, W. Zhang, Z. Fan, G. An, and Y. Bao, “Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter,” Plasmonics 10, 931–939 (2015).
[Crossref]

Q. Liu, S. Li, Z.-K. Fan, W. Zhang, H. Li, J.-C. Zi, and G.-W. An, “Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber,” Opt. Commun. 334, 46–50(2015).
[Crossref]

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photon. J. 7, 4800809 (2015).
[Crossref]

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B 160, 196–201 (2011).
[Crossref]

Li, J.

H. Chen, S. Li, M. Ma, J. Li, Z. Fan, and M. Shi, “Surface plasmon induced polarization filter based on Au wires and liquid crystal infiltrated photonic crystal fibers,” Plasmonics 11, 459–464 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, C. Dou, X. Wang, G. Wang, and M. Shi, “Tunable fiber polarization filter by filling different index liquids and gold wire into photonic crystal fiber,” IEEE J. Lightwave Technol. 34, 2484–2490(2016).
[Crossref]

J. Zi, S. Li, H. Chen, J. Li, and H. Li, “Photonic crystal fiber polarization filter based on surface plasmon polaritons,” Plasmonics 11, 65–69 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, H. Chen, Z. Fan, G. An, H. Li, and J. Zi, “Photonic crystal fiber polarization filter based on coupling between core mode and SPP mode,” Plasmonics 11, 857–863 (2016).
[Crossref]

H. Li, S. Li, H. Chen, J. Li, G. An, and J. Zi, “A polarization filter based on photonic crystal fiber with asymmetry around gold-coated holes,” Plasmonics 11, 103–108 (2016).
[Crossref]

Z. Fan, S. Li, Q. Liu, J. Li, and Y. Xie, “Plasmonic polarization beam splitter based on dual-core photonic crystal fiber,” Plasmonics 10, 1283–1289(2015).
[Crossref]

H. Chen, S. Li, G. An, J. Li, Z. Fan, and Y. Han, “Polarization splitter based on D-shaped dual-core photonic crystal fibers with gold film,” Plasmonics 10, 57–61 (2015).
[Crossref]

Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An, J. Li, and Y. Bao, “Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance,” Plasmonics 10, 675–680(2015).
[Crossref]

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photon. J. 7, 4800809 (2015).
[Crossref]

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

Y. Zhao, Z. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B 202, 557–567 (2014).
[Crossref]

J. Li, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Li, K.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

N. M. Y. Zhang, D. J. J. Hu, P. P. Shum, Z. Wu, K. Li, T. Huang, and L. Wei, “Design and analysis of surface plasmon resonance sensor based on high birefringent microstructured optical fiber,” J. Opt. 18, 065005 (2016).
[Crossref]

Li, P.

Li, Q.

Li, S.

G. Wang, S. Li, X. Wang, Y. Zhao, Q. Liu, J. Zi, H. Li, and H. Chen, “A kind of broadband polarization filter based on photonic crystal fiber with nanoscale gold film,” Plasmonics 12, 377–382 (2017).

X. Hao, S. Li, X. Yan, X. Zhang, G. An, H. Wang, Y. Shao, and Z. Han, “Photonic crystal fibre polarization filter with round lattice based on surface plasmon resonance,” J. Modern Opt. 64, 205–209 (2017).

G. Wang, S. Li, G. An, X. Wang, and Y. Zhao, “Design of a polarization filtering photonic crystal fiber with a big gold-coated air hole,” Opt. Quantum Electron. 48, 457 (2016).
[Crossref]

X. Wang, S. Li, H. Chen, Q. Liu, G. Wang, and Y. Zhao, “Compatibility of temperature sensor and polarization filter based on Au film and glycerin selectively infilling photonic crystal fibers,” Plasmonics 11, 1265–1271 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, C. Dou, X. Wang, G. Wang, and M. Shi, “Tunable fiber polarization filter by filling different index liquids and gold wire into photonic crystal fiber,” IEEE J. Lightwave Technol. 34, 2484–2490(2016).
[Crossref]

H. Chen, S. Li, M. Ma, J. Li, Z. Fan, and M. Shi, “Surface plasmon induced polarization filter based on Au wires and liquid crystal infiltrated photonic crystal fibers,” Plasmonics 11, 459–464 (2016).
[Crossref]

Z. Fan, S. Li, Q. Liu, H. Chen, and X. Wang, “Plasmonic broadband polarization splitter based on dual-core photonic crystal fiber with elliptical metallic nanowires,” Plasmonics 11, 1565–1572 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, H. Chen, Z. Fan, G. An, H. Li, and J. Zi, “Photonic crystal fiber polarization filter based on coupling between core mode and SPP mode,” Plasmonics 11, 857–863 (2016).
[Crossref]

J. Zi, S. Li, H. Chen, J. Li, and H. Li, “Photonic crystal fiber polarization filter based on surface plasmon polaritons,” Plasmonics 11, 65–69 (2016).
[Crossref]

H. Li, S. Li, H. Chen, J. Li, G. An, and J. Zi, “A polarization filter based on photonic crystal fiber with asymmetry around gold-coated holes,” Plasmonics 11, 103–108 (2016).
[Crossref]

G. An, S. Li, X. Yan, Z. Yuan, and X. Zhang, “High-birefringence photonic crystal fiber polarization filter based on surface plasmon resonance,” Appl. Opt. 55, 1262–1266 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48, 46 (2016).
[Crossref]

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Hao, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12, 465–471(2016).
[Crossref]

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photon. J. 7, 4800809 (2015).
[Crossref]

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, and W. Zhang, “Design of a polarized filtering photonic-crystal fiber with gold-coated air holes,” Appl. Opt. 54, 8817–8820 (2015).
[Crossref]

J. Zi, S. Li, W. Zhang, and G. An, “Polarization filter characteristics of square lattice photonic crystal fiber with a large diameter gold-coated air hole,” Plasmonics 10, 1499–1504 (2015).
[Crossref]

H. Chen, S. Li, G. An, J. Li, Z. Fan, and Y. Han, “Polarization splitter based on D-shaped dual-core photonic crystal fibers with gold film,” Plasmonics 10, 57–61 (2015).
[Crossref]

Z. Fan, S. Li, Q. Liu, J. Li, and Y. Xie, “Plasmonic polarization beam splitter based on dual-core photonic crystal fiber,” Plasmonics 10, 1283–1289(2015).
[Crossref]

H. Chen, S. Li, M. Ma, Z. Fan, and Y. Wu, “Ultrabroad bandwidth polarization filter based on D-shaped photonic crystal fibers with gold film,” Plasmonics 10, 1239–1242 (2015).
[Crossref]

Q. Liu, S. Li, H. Li, J. Zi, W. Zhang, Z. Fan, G. An, and Y. Bao, “Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter,” Plasmonics 10, 931–939 (2015).
[Crossref]

Q. Liu, S. Li, Z.-K. Fan, W. Zhang, H. Li, J.-C. Zi, and G.-W. An, “Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber,” Opt. Commun. 334, 46–50(2015).
[Crossref]

Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An, J. Li, and Y. Bao, “Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance,” Plasmonics 10, 675–680(2015).
[Crossref]

Q. Liu, S. Li, and H. Chen, “Two kinds of polarization filter based on photonic crystal fiber with nanoscale gold film,” IEEE Photon. J. 7, 2700210(2015).
[Crossref]

C. Dou, X. Jing, S. Li, Q. Liu, and J. Bian, “A photonic crystal fiber polarized filter at 1.55 μm based on surface plasmon resonance,” Plasmonics 11, 1163–1168 (2015).
[Crossref]

W. Zhang, S. Li, G.-W. An, Z.-K. Fan, and Y.-J. Bao, “Polarization filter characteristics of photonic crystal fibers with square lattice and selectively filled gold wires,” Appl. Opt. 53, 2441–2445 (2014).
[Crossref]

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Laser Eng. 58, 1–8 (2014).
[Crossref]

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9, 1355–1360 (2014).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21, 13733–13740 (2013).
[Crossref]

Li, S.-G.

Y. Du, S.-G. Li, S. Liu, X.-P. Zhu, and X.-X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B 109, 65–74 (2012).
[Crossref]

Li, W.

Y. Han, L. Xia, Y.-T. Zhang, and W. Li, “Ultra-broad band single-polarization single-mode photonic crystal fiber based on the zero-order surface plasmon polariton mode,” Opt. Commun. 345, 141–148 (2015).
[Crossref]

Li, X.

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22, 15049–15063 (2014).
[Crossref]

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
[Crossref]

Li, Y.

X. Yang, C. Gu, F. Qian, Y. Li, and J. Z. Zhang, “Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers,” Anal. Chem. 83, 5888–5894 (2011).
[Crossref]

Li, Z.

L. Jiang, Y. Zheng, J. Yang, L. Hou, Z. Li, and X. Zhao, “An ultra-broadband single polarization filter based on plasmonic photonic crystal fiber with a liquid crystal core,” Plasmonics 12, 411–417 (2017).
[Crossref]

Lim, J.

M. Sun, Y. Wang, Z. N. Chen, Y. Gong, J. Lim, and X. Qing, “Nanostars on a fiber facet with near field enhancement for surface-enhanced Raman scattering detection,” Appl. Phys. A 115, 87–91 (2014).
[Crossref]

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photon. J. 4, 1248–1255 (2012).
[Crossref]

Lim, J. L.

D. J. J. Hu, J. L. Lim, M. K. Park, L. T. H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1293–1297(2012).
[Crossref]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37, 2283–2285 (2012).
[Crossref]

Lin, H.-Y.

H.-Y. Lin, C.-H. Huang, G.-L. Cheng, N.-K. Chen, and H.-C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20, 21693–21701 (2012).
[Crossref]

H.-Y. Lin, W.-H. Tsai, Y.-C. Tsao, and B.-C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt. 46, 800–806 (2007).
[Crossref]

H.-Y. Lin, Y.-C. Tsao, W.-H. Tsai, Y.-W. Yang, T.-R. Yan, and B.-C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850  nm-LED,” Sens. Actuators A 138, 299–305 (2007).
[Crossref]

Lin, T.-J.

T.-J. Lin and C.-T. Lou, “Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions,” J. Supercrit. Fluids 41, 317–325 (2007).
[Crossref]

Lin, W.-H.

W.-H. Lin, Y.-C. Tsai, Y.-C. Tsao, and J.-K. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
[Crossref]

Lin, Y.

Lindquist, R. G.

Liu, B.

X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance,” Plasmonics 12, 489–496 (2017).
[Crossref]

Liu, B. L.

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires,” IEEE Photon. J. 8, 6803309 (2016).
[Crossref]

Liu, B.-H.

Liu, C.

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” J. Mod. Opt. 63, 1189–1195 (2016).
[Crossref]

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, H. Mu, and P. K. Chu, “Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing,” J. Nanophoton. 9, 093050 (2015).
[Crossref]

Liu, D.

Y. Zhang, D. Yong, X. Yu, L. Xia, D. Liu, and Y. Zhang, “Amplification of surface-enhance Raman scattering in photonic crystal fiber using offset launch method,” Plasmonics 8, 209–215 (2013).
[Crossref]

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional,” Opt. Commun. 285, 2466–2471 (2012).
[Crossref]

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[Crossref]

B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Express 20, 25858–25866 (2012).
[Crossref]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20, 5974 (2012).
[Crossref]

Y. Zhang, C. Zhou, L. Xia, X. Yu, and D. Liu, “Wagon wheel fiber based multichannel plasmonic sensor,” Opt. Express 19, 22863–22873 (2011).
[Crossref]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B 160, 196–201 (2011).
[Crossref]

X. Yu, S. Zhang, Y. Zhang, H.-P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express 18, 17950–17957(2010).
[Crossref]

Liu, H.

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B 160, 196–201 (2011).
[Crossref]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

X. Yu, S. Zhang, Y. Zhang, H.-P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express 18, 17950–17957(2010).
[Crossref]

Liu, J.

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300–8305 (2008).
[Crossref]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhao, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[Crossref]

Liu, Q.

G. Wang, S. Li, X. Wang, Y. Zhao, Q. Liu, J. Zi, H. Li, and H. Chen, “A kind of broadband polarization filter based on photonic crystal fiber with nanoscale gold film,” Plasmonics 12, 377–382 (2017).

Q. Liu, S. Li, J. Li, H. Chen, Z. Fan, G. An, H. Li, and J. Zi, “Photonic crystal fiber polarization filter based on coupling between core mode and SPP mode,” Plasmonics 11, 857–863 (2016).
[Crossref]

X. Wang, S. Li, H. Chen, Q. Liu, G. Wang, and Y. Zhao, “Compatibility of temperature sensor and polarization filter based on Au film and glycerin selectively infilling photonic crystal fibers,” Plasmonics 11, 1265–1271 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, C. Dou, X. Wang, G. Wang, and M. Shi, “Tunable fiber polarization filter by filling different index liquids and gold wire into photonic crystal fiber,” IEEE J. Lightwave Technol. 34, 2484–2490(2016).
[Crossref]

Z. Fan, S. Li, Q. Liu, H. Chen, and X. Wang, “Plasmonic broadband polarization splitter based on dual-core photonic crystal fiber with elliptical metallic nanowires,” Plasmonics 11, 1565–1572 (2016).
[Crossref]

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” J. Mod. Opt. 63, 1189–1195 (2016).
[Crossref]

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photon. J. 7, 4800809 (2015).
[Crossref]

Q. Liu, S. Li, Z.-K. Fan, W. Zhang, H. Li, J.-C. Zi, and G.-W. An, “Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber,” Opt. Commun. 334, 46–50(2015).
[Crossref]

Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An, J. Li, and Y. Bao, “Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance,” Plasmonics 10, 675–680(2015).
[Crossref]

C. Dou, X. Jing, S. Li, Q. Liu, and J. Bian, “A photonic crystal fiber polarized filter at 1.55 μm based on surface plasmon resonance,” Plasmonics 11, 1163–1168 (2015).
[Crossref]

Q. Liu, S. Li, and H. Chen, “Two kinds of polarization filter based on photonic crystal fiber with nanoscale gold film,” IEEE Photon. J. 7, 2700210(2015).
[Crossref]

Z. Fan, S. Li, Q. Liu, J. Li, and Y. Xie, “Plasmonic polarization beam splitter based on dual-core photonic crystal fiber,” Plasmonics 10, 1283–1289(2015).
[Crossref]

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, H. Mu, and P. K. Chu, “Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing,” J. Nanophoton. 9, 093050 (2015).
[Crossref]

Q. Liu, S. Li, H. Li, J. Zi, W. Zhang, Z. Fan, G. An, and Y. Bao, “Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter,” Plasmonics 10, 931–939 (2015).
[Crossref]

Liu, S.

S. Ge, F. Shi, G. Zhou, S. Liu, Z. Hou, and L. Peng, “U-shaped photonic crystal fiber based surface plasmon resonance sensors,” Plasmonics 11, 1307–1312 (2016).
[Crossref]

Y. Du, S.-G. Li, S. Liu, X.-P. Zhu, and X.-X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B 109, 65–74 (2012).
[Crossref]

Liu, X.

L. Zheng, X. Zhang, X. Ren, J. Gao, L. Shi, X. Liu, Q. Wang, and Y. Huang, “Surface plasmon resonance sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Opt. Laser Technol. 43, 960–964 (2011).
[Crossref]

Liu, Y.

L. Chen, W. Zhang, Q. Zhou, Y. Liu, J. Sieg, Y. Zhang, L. Wang, B. Wang, and T. Yan, “Polarization rotator based on hybrid plasmonics photonic crystal fiber,” IEEE Photon. Technol. Lett. 26, 2291–2294 (2014).
[Crossref]

L. Chen, W. Zhang, Z. Zhang, Y. Liu, J. Sieg, L. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6, 2200909 (2014).
[Crossref]

Lou, C.-T.

T.-J. Lin and C.-T. Lou, “Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions,” J. Supercrit. Fluids 41, 317–325 (2007).
[Crossref]

Lu, C.

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[Crossref]

Lu, P.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

Lu, Y.

X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance,” Plasmonics 12, 489–496 (2017).
[Crossref]

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires,” IEEE Photon. J. 8, 6803309 (2016).
[Crossref]

M. Wang, Y. Lu, C. Hao, X. Yang, and J. Yao, “Simulation analysis of a temperature sensor based on photonic crystal fiber filled with different shapes of nanowires,” Optik 126, 3687–3691 (2015).
[Crossref]

X. Yang, Y. Lu, M. Wang, and J. Yao, “An exposed-core grapefruit fibers based surface plasmon resonance sensor,” Sensors 15, 17106–17114 (2015).
[Crossref]

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
[Crossref]

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6, 680137 (2014).
[Crossref]

C. J. Hao, Y. Lu, M. T. Wang, B. Q. Wu, L. C. Duan, and J. Q. Yao, “Surface plasmon resonance refractive index sensor based on active photonic crystal fiber,” IEEE Photon. J. 5, 4801108 (2013).
[Crossref]

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref]

Z. Xie, Y. Lu, H. Wei, J. Yan, P. Wang, and H. Ming, “Broad spectral photonic crystal fiber surface enhanced Raman scattering probe,” Appl. Phys. B 95, 751–755 (2009).
[Crossref]

Luan, F.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37, 2283–2285 (2012).
[Crossref]

Luan, N.

N. Luan, C. Ding, and J. Yao, “A refractive index and temperature sensor based on surface plasmon resonance in an exposed-core microstructured optical fiber,” IEEE Photon. J. 8, 4801608 (2016).
[Crossref]

N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photon. J. 8, 4800508 (2016).
[Crossref]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23, 8576–8582 (2015).
[Crossref]

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
[Crossref]

Ludvigsen, H.

Lv, C.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

Lv, J.

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” J. Mod. Opt. 63, 1189–1195 (2016).
[Crossref]

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, H. Mu, and P. K. Chu, “Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing,” J. Nanophoton. 9, 093050 (2015).
[Crossref]

Lv, W.

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23, 8576–8582 (2015).
[Crossref]

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
[Crossref]

Lwin, R.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

Ma, M.

H. Chen, S. Li, M. Ma, J. Li, Z. Fan, and M. Shi, “Surface plasmon induced polarization filter based on Au wires and liquid crystal infiltrated photonic crystal fibers,” Plasmonics 11, 459–464 (2016).
[Crossref]

H. Chen, S. Li, M. Ma, Z. Fan, and Y. Wu, “Ultrabroad bandwidth polarization filter based on D-shaped photonic crystal fibers with gold film,” Plasmonics 10, 1239–1242 (2015).
[Crossref]

Ma, Z.

X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20, 1310–1314 (2008).
[Crossref]

Maaty, M. I. A. E.

M. F. O. Hameed, R. T. Balat, A. M. Heikal, M. M. Abo-Elkhier, M. I. A. E. Maaty, and S. S. A. Obayya, “Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer-demultiplexer,” IEEE Photon. J. 7, 4801110 (2015).
[Crossref]

Mahdiragi, G. A.

A. A. Rifat, G. A. Mahdiragi, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15, 11499–11510 (2015).
[Crossref]

Mahdiraji, G. A.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene-based photonic crystal fiber plasmonics biosensor,” IEEE Photon. J. 8, 4800408 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27, 1628–1631(2015).
[Crossref]

Maier, S.

Maksymov, I. S.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmonic resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref]

Malsch, D.

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Martini, R.

Mattinen, M.

Mergo, P.

P. Pinkhasova, H. Chen, J. Kanka, P. Mergo, and H. Du, “Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform,” Appl. Phys. Lett. 106, 071106 (2015).
[Crossref]

Metcalfe, B. L.

I. W. Donald and B. L. Metcalfe, “The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process,” J. Mater. Sci. 31, 1139–1149 (1996).
[Crossref]

Meucci, R.

J. Li, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Milenko, K.

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photon. J. 4, 1248–1255 (2012).
[Crossref]

D. Hu, P. Shum, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4, 2010–2016(2012).
[Crossref]

Ming, H.

Z. Xie, Y. Lu, H. Wei, J. Yan, P. Wang, and H. Ming, “Broad spectral photonic crystal fiber surface enhanced Raman scattering probe,” Appl. Phys. B 95, 751–755 (2009).
[Crossref]

Mironov, E. G.

A. Khaleque, E. G. Mironov, and H. T. Hattori, “Analysis of the properties of a dual-core plasmonic photonic crystal fiber polarization splitter,” Appl. Phys. B 121, 523–532 (2015).
[Crossref]

Möller, R.

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

Momenpour, A.

A. Khetani, A. Momenpour, E. I. Alarcon, and H. Anis, “Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS),” Opt. Express 6, 4599–4609 (2015).
[Crossref]

V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nanoparticle within hollow core photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 20, 7300608 (2014).
[Crossref]

A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, and H. Anis, “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express 21, 12340–12350 (2013).
[Crossref]

Monro, T. M.

E. Klantsataya, A. Francois, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

J. Boehm, A. Francois, H. Ebendorff-Heidepriem, and T. M. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6, 133–136 (2011).
[Crossref]

Mu, H.

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” J. Mod. Opt. 63, 1189–1195 (2016).
[Crossref]

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, H. Mu, and P. K. Chu, “Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing,” J. Nanophoton. 9, 093050 (2015).
[Crossref]

Murphy, C. J.

T. K. Sau and C. J. Murphy, “Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes,” Langmuir 21, 2923–2929 (2005).
[Crossref]

Musideke, M.

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Nagasaki, A.

Napiorkowski, M.

Neumann, N.

Newhouse, R.

X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27, 977–984 (2010).
[Crossref]

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow-core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt. 2011, 751610 (2010).
[Crossref]

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[Crossref]

Obayya, S. S. A.

M. F. O. Hameed, Y. K. A. Alrayk, and S. S. A. Obayya, “Self-calibration highly sensitive photonic crystal fiber biosensor,” IEEE Photon. J. 8, 1–12 (2016).
[Crossref]

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

M. F. O. Hameed, M. Y. Azab, A. M. Heikal, S. M. El-Hefnawy, and S. S. A. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
[Crossref]

M. F. O. Hameed, R. T. Balat, A. M. Heikal, M. M. Abo-Elkhier, M. I. A. E. Maaty, and S. S. A. Obayya, “Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer-demultiplexer,” IEEE Photon. J. 7, 4801110 (2015).
[Crossref]

M. F. O. Hameed, A. M. Heikal, B. M. Younis, M. Abdelrazzak, and S. S. A. Obayya, “Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter,” Opt. Express 23, 7007–7020 (2015).
[Crossref]

A. M. Heikal, F. F. K. Hussain, M. F. O. Hameed, and S. S. A. Obayya, “Efficient polarization filter design based on plasmonic photonic crystal fiber,” J. Lightwave Technol. 33, 2868–2875 (2015).
[Crossref]

Oh, K.

Oliver, J. V.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48, 1403–1410 (2012).
[Crossref]

Olivo, M.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, and M. Olivo, “Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles,” Biosens. Bioelectron. 64, 227–233 (2015).
[Crossref]

U. S. Dinish, G. Balasundara, Y. T. Chang, and M. Olivo, “Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe,” J. Biophoton. 7, 956–965 (2014).
[Crossref]

U. S. Dinish, C. Y. Fu, K. S. Soh, R. Bhuvaneswari, A. Kumar, and M. Olivo, “Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber,” Biosens. Bioelectron. 33, 293–298(2012).
[Crossref]

Oo, M. K. K.

Otón, J. M.

Otupiri, R.

R. Otupiri, E. K. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Express 23, 15716–15727 (2015).
[Crossref]

R. Otupiri, S. K. Akowuah, S. Haxha, H. Ademgil, F. Abdelmalek, and A. Aggoun, “A novel birefringent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photon. J. 6, 6801711 (2014).
[Crossref]

Ozgur, E.

M. Yaman, T. Khudiyev, E. Ozgur, M. Kanik, O. Aktas, E. O. Ozgur, H. Deniz, E. Korkut, and M. Bayindir, “Arrays of indefinitely long uniform nanowires and nanotubes,” Nat. Mater. 10, 494–501 (2011).
[Crossref]

Ozgur, E. O.

M. Yaman, T. Khudiyev, E. Ozgur, M. Kanik, O. Aktas, E. O. Ozgur, H. Deniz, E. Korkut, and M. Bayindir, “Arrays of indefinitely long uniform nanowires and nanotubes,” Nat. Mater. 10, 494–501 (2011).
[Crossref]

Pan, S.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

Park, J. H.

Park, M. K.

D. J. J. Hu, J. L. Lim, M. K. Park, L. T. H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1293–1297(2012).
[Crossref]

Patnaik, A.

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor,” IEEE Photon. Technol. Lett. 27, 2437–2440 (2015).
[Crossref]

Peacock, A. C.

A. C. Peacock, A. Amezcua-Correa, J. Yang, P. J. A. Sazio, and S. M. Howdle, “Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions,” Appl. Phys. Lett. 92, 141113 (2008).
[Crossref]

Peacor, A. C.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacor, J. Hayes, P. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024–2030 (2007).
[Crossref]

Peng, J.

L. Jiang, Y. Zheng, L. Hou, K. Zheng, and J. Peng, “Surface plasmon induced polarization filter of the gold-coated photonic crystal fiber with a liquid core,” Opt. Fiber Technol. 23, 42–47 (2015).
[Crossref]

L. Jiang, Y. Zheng, L. Hou, K. Zheng, J. Peng, and X. Zhao, “An ultrabroadband polarization splitter based on square-lattice dual-core photonic crystal fiber with a gold wire,” Opt. Commun. 351, 50–56 (2015).
[Crossref]

Peng, J.-Y.

L.-H. Jiang, Y. Zheng, J.-J. Yang, L.-T. Hou, J.-Y. Peng, and X.-T. Zhang, “Design of an ultrashort single-polarization wavelength splitter based on gold-filled square-lattice photonic crystal fiber,” Opt. Quantum Electron. 48, 409 (2016).
[Crossref]

Peng, L.

S. Ge, F. Shi, G. Zhou, S. Liu, Z. Hou, and L. Peng, “U-shaped photonic crystal fiber based surface plasmon resonance sensors,” Plasmonics 11, 1307–1312 (2016).
[Crossref]

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photon. J. 7, 4801309 (2015).
[Crossref]

F. Shi, L. Peng, G. Zhou, X. Cang, Z. Hou, and C. Xia, “An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit,” Plasmonics 10, 1263–1268 (2015).
[Crossref]

F. Shi, G. Zhou, D. Li, L. Peng, Z. Hou, and C. Xia, “Surface plasmon mode coupling in photonic crystal fiber symmetrically filled with Ag/Au alloy wires,” Plasmonics 10, 335–340 (2015).
[Crossref]

Peng, W.

Peng, Y.

Pinkhasova, P.

P. Pinkhasova, H. Chen, J. Kanka, P. Mergo, and H. Du, “Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform,” Appl. Phys. Lett. 106, 071106 (2015).
[Crossref]

Poudereux, D.

Poulton, C. G.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[Crossref]

Pournoury, M.

Pristinski, D.

Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[Crossref]

Qian, F.

X. Yang, C. Gu, F. Qian, Y. Li, and J. Z. Zhang, “Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers,” Anal. Chem. 83, 5888–5894 (2011).
[Crossref]

Qin, W.

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9, 1355–1360 (2014).
[Crossref]

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Laser Eng. 58, 1–8 (2014).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21, 13733–13740 (2013).
[Crossref]

Qing, X.

M. Sun, Y. Wang, Z. N. Chen, Y. Gong, J. Lim, and X. Qing, “Nanostars on a fiber facet with near field enhancement for surface-enhanced Raman scattering detection,” Appl. Phys. A 115, 87–91 (2014).
[Crossref]

Quintana, X.

Raether, H. Z.

E. Kretschmann and H. Z. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Raja, A. S.

S. Yogalakshmi, S. Selvendran, and A. S. Raja, “Design and analysis of a photonic crystal fiber based polarization filter using surface plasmon resonance,” Laser Phys. 26, 056201 (2016).
[Crossref]

Ren, X.

W. Wei, X. Zhang, X. Guo, L. Zheng, J. Gao, W. Shi, Q. Wang, Y. Huang, and X. Ren, “Refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Optik 123, 1167–1170 (2012).
[Crossref]

L. Zheng, X. Zhang, X. Ren, J. Gao, L. Shi, X. Liu, Q. Wang, and Y. Huang, “Surface plasmon resonance sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Opt. Laser Technol. 43, 960–964 (2011).
[Crossref]

Rettenmayr, M.

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Express 6, 1790–1799 (2016).
[Crossref]

Reuther, K.

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Express 6, 1790–1799 (2016).
[Crossref]

Rezaei, N.

N. Rezaei and A. Yahaghi, “A high sensitivity surface plasmon resonance D-shaped fiber sensor based on a waveguide-coupled bimetallic structure: modeling and optimization,” IEEE Sens. J. 14, 3611–3615 (2014).
[Crossref]

Rifat, A. A.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene-based photonic crystal fiber plasmonics biosensor,” IEEE Photon. J. 8, 4800408 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiragi, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15, 11499–11510 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27, 1628–1631(2015).
[Crossref]

Riordon, J.

Robinson, G. K.

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48, 1403–1410 (2012).
[Crossref]

Ronot-Trioli, C.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[Crossref]

Rouge, A. L.

Roy, S.

Russel, R. F.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

Sadeghi, M.

M. Sadeghi, V. Ahmadi, and M. Ebnali-Heidari, “Metal-coated silicon nanowire embedded plasmonic photonic crystal fiber: Kerr nonlinearity and two-photon absorption,” Plasmonics, 1–9 (2016).
[Crossref]

Saitoh, K.

A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19, 3799–3808 (2011).
[Crossref]

N. J. Florous, K. Saitoh, and M. Koshiba, “Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers,” IEEE Photon. Technol. Lett. 19, 324–326 (2007).
[Crossref]

Sánchez-Pena, J. M.

Santos, J. L.

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, R. A. S. Ferreira, P. S. André, and D. Viegas, “Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres,” Plasmonics 10, 319–327(2015).
[Crossref]

Sapra, S.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
[Crossref]

Sau, T. K.

T. K. Sau and C. J. Murphy, “Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes,” Langmuir 21, 2923–2929 (2005).
[Crossref]

Sauvan, C.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmonic resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref]

Sazio, P.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacor, J. Hayes, P. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024–2030 (2007).
[Crossref]

Sazio, P. J. A.

A. C. Peacock, A. Amezcua-Correa, J. Yang, P. J. A. Sazio, and S. M. Howdle, “Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions,” Appl. Phys. Lett. 92, 141113 (2008).
[Crossref]

C. E. Finlayson, A. Amezcua-Correa, and P. J. A. Sazio, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett. 90, 132110 (2007).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Schäffer, C. G.

Scharrer, M.

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Schmidt, M. A.

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Express 6, 1790–1799 (2016).
[Crossref]

H. W. Lee, M. A. Schmidt, and P. St.J. Russell, “Excitation of a nanowire ‘molecule’ in gold-filled photonic crystal fiber,” Opt. Lett. 37, 2946–2948 (2012).
[Crossref]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. St.J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20, 28409–28417 (2012).
[Crossref]

H. W. Lee, M. A. Schmidt, R. F. Russel, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St.J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19, 12180–12189(2011).
[Crossref]

H. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St.J. Russell, “Plasmon resonances on gold nanowires directly,” Opt. Lett. 35, 2573–2575 (2010).
[Crossref]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St.J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
[Crossref]

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[Crossref]

Schneider, T.

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Schroder, K.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Schröder, K.

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

Schuster, K.

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Schuster, T.

Schwuchow, A.

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Seballos, L.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[Crossref]

Selvendran, S.

S. Yogalakshmi, S. Selvendran, and A. S. Raja, “Design and analysis of a photonic crystal fiber based polarization filter using surface plasmon resonance,” Laser Phys. 26, 056201 (2016).
[Crossref]

Sempere, L. N. P.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[Crossref]

Sempere, L. P.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St.J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
[Crossref]

Senthilnathan, K.

M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
[Crossref]

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor,” IEEE Photon. Technol. Lett. 27, 2437–2440 (2015).
[Crossref]

Shao, L.-Y.

Shao, Y.

X. Hao, S. Li, X. Yan, X. Zhang, G. An, H. Wang, Y. Shao, and Z. Han, “Photonic crystal fibre polarization filter with round lattice based on surface plasmon resonance,” J. Modern Opt. 64, 205–209 (2017).

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Hao, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12, 465–471(2016).
[Crossref]

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22, 15049–15063 (2014).
[Crossref]

Sharma, A. K.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[Crossref]

Shee, Y. G.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene-based photonic crystal fiber plasmonics biosensor,” IEEE Photon. J. 8, 4800408 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiragi, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15, 11499–11510 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27, 1628–1631(2015).
[Crossref]

Shehata, R. E. A.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

Shen, C.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104, 071106 (2014).
[Crossref]

Sheu, B.-C.

H.-Y. Lin, Y.-C. Tsao, W.-H. Tsai, Y.-W. Yang, T.-R. Yan, and B.-C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850  nm-LED,” Sens. Actuators A 138, 299–305 (2007).
[Crossref]

H.-Y. Lin, W.-H. Tsai, Y.-C. Tsao, and B.-C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt. 46, 800–806 (2007).
[Crossref]

Shevchenko, Y.

Shi, C.

X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27, 977–984 (2010).
[Crossref]

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow-core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt. 2011, 751610 (2010).
[Crossref]

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[Crossref]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[Crossref]

Shi, F.

S. Ge, F. Shi, G. Zhou, S. Liu, Z. Hou, and L. Peng, “U-shaped photonic crystal fiber based surface plasmon resonance sensors,” Plasmonics 11, 1307–1312 (2016).
[Crossref]

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photon. J. 7, 4801309 (2015).
[Crossref]

F. Shi, L. Peng, G. Zhou, X. Cang, Z. Hou, and C. Xia, “An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit,” Plasmonics 10, 1263–1268 (2015).
[Crossref]

F. Shi, G. Zhou, D. Li, L. Peng, Z. Hou, and C. Xia, “Surface plasmon mode coupling in photonic crystal fiber symmetrically filled with Ag/Au alloy wires,” Plasmonics 10, 335–340 (2015).
[Crossref]

Shi, L.

L. Zheng, X. Zhang, X. Ren, J. Gao, L. Shi, X. Liu, Q. Wang, and Y. Huang, “Surface plasmon resonance sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Opt. Laser Technol. 43, 960–964 (2011).
[Crossref]

Shi, M.

H. Chen, S. Li, M. Ma, J. Li, Z. Fan, and M. Shi, “Surface plasmon induced polarization filter based on Au wires and liquid crystal infiltrated photonic crystal fibers,” Plasmonics 11, 459–464 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, C. Dou, X. Wang, G. Wang, and M. Shi, “Tunable fiber polarization filter by filling different index liquids and gold wire into photonic crystal fiber,” IEEE J. Lightwave Technol. 34, 2484–2490(2016).
[Crossref]

Shi, W.

W. Wei, X. Zhang, X. Guo, L. Zheng, J. Gao, W. Shi, Q. Wang, Y. Huang, and X. Ren, “Refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Optik 123, 1167–1170 (2012).
[Crossref]

Shi, Y.-W.

Shih, C.-H.

M.-H. Chiu, C.-H. Shih, and M.-H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sens. Actuators B 123, 1120–1124 (2007).
[Crossref]

Shuai, B.

Shum, P.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[Crossref]

D. Hu, P. Shum, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4, 2010–2016(2012).
[Crossref]

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photon. J. 4, 1248–1255 (2012).
[Crossref]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

X. Yu, S. Zhang, Y. Zhang, H.-P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express 18, 17950–17957(2010).
[Crossref]

Shum, P. P.

N. M. Y. Zhang, D. J. J. Hu, P. P. Shum, Z. Wu, K. Li, T. Huang, and L. Wei, “Design and analysis of surface plasmon resonance sensor based on high birefringent microstructured optical fiber,” J. Opt. 18, 065005 (2016).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, and M. Olivo, “Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles,” Biosens. Bioelectron. 64, 227–233 (2015).
[Crossref]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37, 2283–2285 (2012).
[Crossref]

Sieg, J.

L. Chen, W. Zhang, Z. Zhang, Y. Liu, J. Sieg, L. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6, 2200909 (2014).
[Crossref]

L. Chen, W. Zhang, Q. Zhou, Y. Liu, J. Sieg, Y. Zhang, L. Wang, B. Wang, and T. Yan, “Polarization rotator based on hybrid plasmonics photonic crystal fiber,” IEEE Photon. Technol. Lett. 26, 2291–2294 (2014).
[Crossref]

Sivabalan, S.

M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
[Crossref]

Skorobogatiy, M.

Slavík, R.

R. Slavík, J. Homola, and J. Čtyroký, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B Chem. 54, 74–79 (1999).
[Crossref]

Soh, K. S.

U. S. Dinish, C. Y. Fu, K. S. Soh, R. Bhuvaneswari, A. Kumar, and M. Olivo, “Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber,” Biosens. Bioelectron. 33, 293–298(2012).
[Crossref]

Spittel, R.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Srivastava, S. K.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
[Crossref]

St.J. Russell, P.

Strelau, K.

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

Su, M.

X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20, 1310–1314 (2008).
[Crossref]

Sua, Y. M.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene-based photonic crystal fiber plasmonics biosensor,” IEEE Photon. J. 8, 4800408 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27, 1628–1631(2015).
[Crossref]

Sukhishvili, S.

Sun, B.

B. Sun, M.-Y. Chen, Y.-K. Zhang, and J. Zhou, “Polarization-dependent coupling characteristics of metal-wire filled dual-core photonic crystal fiber,” Opt. Quantum Electron. 47, 441–451 (2015).
[Crossref]

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[Crossref]

Sun, M.

M. Sun, Y. Wang, Z. N. Chen, Y. Gong, J. Lim, and X. Qing, “Nanostars on a fiber facet with near field enhancement for surface-enhanced Raman scattering detection,” Appl. Phys. A 115, 87–91 (2014).
[Crossref]

Sun, T.

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” J. Mod. Opt. 63, 1189–1195 (2016).
[Crossref]

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, H. Mu, and P. K. Chu, “Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing,” J. Nanophoton. 9, 093050 (2015).
[Crossref]

Tai, J.-K.

W.-H. Lin, Y.-C. Tsai, Y.-C. Tsao, and J.-K. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
[Crossref]

Tan, S.

Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[Crossref]

Tan, Z.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
[Crossref]

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22, 15049–15063 (2014).
[Crossref]

Tang, X.-L.

Teo, Z. Y.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization,” IEEE J. Sel. Top. Quantum Electron. 19, 460217 (2013).
[Crossref]

Tian, L.

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[Crossref]

Tian, M.

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

Tian, W.

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photon. J. 7, 4800809 (2015).
[Crossref]

Tiwari, V.

Tiwari, V. S.

V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nanoparticle within hollow core photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 20, 7300608 (2014).
[Crossref]

Tong, W.

D. J. J. Hu, J. L. Lim, M. K. Park, L. T. H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1293–1297(2012).
[Crossref]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37, 2283–2285 (2012).
[Crossref]

Tou, Z. Q.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization,” IEEE J. Sel. Top. Quantum Electron. 19, 460217 (2013).
[Crossref]

Trouillet, A.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[Crossref]

Tsai, W.-H.

H.-Y. Lin, Y.-C. Tsao, W.-H. Tsai, Y.-W. Yang, T.-R. Yan, and B.-C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850  nm-LED,” Sens. Actuators A 138, 299–305 (2007).
[Crossref]

H.-Y. Lin, W.-H. Tsai, Y.-C. Tsao, and B.-C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt. 46, 800–806 (2007).
[Crossref]

Tsai, Y.-C.

W.-H. Lin, Y.-C. Tsai, Y.-C. Tsao, and J.-K. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
[Crossref]

Tsao, Y.-C.

W.-H. Lin, Y.-C. Tsai, Y.-C. Tsao, and J.-K. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
[Crossref]

H.-Y. Lin, Y.-C. Tsao, W.-H. Tsai, Y.-W. Yang, T.-R. Yan, and B.-C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850  nm-LED,” Sens. Actuators A 138, 299–305 (2007).
[Crossref]

H.-Y. Lin, W.-H. Tsai, Y.-C. Tsao, and B.-C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt. 46, 800–806 (2007).
[Crossref]

Tuniz, A.

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Express 6, 1790–1799 (2016).
[Crossref]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

A. Tuniz, B. T. Kuhlmey, P. Y. Chen, and S. C. Fleming, “Weaving the invisible thread: design of an optically invisible metamaterial fibre,” Opt. Express 18, 18095–18105 (2010).
[Crossref]

Tyagi, H.

Tyagi, H. K.

H. W. Lee, M. A. Schmidt, R. F. Russel, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St.J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19, 12180–12189(2011).
[Crossref]

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[Crossref]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St.J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
[Crossref]

Uebel, P.

Urbanczyk, W.

Urrutia, A.

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber sensors based on nanoparticle-embedded coatings,” J. Sens. 2015, 1–18 (2015).
[Crossref]

Veillas, C.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[Crossref]

Verma, R. K.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

R. Jha, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a Teflon layer between core and metal layer,” Plasmonics 3, 151–156 (2008).
[Crossref]

R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
[Crossref]

Viegas, D.

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, R. A. S. Ferreira, P. S. André, and D. Viegas, “Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres,” Plasmonics 10, 319–327(2015).
[Crossref]

Villatoro, J.

J. Villatoro and J. Zubia, “New perspectives in photonic crystal fibre sensors,” Opt. Laser Technol. 78, 67–75 (2016).
[Crossref]

Voon, K. K.

T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, and M. Olivo, “Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles,” Biosens. Bioelectron. 64, 227–233 (2015).
[Crossref]

Wadsworth, W. J.

Wang, A.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34, 3890–3892 (2009).
[Crossref]

Wang, B.

L. Chen, W. Zhang, Z. Zhang, Y. Liu, J. Sieg, L. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6, 2200909 (2014).
[Crossref]

L. Chen, W. Zhang, Q. Zhou, Y. Liu, J. Sieg, Y. Zhang, L. Wang, B. Wang, and T. Yan, “Polarization rotator based on hybrid plasmonics photonic crystal fiber,” IEEE Photon. Technol. Lett. 26, 2291–2294 (2014).
[Crossref]

Wang, F.

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” J. Mod. Opt. 63, 1189–1195 (2016).
[Crossref]

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, H. Mu, and P. K. Chu, “Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing,” J. Nanophoton. 9, 093050 (2015).
[Crossref]

Wang, G.

G. Wang, S. Li, X. Wang, Y. Zhao, Q. Liu, J. Zi, H. Li, and H. Chen, “A kind of broadband polarization filter based on photonic crystal fiber with nanoscale gold film,” Plasmonics 12, 377–382 (2017).

X. Wang, S. Li, H. Chen, Q. Liu, G. Wang, and Y. Zhao, “Compatibility of temperature sensor and polarization filter based on Au film and glycerin selectively infilling photonic crystal fibers,” Plasmonics 11, 1265–1271 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, C. Dou, X. Wang, G. Wang, and M. Shi, “Tunable fiber polarization filter by filling different index liquids and gold wire into photonic crystal fiber,” IEEE J. Lightwave Technol. 34, 2484–2490(2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, and Y. Zhao, “Design of a polarization filtering photonic crystal fiber with a big gold-coated air hole,” Opt. Quantum Electron. 48, 457 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48, 46 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, and W. Zhang, “Design of a polarized filtering photonic-crystal fiber with gold-coated air holes,” Appl. Opt. 54, 8817–8820 (2015).
[Crossref]

Wang, H.

X. Hao, S. Li, X. Yan, X. Zhang, G. An, H. Wang, Y. Shao, and Z. Han, “Photonic crystal fibre polarization filter with round lattice based on surface plasmon resonance,” J. Modern Opt. 64, 205–209 (2017).

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Hao, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12, 465–471(2016).
[Crossref]

Wang, L.

L. Chen, W. Zhang, Q. Zhou, Y. Liu, J. Sieg, Y. Zhang, L. Wang, B. Wang, and T. Yan, “Polarization rotator based on hybrid plasmonics photonic crystal fiber,” IEEE Photon. Technol. Lett. 26, 2291–2294 (2014).
[Crossref]

L. Chen, W. Zhang, Z. Zhang, Y. Liu, J. Sieg, L. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6, 2200909 (2014).
[Crossref]

Wang, M.

X. Yang, Y. Lu, M. Wang, and J. Yao, “An exposed-core grapefruit fibers based surface plasmon resonance sensor,” Sensors 15, 17106–17114 (2015).
[Crossref]

M. Wang, Y. Lu, C. Hao, X. Yang, and J. Yao, “Simulation analysis of a temperature sensor based on photonic crystal fiber filled with different shapes of nanowires,” Optik 126, 3687–3691 (2015).
[Crossref]

Wang, M. T.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6, 680137 (2014).
[Crossref]

C. J. Hao, Y. Lu, M. T. Wang, B. Q. Wu, L. C. Duan, and J. Q. Yao, “Surface plasmon resonance refractive index sensor based on active photonic crystal fiber,” IEEE Photon. J. 5, 4801108 (2013).
[Crossref]

Wang, P.

Z. Xie, Y. Lu, H. Wei, J. Yan, P. Wang, and H. Ming, “Broad spectral photonic crystal fiber surface enhanced Raman scattering probe,” Appl. Phys. B 95, 751–755 (2009).
[Crossref]

Wang, Q.

W. Wei, X. Zhang, X. Guo, L. Zheng, J. Gao, W. Shi, Q. Wang, Y. Huang, and X. Ren, “Refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Optik 123, 1167–1170 (2012).
[Crossref]

L. Zheng, X. Zhang, X. Ren, J. Gao, L. Shi, X. Liu, Q. Wang, and Y. Huang, “Surface plasmon resonance sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Opt. Laser Technol. 43, 960–964 (2011).
[Crossref]

Wang, R.

Wang, X.

G. Wang, S. Li, X. Wang, Y. Zhao, Q. Liu, J. Zi, H. Li, and H. Chen, “A kind of broadband polarization filter based on photonic crystal fiber with nanoscale gold film,” Plasmonics 12, 377–382 (2017).

X. Wang, S. Li, H. Chen, Q. Liu, G. Wang, and Y. Zhao, “Compatibility of temperature sensor and polarization filter based on Au film and glycerin selectively infilling photonic crystal fibers,” Plasmonics 11, 1265–1271 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, C. Dou, X. Wang, G. Wang, and M. Shi, “Tunable fiber polarization filter by filling different index liquids and gold wire into photonic crystal fiber,” IEEE J. Lightwave Technol. 34, 2484–2490(2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, and Y. Zhao, “Design of a polarization filtering photonic crystal fiber with a big gold-coated air hole,” Opt. Quantum Electron. 48, 457 (2016).
[Crossref]

Z. Fan, S. Li, Q. Liu, H. Chen, and X. Wang, “Plasmonic broadband polarization splitter based on dual-core photonic crystal fiber with elliptical metallic nanowires,” Plasmonics 11, 1565–1572 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48, 46 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, and W. Zhang, “Design of a polarized filtering photonic-crystal fiber with gold-coated air holes,” Appl. Opt. 54, 8817–8820 (2015).
[Crossref]

Wang, Y.

M. Sun, Y. Wang, Z. N. Chen, Y. Gong, J. Lim, and X. Qing, “Nanostars on a fiber facet with near field enhancement for surface-enhanced Raman scattering detection,” Appl. Phys. A 115, 87–91 (2014).
[Crossref]

D. J. J. Hu, J. L. Lim, M. K. Park, L. T. H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1293–1297(2012).
[Crossref]

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photon. J. 4, 1248–1255 (2012).
[Crossref]

D. Hu, P. Shum, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4, 2010–2016(2012).
[Crossref]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37, 2283–2285 (2012).
[Crossref]

Weber, K.

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

Wei, H.

D. J. J. Hu, J. L. Lim, M. K. Park, L. T. H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1293–1297(2012).
[Crossref]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37, 2283–2285 (2012).
[Crossref]

Z. Xie, Y. Lu, H. Wei, J. Yan, P. Wang, and H. Ming, “Broad spectral photonic crystal fiber surface enhanced Raman scattering probe,” Appl. Phys. B 95, 751–755 (2009).
[Crossref]

Wei, L.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

N. M. Y. Zhang, D. J. J. Hu, P. P. Shum, Z. Wu, K. Li, T. Huang, and L. Wei, “Design and analysis of surface plasmon resonance sensor based on high birefringent microstructured optical fiber,” J. Opt. 18, 065005 (2016).
[Crossref]

Wei, W.

W. Wei, X. Zhang, X. Guo, L. Zheng, J. Gao, W. Shi, Q. Wang, Y. Huang, and X. Ren, “Refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Optik 123, 1167–1170 (2012).
[Crossref]

Wen, W.-Q.

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref]

Wen, Y.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Wheeler, D.

Whelan, R. J.

R. J. Whelan and R. N. Zare, “Surface plasmon resonance detection for capillary electrophoresis separations,” Anal. Chem. 75, 1542–1547 (2003).
[Crossref]

Wieduwilt, T.

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Express 6, 1790–1799 (2016).
[Crossref]

Witkowska, A.

Wolf, E.

M. Born and E. Wolf, “Basic properties of the electromagnetic field,” in Principles of Optics, 7th ed. (Cambridge University, 1999), pp. 752–758.

Wolinski, T.

D. Hu, P. Shum, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4, 2010–2016(2012).
[Crossref]

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photon. J. 4, 1248–1255 (2012).
[Crossref]

Won, D. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Wong, W. C.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization,” IEEE J. Sel. Top. Quantum Electron. 19, 460217 (2013).
[Crossref]

Wu, B. Q.

C. J. Hao, Y. Lu, M. T. Wang, B. Q. Wu, L. C. Duan, and J. Q. Yao, “Surface plasmon resonance refractive index sensor based on active photonic crystal fiber,” IEEE Photon. J. 5, 4801108 (2013).
[Crossref]

Wu, B.-Q.

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref]

Wu, S.

J. Li, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Wu, Y.

H. Chen, S. Li, M. Ma, Z. Fan, and Y. Wu, “Ultrabroad bandwidth polarization filter based on D-shaped photonic crystal fibers with gold film,” Plasmonics 10, 1239–1242 (2015).
[Crossref]

Wu, Z.

N. M. Y. Zhang, D. J. J. Hu, P. P. Shum, Z. Wu, K. Li, T. Huang, and L. Wei, “Design and analysis of surface plasmon resonance sensor based on high birefringent microstructured optical fiber,” J. Opt. 18, 065005 (2016).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

Xia, C.

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photon. J. 7, 4801309 (2015).
[Crossref]

F. Shi, L. Peng, G. Zhou, X. Cang, Z. Hou, and C. Xia, “An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit,” Plasmonics 10, 1263–1268 (2015).
[Crossref]

F. Shi, G. Zhou, D. Li, L. Peng, Z. Hou, and C. Xia, “Surface plasmon mode coupling in photonic crystal fiber symmetrically filled with Ag/Au alloy wires,” Plasmonics 10, 335–340 (2015).
[Crossref]

Xia, L.

Y. Han, L. Xia, Y.-T. Zhang, and W. Li, “Ultra-broad band single-polarization single-mode photonic crystal fiber based on the zero-order surface plasmon polariton mode,” Opt. Commun. 345, 141–148 (2015).
[Crossref]

Y. Zhang, D. Yong, X. Yu, L. Xia, D. Liu, and Y. Zhang, “Amplification of surface-enhance Raman scattering in photonic crystal fiber using offset launch method,” Plasmonics 8, 209–215 (2013).
[Crossref]

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional,” Opt. Commun. 285, 2466–2471 (2012).
[Crossref]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[Crossref]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20, 5974 (2012).
[Crossref]

B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Express 20, 25858–25866 (2012).
[Crossref]

Y. Zhang, C. Zhou, L. Xia, X. Yu, and D. Liu, “Wagon wheel fiber based multichannel plasmonic sensor,” Opt. Express 19, 22863–22873 (2011).
[Crossref]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

Xiao, Y.

Xie, Y.

Z. Fan, S. Li, Q. Liu, J. Li, and Y. Xie, “Plasmonic polarization beam splitter based on dual-core photonic crystal fiber,” Plasmonics 10, 1283–1289(2015).
[Crossref]

Xie, Z.

Z. Xie, Y. Lu, H. Wei, J. Yan, P. Wang, and H. Ming, “Broad spectral photonic crystal fiber surface enhanced Raman scattering probe,” Appl. Phys. B 95, 751–755 (2009).
[Crossref]

Xin, X.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Laser Eng. 58, 1–8 (2014).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21, 13733–13740 (2013).
[Crossref]

Xue, J.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Laser Eng. 58, 1–8 (2014).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21, 13733–13740 (2013).
[Crossref]

Yahaghi, A.

N. Rezaei and A. Yahaghi, “A high sensitivity surface plasmon resonance D-shaped fiber sensor based on a waveguide-coupled bimetallic structure: modeling and optimization,” IEEE Sens. J. 14, 3611–3615 (2014).
[Crossref]

Yaman, M.

M. Yaman, T. Khudiyev, E. Ozgur, M. Kanik, O. Aktas, E. O. Ozgur, H. Deniz, E. Korkut, and M. Bayindir, “Arrays of indefinitely long uniform nanowires and nanotubes,” Nat. Mater. 10, 494–501 (2011).
[Crossref]

Yan, H.

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300–8305 (2008).
[Crossref]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhao, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[Crossref]

Yan, J.

Z. Xie, Y. Lu, H. Wei, J. Yan, P. Wang, and H. Ming, “Broad spectral photonic crystal fiber surface enhanced Raman scattering probe,” Appl. Phys. B 95, 751–755 (2009).
[Crossref]

Yan, M.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

Yan, T.

L. Chen, W. Zhang, Z. Zhang, Y. Liu, J. Sieg, L. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6, 2200909 (2014).
[Crossref]

L. Chen, W. Zhang, Q. Zhou, Y. Liu, J. Sieg, Y. Zhang, L. Wang, B. Wang, and T. Yan, “Polarization rotator based on hybrid plasmonics photonic crystal fiber,” IEEE Photon. Technol. Lett. 26, 2291–2294 (2014).
[Crossref]

Yan, T.-R.

H.-Y. Lin, Y.-C. Tsao, W.-H. Tsai, Y.-W. Yang, T.-R. Yan, and B.-C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850  nm-LED,” Sens. Actuators A 138, 299–305 (2007).
[Crossref]

Yan, X.

X. Hao, S. Li, X. Yan, X. Zhang, G. An, H. Wang, Y. Shao, and Z. Han, “Photonic crystal fibre polarization filter with round lattice based on surface plasmon resonance,” J. Modern Opt. 64, 205–209 (2017).

G. An, S. Li, X. Yan, Z. Yuan, and X. Zhang, “High-birefringence photonic crystal fiber polarization filter based on surface plasmon resonance,” Appl. Opt. 55, 1262–1266 (2016).
[Crossref]

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Hao, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12, 465–471(2016).
[Crossref]

Yang, C.

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300–8305 (2008).
[Crossref]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhao, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[Crossref]

Yang, H. B.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization,” IEEE J. Sel. Top. Quantum Electron. 19, 460217 (2013).
[Crossref]

Yang, J.

L. Jiang, Y. Zheng, J. Yang, L. Hou, Z. Li, and X. Zhao, “An ultra-broadband single polarization filter based on plasmonic photonic crystal fiber with a liquid crystal core,” Plasmonics 12, 411–417 (2017).
[Crossref]

A. C. Peacock, A. Amezcua-Correa, J. Yang, P. J. A. Sazio, and S. M. Howdle, “Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions,” Appl. Phys. Lett. 92, 141113 (2008).
[Crossref]

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacor, J. Hayes, P. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024–2030 (2007).
[Crossref]

Yang, J.-J.

L.-H. Jiang, Y. Zheng, J.-J. Yang, L.-T. Hou, J.-Y. Peng, and X.-T. Zhang, “Design of an ultrashort single-polarization wavelength splitter based on gold-filled square-lattice photonic crystal fiber,” Opt. Quantum Electron. 48, 409 (2016).
[Crossref]

Yang, L.

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” J. Mod. Opt. 63, 1189–1195 (2016).
[Crossref]

Yang, X.

X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance,” Plasmonics 12, 489–496 (2017).
[Crossref]

M. Wang, Y. Lu, C. Hao, X. Yang, and J. Yao, “Simulation analysis of a temperature sensor based on photonic crystal fiber filled with different shapes of nanowires,” Optik 126, 3687–3691 (2015).
[Crossref]

X. Yang, Y. Lu, M. Wang, and J. Yao, “An exposed-core grapefruit fibers based surface plasmon resonance sensor,” Sensors 15, 17106–17114 (2015).
[Crossref]

X. Yang, C. Gu, F. Qian, Y. Li, and J. Z. Zhang, “Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers,” Anal. Chem. 83, 5888–5894 (2011).
[Crossref]

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow-core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt. 2011, 751610 (2010).
[Crossref]

X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27, 977–984 (2010).
[Crossref]

Yang, X. C.

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires,” IEEE Photon. J. 8, 6803309 (2016).
[Crossref]

Yang, Y.-W.

H.-Y. Lin, Y.-C. Tsao, W.-H. Tsai, Y.-W. Yang, T.-R. Yan, and B.-C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850  nm-LED,” Sens. Actuators A 138, 299–305 (2007).
[Crossref]

Yao, J.

X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance,” Plasmonics 12, 489–496 (2017).
[Crossref]

N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photon. J. 8, 4800508 (2016).
[Crossref]

N. Luan, C. Ding, and J. Yao, “A refractive index and temperature sensor based on surface plasmon resonance in an exposed-core microstructured optical fiber,” IEEE Photon. J. 8, 4801608 (2016).
[Crossref]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23, 8576–8582 (2015).
[Crossref]

X. Yang, Y. Lu, M. Wang, and J. Yao, “An exposed-core grapefruit fibers based surface plasmon resonance sensor,” Sensors 15, 17106–17114 (2015).
[Crossref]

M. Wang, Y. Lu, C. Hao, X. Yang, and J. Yao, “Simulation analysis of a temperature sensor based on photonic crystal fiber filled with different shapes of nanowires,” Optik 126, 3687–3691 (2015).
[Crossref]

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
[Crossref]

Yao, J. Q.

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires,” IEEE Photon. J. 8, 6803309 (2016).
[Crossref]

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6, 680137 (2014).
[Crossref]

C. J. Hao, Y. Lu, M. T. Wang, B. Q. Wu, L. C. Duan, and J. Q. Yao, “Surface plasmon resonance refractive index sensor based on active photonic crystal fiber,” IEEE Photon. J. 5, 4801108 (2013).
[Crossref]

Yao, J.-Q.

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref]

Yao, Y.

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Laser Eng. 58, 1–8 (2014).
[Crossref]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhao, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[Crossref]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12, 213–220 (1993).
[Crossref]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 1998).

Yogalakshmi, S.

S. Yogalakshmi, S. Selvendran, and A. S. Raja, “Design and analysis of a photonic crystal fiber based polarization filter using surface plasmon resonance,” Laser Phys. 26, 056201 (2016).
[Crossref]

Yong, D.

Y. Zhang, D. Yong, X. Yu, L. Xia, D. Liu, and Y. Zhang, “Amplification of surface-enhance Raman scattering in photonic crystal fiber using offset launch method,” Plasmonics 8, 209–215 (2013).
[Crossref]

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B 160, 196–201 (2011).
[Crossref]

Yong, K.-T.

T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, and M. Olivo, “Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles,” Biosens. Bioelectron. 64, 227–233 (2015).
[Crossref]

Younis, B. M.

Yu, X.

Y. Zhang, D. Yong, X. Yu, L. Xia, D. Liu, and Y. Zhang, “Amplification of surface-enhance Raman scattering in photonic crystal fiber using offset launch method,” Plasmonics 8, 209–215 (2013).
[Crossref]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[Crossref]

Y. Zhang, C. Zhou, L. Xia, X. Yu, and D. Liu, “Wagon wheel fiber based multichannel plasmonic sensor,” Opt. Express 19, 22863–22873 (2011).
[Crossref]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B 160, 196–201 (2011).
[Crossref]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

X. Yu, S. Zhang, Y. Zhang, H.-P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express 18, 17950–17957(2010).
[Crossref]

Yuan, L.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Yuan, Z.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Hao, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12, 465–471(2016).
[Crossref]

G. An, S. Li, X. Yan, Z. Yuan, and X. Zhang, “High-birefringence photonic crystal fiber polarization filter based on surface plasmon resonance,” Appl. Opt. 55, 1262–1266 (2016).
[Crossref]

Yuan, Z.-Y.

X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20, 1310–1314 (2008).
[Crossref]

Zare, R. N.

R. J. Whelan and R. N. Zare, “Surface plasmon resonance detection for capillary electrophoresis separations,” Anal. Chem. 75, 1542–1547 (2003).
[Crossref]

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Zhang, H.

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B 160, 196–201 (2011).
[Crossref]

Zhang, J. Z.

X. Yang, C. Gu, F. Qian, Y. Li, and J. Z. Zhang, “Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers,” Anal. Chem. 83, 5888–5894 (2011).
[Crossref]

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow-core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt. 2011, 751610 (2010).
[Crossref]

X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27, 977–984 (2010).
[Crossref]

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[Crossref]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[Crossref]

Zhang, L.

L. Chen, W. Zhang, Z. Zhang, Y. Liu, J. Sieg, L. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6, 2200909 (2014).
[Crossref]

Zhang, N.

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

Zhang, N. M. Y.

N. M. Y. Zhang, D. J. J. Hu, P. P. Shum, Z. Wu, K. Li, T. Huang, and L. Wei, “Design and analysis of surface plasmon resonance sensor based on high birefringent microstructured optical fiber,” J. Opt. 18, 065005 (2016).
[Crossref]

Zhang, S.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[Crossref]

X. Yu, S. Zhang, Y. Zhang, H.-P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express 18, 17950–17957(2010).
[Crossref]

Zhang, W.

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48, 46 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, and W. Zhang, “Design of a polarized filtering photonic-crystal fiber with gold-coated air holes,” Appl. Opt. 54, 8817–8820 (2015).
[Crossref]

J. Zi, S. Li, W. Zhang, and G. An, “Polarization filter characteristics of square lattice photonic crystal fiber with a large diameter gold-coated air hole,” Plasmonics 10, 1499–1504 (2015).
[Crossref]

Q. Liu, S. Li, H. Li, J. Zi, W. Zhang, Z. Fan, G. An, and Y. Bao, “Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter,” Plasmonics 10, 931–939 (2015).
[Crossref]

Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An, J. Li, and Y. Bao, “Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance,” Plasmonics 10, 675–680(2015).
[Crossref]

Q. Liu, S. Li, Z.-K. Fan, W. Zhang, H. Li, J.-C. Zi, and G.-W. An, “Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber,” Opt. Commun. 334, 46–50(2015).
[Crossref]

L. Chen, W. Zhang, Q. Zhou, Y. Liu, J. Sieg, Y. Zhang, L. Wang, B. Wang, and T. Yan, “Polarization rotator based on hybrid plasmonics photonic crystal fiber,” IEEE Photon. Technol. Lett. 26, 2291–2294 (2014).
[Crossref]

L. Chen, W. Zhang, Z. Zhang, Y. Liu, J. Sieg, L. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6, 2200909 (2014).
[Crossref]

W. Zhang, S. Li, G.-W. An, Z.-K. Fan, and Y.-J. Bao, “Polarization filter characteristics of photonic crystal fibers with square lattice and selectively filled gold wires,” Appl. Opt. 53, 2441–2445 (2014).
[Crossref]

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9, 1355–1360 (2014).
[Crossref]

Zhang, X.

X. Hao, S. Li, X. Yan, X. Zhang, G. An, H. Wang, Y. Shao, and Z. Han, “Photonic crystal fibre polarization filter with round lattice based on surface plasmon resonance,” J. Modern Opt. 64, 205–209 (2017).

G. An, S. Li, X. Yan, Z. Yuan, and X. Zhang, “High-birefringence photonic crystal fiber polarization filter based on surface plasmon resonance,” Appl. Opt. 55, 1262–1266 (2016).
[Crossref]

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Hao, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12, 465–471(2016).
[Crossref]

W. Wei, X. Zhang, X. Guo, L. Zheng, J. Gao, W. Shi, Q. Wang, Y. Huang, and X. Ren, “Refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Optik 123, 1167–1170 (2012).
[Crossref]

L. Zheng, X. Zhang, X. Ren, J. Gao, L. Shi, X. Liu, Q. Wang, and Y. Huang, “Surface plasmon resonance sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Opt. Laser Technol. 43, 960–964 (2011).
[Crossref]

X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20, 1310–1314 (2008).
[Crossref]

X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15, 16270–16278 (2007).
[Crossref]

Zhang, X.-T.

L.-H. Jiang, Y. Zheng, J.-J. Yang, L.-T. Hou, J.-Y. Peng, and X.-T. Zhang, “Design of an ultrashort single-polarization wavelength splitter based on gold-filled square-lattice photonic crystal fiber,” Opt. Quantum Electron. 48, 409 (2016).
[Crossref]

Zhang, X.-X.

Y. Du, S.-G. Li, S. Liu, X.-P. Zhu, and X.-X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B 109, 65–74 (2012).
[Crossref]

Zhang, Y.

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Hao, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12, 465–471(2016).
[Crossref]

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104, 071106 (2014).
[Crossref]

L. Chen, W. Zhang, Q. Zhou, Y. Liu, J. Sieg, Y. Zhang, L. Wang, B. Wang, and T. Yan, “Polarization rotator based on hybrid plasmonics photonic crystal fiber,” IEEE Photon. Technol. Lett. 26, 2291–2294 (2014).
[Crossref]

Y. Zhang, D. Yong, X. Yu, L. Xia, D. Liu, and Y. Zhang, “Amplification of surface-enhance Raman scattering in photonic crystal fiber using offset launch method,” Plasmonics 8, 209–215 (2013).
[Crossref]

Y. Zhang, D. Yong, X. Yu, L. Xia, D. Liu, and Y. Zhang, “Amplification of surface-enhance Raman scattering in photonic crystal fiber using offset launch method,” Plasmonics 8, 209–215 (2013).
[Crossref]

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional,” Opt. Commun. 285, 2466–2471 (2012).
[Crossref]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[Crossref]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[Crossref]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20, 5974 (2012).
[Crossref]

Y. Zhang, C. Zhou, L. Xia, X. Yu, and D. Liu, “Wagon wheel fiber based multichannel plasmonic sensor,” Opt. Express 19, 22863–22873 (2011).
[Crossref]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B 160, 196–201 (2011).
[Crossref]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

X. Yu, S. Zhang, Y. Zhang, H.-P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express 18, 17950–17957(2010).
[Crossref]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[Crossref]

Zhang, Y.-K.

B. Sun, M.-Y. Chen, Y.-K. Zhang, and J. Zhou, “Polarization-dependent coupling characteristics of metal-wire filled dual-core photonic crystal fiber,” Opt. Quantum Electron. 47, 441–451 (2015).
[Crossref]

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[Crossref]

Zhang, Y.-T.

Y. Han, L. Xia, Y.-T. Zhang, and W. Li, “Ultra-broad band single-polarization single-mode photonic crystal fiber based on the zero-order surface plasmon polariton mode,” Opt. Commun. 345, 141–148 (2015).
[Crossref]

Zhang, Z.

L. Chen, W. Zhang, Z. Zhang, Y. Liu, J. Sieg, L. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6, 2200909 (2014).
[Crossref]

Zhao, J.

P. Li and J. Zhao, “Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers,” Opt. Express 21, 5232–5238 (2013).
[Crossref]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhao, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[Crossref]

Zhao, X.

L. Jiang, Y. Zheng, J. Yang, L. Hou, Z. Li, and X. Zhao, “An ultra-broadband single polarization filter based on plasmonic photonic crystal fiber with a liquid crystal core,” Plasmonics 12, 411–417 (2017).
[Crossref]

L. Jiang, Y. Zheng, L. Hou, K. Zheng, J. Peng, and X. Zhao, “An ultrabroadband polarization splitter based on square-lattice dual-core photonic crystal fiber with a gold wire,” Opt. Commun. 351, 50–56 (2015).
[Crossref]

Zhao, Y.

G. Wang, S. Li, X. Wang, Y. Zhao, Q. Liu, J. Zi, H. Li, and H. Chen, “A kind of broadband polarization filter based on photonic crystal fiber with nanoscale gold film,” Plasmonics 12, 377–382 (2017).

X. Wang, S. Li, H. Chen, Q. Liu, G. Wang, and Y. Zhao, “Compatibility of temperature sensor and polarization filter based on Au film and glycerin selectively infilling photonic crystal fibers,” Plasmonics 11, 1265–1271 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, and Y. Zhao, “Design of a polarization filtering photonic crystal fiber with a big gold-coated air hole,” Opt. Quantum Electron. 48, 457 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48, 46 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, and W. Zhang, “Design of a polarized filtering photonic-crystal fiber with gold-coated air holes,” Appl. Opt. 54, 8817–8820 (2015).
[Crossref]

Y. Zhao, Z. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B 202, 557–567 (2014).
[Crossref]

Zhao, Z. Q.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6, 680137 (2014).
[Crossref]

Zheng, K.

L. Jiang, Y. Zheng, L. Hou, K. Zheng, and J. Peng, “Surface plasmon induced polarization filter of the gold-coated photonic crystal fiber with a liquid core,” Opt. Fiber Technol. 23, 42–47 (2015).
[Crossref]

L. Jiang, Y. Zheng, L. Hou, K. Zheng, J. Peng, and X. Zhao, “An ultrabroadband polarization splitter based on square-lattice dual-core photonic crystal fiber with a gold wire,” Opt. Commun. 351, 50–56 (2015).
[Crossref]

Zheng, L.

W. Wei, X. Zhang, X. Guo, L. Zheng, J. Gao, W. Shi, Q. Wang, Y. Huang, and X. Ren, “Refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Optik 123, 1167–1170 (2012).
[Crossref]

L. Zheng, X. Zhang, X. Ren, J. Gao, L. Shi, X. Liu, Q. Wang, and Y. Huang, “Surface plasmon resonance sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Opt. Laser Technol. 43, 960–964 (2011).
[Crossref]

Zheng, S.

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” J. Mod. Opt. 63, 1189–1195 (2016).
[Crossref]

Zheng, Y.

L. Jiang, Y. Zheng, J. Yang, L. Hou, Z. Li, and X. Zhao, “An ultra-broadband single polarization filter based on plasmonic photonic crystal fiber with a liquid crystal core,” Plasmonics 12, 411–417 (2017).
[Crossref]

L.-H. Jiang, Y. Zheng, J.-J. Yang, L.-T. Hou, J.-Y. Peng, and X.-T. Zhang, “Design of an ultrashort single-polarization wavelength splitter based on gold-filled square-lattice photonic crystal fiber,” Opt. Quantum Electron. 48, 409 (2016).
[Crossref]

L. Jiang, Y. Zheng, L. Hou, K. Zheng, and J. Peng, “Surface plasmon induced polarization filter of the gold-coated photonic crystal fiber with a liquid core,” Opt. Fiber Technol. 23, 42–47 (2015).
[Crossref]

L. Jiang, Y. Zheng, L. Hou, K. Zheng, J. Peng, and X. Zhao, “An ultrabroadband polarization splitter based on square-lattice dual-core photonic crystal fiber with a gold wire,” Opt. Commun. 351, 50–56 (2015).
[Crossref]

Zhong, X.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Zhou, C.

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional,” Opt. Commun. 285, 2466–2471 (2012).
[Crossref]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

Y. Zhang, C. Zhou, L. Xia, X. Yu, and D. Liu, “Wagon wheel fiber based multichannel plasmonic sensor,” Opt. Express 19, 22863–22873 (2011).
[Crossref]

Zhou, G.

S. Ge, F. Shi, G. Zhou, S. Liu, Z. Hou, and L. Peng, “U-shaped photonic crystal fiber based surface plasmon resonance sensors,” Plasmonics 11, 1307–1312 (2016).
[Crossref]

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photon. J. 7, 4801309 (2015).
[Crossref]

F. Shi, L. Peng, G. Zhou, X. Cang, Z. Hou, and C. Xia, “An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit,” Plasmonics 10, 1263–1268 (2015).
[Crossref]

F. Shi, G. Zhou, D. Li, L. Peng, Z. Hou, and C. Xia, “Surface plasmon mode coupling in photonic crystal fiber symmetrically filled with Ag/Au alloy wires,” Plasmonics 10, 335–340 (2015).
[Crossref]

Zhou, J.

B. Sun, M.-Y. Chen, Y.-K. Zhang, and J. Zhou, “Polarization-dependent coupling characteristics of metal-wire filled dual-core photonic crystal fiber,” Opt. Quantum Electron. 47, 441–451 (2015).
[Crossref]

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[Crossref]

Zhou, Q.

L. Chen, W. Zhang, Q. Zhou, Y. Liu, J. Sieg, Y. Zhang, L. Wang, B. Wang, and T. Yan, “Polarization rotator based on hybrid plasmonics photonic crystal fiber,” IEEE Photon. Technol. Lett. 26, 2291–2294 (2014).
[Crossref]

L. Chen, W. Zhang, Z. Zhang, Y. Liu, J. Sieg, L. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6, 2200909 (2014).
[Crossref]

Zhou, W.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104, 071106 (2014).
[Crossref]

Zhu, X.

Zhu, X.-P.

Y. Du, S.-G. Li, S. Liu, X.-P. Zhu, and X.-X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B 109, 65–74 (2012).
[Crossref]

Zhu, X.-S.

Zi, J.

G. Wang, S. Li, X. Wang, Y. Zhao, Q. Liu, J. Zi, H. Li, and H. Chen, “A kind of broadband polarization filter based on photonic crystal fiber with nanoscale gold film,” Plasmonics 12, 377–382 (2017).

Q. Liu, S. Li, J. Li, H. Chen, Z. Fan, G. An, H. Li, and J. Zi, “Photonic crystal fiber polarization filter based on coupling between core mode and SPP mode,” Plasmonics 11, 857–863 (2016).
[Crossref]

J. Zi, S. Li, H. Chen, J. Li, and H. Li, “Photonic crystal fiber polarization filter based on surface plasmon polaritons,” Plasmonics 11, 65–69 (2016).
[Crossref]

H. Li, S. Li, H. Chen, J. Li, G. An, and J. Zi, “A polarization filter based on photonic crystal fiber with asymmetry around gold-coated holes,” Plasmonics 11, 103–108 (2016).
[Crossref]

Q. Liu, S. Li, H. Li, J. Zi, W. Zhang, Z. Fan, G. An, and Y. Bao, “Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter,” Plasmonics 10, 931–939 (2015).
[Crossref]

J. Zi, S. Li, W. Zhang, and G. An, “Polarization filter characteristics of square lattice photonic crystal fiber with a large diameter gold-coated air hole,” Plasmonics 10, 1499–1504 (2015).
[Crossref]

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photon. J. 7, 4800809 (2015).
[Crossref]

Zi, J.-C.

Q. Liu, S. Li, Z.-K. Fan, W. Zhang, H. Li, J.-C. Zi, and G.-W. An, “Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber,” Opt. Commun. 334, 46–50(2015).
[Crossref]

Zopf, D.

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Zou, Y.

Zubia, J.

J. Villatoro and J. Zubia, “New perspectives in photonic crystal fibre sensors,” Opt. Laser Technol. 78, 67–75 (2016).
[Crossref]

Adv. Funct. Mater. (1)

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacor, J. Hayes, P. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024–2030 (2007).
[Crossref]

Adv. Mater. (2)

X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20, 1310–1314 (2008).
[Crossref]

Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[Crossref]

Anal. Bioanal. Chem. (1)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

Anal. Chem. (2)

X. Yang, C. Gu, F. Qian, Y. Li, and J. Z. Zhang, “Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers,” Anal. Chem. 83, 5888–5894 (2011).
[Crossref]

R. J. Whelan and R. N. Zare, “Surface plasmon resonance detection for capillary electrophoresis separations,” Anal. Chem. 75, 1542–1547 (2003).
[Crossref]

Appl. Opt. (6)

Appl. Phys. A (1)

M. Sun, Y. Wang, Z. N. Chen, Y. Gong, J. Lim, and X. Qing, “Nanostars on a fiber facet with near field enhancement for surface-enhanced Raman scattering detection,” Appl. Phys. A 115, 87–91 (2014).
[Crossref]

Appl. Phys. B (3)

Z. Xie, Y. Lu, H. Wei, J. Yan, P. Wang, and H. Ming, “Broad spectral photonic crystal fiber surface enhanced Raman scattering probe,” Appl. Phys. B 95, 751–755 (2009).
[Crossref]

Y. Du, S.-G. Li, S. Liu, X.-P. Zhu, and X.-X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B 109, 65–74 (2012).
[Crossref]

A. Khaleque, E. G. Mironov, and H. T. Hattori, “Analysis of the properties of a dual-core plasmonic photonic crystal fiber polarization splitter,” Appl. Phys. B 121, 523–532 (2015).
[Crossref]

Appl. Phys. Express (1)

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

Appl. Phys. Lett. (9)

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[Crossref]

A. C. Peacock, A. Amezcua-Correa, J. Yang, P. J. A. Sazio, and S. M. Howdle, “Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions,” Appl. Phys. Lett. 92, 141113 (2008).
[Crossref]

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[Crossref]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhao, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[Crossref]

P. Pinkhasova, H. Chen, J. Kanka, P. Mergo, and H. Du, “Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform,” Appl. Phys. Lett. 106, 071106 (2015).
[Crossref]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010).
[Crossref]

C. E. Finlayson, A. Amezcua-Correa, and P. J. A. Sazio, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett. 90, 132110 (2007).
[Crossref]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St.J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
[Crossref]

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104, 071106 (2014).
[Crossref]

Biomed. Opt. Express (1)

Biosens. Bioelectron. (2)

U. S. Dinish, C. Y. Fu, K. S. Soh, R. Bhuvaneswari, A. Kumar, and M. Olivo, “Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber,” Biosens. Bioelectron. 33, 293–298(2012).
[Crossref]

T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, and M. Olivo, “Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles,” Biosens. Bioelectron. 64, 227–233 (2015).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref]

Electromagnetics (1)

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213(2008).
[Crossref]

IEEE J. Lightwave Technol. (1)

Q. Liu, S. Li, J. Li, C. Dou, X. Wang, G. Wang, and M. Shi, “Tunable fiber polarization filter by filling different index liquids and gold wire into photonic crystal fiber,” IEEE J. Lightwave Technol. 34, 2484–2490(2016).
[Crossref]

IEEE J. Quantum Electron. (1)

E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron. 48, 1403–1410 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

J. Irizar, J. Dinglasan, J. B. Goh, A. Khetani, H. Anis, D. Anderson, C. Goh, and A. S. Helmy, “Raman spectroscopy of nanoparticles using hollow-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 14, 1214–1222 (2008).
[Crossref]

V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nanoparticle within hollow core photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 20, 7300608 (2014).
[Crossref]

D. J. J. Hu, J. L. Lim, M. K. Park, L. T. H. Kao, Y. Wang, H. Wei, and W. Tong, “Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection,” IEEE J. Sel. Top. Quantum Electron. 18, 1293–1297(2012).
[Crossref]

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization,” IEEE J. Sel. Top. Quantum Electron. 19, 460217 (2013).
[Crossref]

IEEE Photon. J. (16)

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6, 680137 (2014).
[Crossref]

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires,” IEEE Photon. J. 8, 6803309 (2016).
[Crossref]

M. F. O. Hameed, R. T. Balat, A. M. Heikal, M. M. Abo-Elkhier, M. I. A. E. Maaty, and S. S. A. Obayya, “Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer-demultiplexer,” IEEE Photon. J. 7, 4801110 (2015).
[Crossref]

Q. Liu, S. Li, and H. Chen, “Two kinds of polarization filter based on photonic crystal fiber with nanoscale gold film,” IEEE Photon. J. 7, 2700210(2015).
[Crossref]

D. Hu, J. Lim, Y. Cui, K. Milenko, Y. Wang, P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photon. J. 4, 1248–1255 (2012).
[Crossref]

D. Hu, P. Shum, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photon. J. 4, 2010–2016(2012).
[Crossref]

N. Luan, C. Ding, and J. Yao, “A refractive index and temperature sensor based on surface plasmon resonance in an exposed-core microstructured optical fiber,” IEEE Photon. J. 8, 4801608 (2016).
[Crossref]

Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li, D. Chao, H. Li, J. Zi, and W. Tian, “High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance,” IEEE Photon. J. 7, 4800809 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. M. Adikan, “Copper-graphene-based photonic crystal fiber plasmonics biosensor,” IEEE Photon. J. 8, 4800408 (2016).
[Crossref]

N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photon. J. 8, 4800508 (2016).
[Crossref]

C. J. Hao, Y. Lu, M. T. Wang, B. Q. Wu, L. C. Duan, and J. Q. Yao, “Surface plasmon resonance refractive index sensor based on active photonic crystal fiber,” IEEE Photon. J. 5, 4801108 (2013).
[Crossref]

R. Otupiri, S. K. Akowuah, S. Haxha, H. Ademgil, F. Abdelmalek, and A. Aggoun, “A novel birefringent photonic crystal fiber surface plasmon resonance biosensor,” IEEE Photon. J. 6, 6801711 (2014).
[Crossref]

M. F. O. Hameed, Y. K. A. Alrayk, and S. S. A. Obayya, “Self-calibration highly sensitive photonic crystal fiber biosensor,” IEEE Photon. J. 8, 1–12 (2016).
[Crossref]

L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, and C. Xia, “A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice,” IEEE Photon. J. 7, 4801309 (2015).
[Crossref]

L. Chen, W. Zhang, Z. Zhang, Y. Liu, J. Sieg, L. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6, 2200909 (2014).
[Crossref]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4, 1178–1187 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (8)

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach,” IEEE Photon. Technol. Lett. 27, 1628–1631(2015).
[Crossref]

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett. 26, 1092–1095 (2014).
[Crossref]

N. J. Florous, K. Saitoh, and M. Koshiba, “Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers,” IEEE Photon. Technol. Lett. 19, 324–326 (2007).
[Crossref]

M. F. O. Hameed, M. Y. Azab, A. M. Heikal, S. M. El-Hefnawy, and S. S. A. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photon. Technol. Lett. 28, 59–62 (2016).
[Crossref]

L. Chen, W. Zhang, Q. Zhou, Y. Liu, J. Sieg, Y. Zhang, L. Wang, B. Wang, and T. Yan, “Polarization rotator based on hybrid plasmonics photonic crystal fiber,” IEEE Photon. Technol. Lett. 26, 2291–2294 (2014).
[Crossref]

W.-H. Lin, Y.-C. Tsai, Y.-C. Tsao, and J.-K. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
[Crossref]

A. Patnaik, K. Senthilnathan, and R. Jha, “Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor,” IEEE Photon. Technol. Lett. 27, 2437–2440 (2015).
[Crossref]

J. N. Dash and R. Jha, “SPR biosensor based on polymer PCF coated with conducting metal oxide,” IEEE Photon. Technol. Lett. 26, 594–598 (2014).
[Crossref]

IEEE Sens. J. (4)

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[Crossref]

N. Rezaei and A. Yahaghi, “A high sensitivity surface plasmon resonance D-shaped fiber sensor based on a waveguide-coupled bimetallic structure: modeling and optimization,” IEEE Sens. J. 14, 3611–3615 (2014).
[Crossref]

K. Schröder, A. Csáki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Möller, and W. Fritzsche, “Functionalization of microstructured optical fibers by internal nanoparticle mono-layers for plasmonic biosensor applications,” IEEE Sens. J. 12, 218–224 (2012).
[Crossref]

M. S. A. Gandhi, S. Sivabalan, P. R. Babu, and K. Senthilnathan, “Designing a biosensor using a photonic quasi-crystal fiber,” IEEE Sens. J. 16, 2425–2430 (2016).
[Crossref]

Int. J. Opt. (1)

X. Yang, C. Shi, R. Newhouse, J. Z. Zhang, and C. Gu, “Hollow-core photonic crystal fibers for surface-enhanced Raman scattering probes,” Int. J. Opt. 2011, 751610 (2010).
[Crossref]

J. Appl. Phys. (2)

J. Li, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

A. Khaleque and H. T. Hattori, “Ultra-broadband and compact polarization splitter based on gold filled dual-core photonic crystal fiber,” J. Appl. Phys. 118, 143101 (2015).
[Crossref]

J. Biophoton. (1)

U. S. Dinish, G. Balasundara, Y. T. Chang, and M. Olivo, “Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe,” J. Biophoton. 7, 956–965 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Mater. Sci. (1)

I. W. Donald and B. L. Metcalfe, “The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process,” J. Mater. Sci. 31, 1139–1149 (1996).
[Crossref]

J. Mod. Opt. (1)

C. Liu, F. Wang, S. Zheng, T. Sun, J. Lv, Q. Liu, L. Yang, H. Mu, and P. K. Chu, “Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor,” J. Mod. Opt. 63, 1189–1195 (2016).
[Crossref]

J. Modern Opt. (1)

X. Hao, S. Li, X. Yan, X. Zhang, G. An, H. Wang, Y. Shao, and Z. Han, “Photonic crystal fibre polarization filter with round lattice based on surface plasmon resonance,” J. Modern Opt. 64, 205–209 (2017).

J. Nanophoton. (1)

C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, H. Mu, and P. K. Chu, “Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing,” J. Nanophoton. 9, 093050 (2015).
[Crossref]

J. Opt. (2)

N. M. Y. Zhang, D. J. J. Hu, P. P. Shum, Z. Wu, K. Li, T. Huang, and L. Wei, “Design and analysis of surface plasmon resonance sensor based on high birefringent microstructured optical fiber,” J. Opt. 18, 065005 (2016).
[Crossref]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
[Crossref]

J. Sens. (2)

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical fiber sensors based on nanoparticle-embedded coatings,” J. Sens. 2015, 1–18 (2015).
[Crossref]

J. Supercrit. Fluids (1)

T.-J. Lin and C.-T. Lou, “Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions,” J. Supercrit. Fluids 41, 317–325 (2007).
[Crossref]

Langmuir (1)

T. K. Sau and C. J. Murphy, “Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes,” Langmuir 21, 2923–2929 (2005).
[Crossref]

Laser Phys. (1)

S. Yogalakshmi, S. Selvendran, and A. S. Raja, “Design and analysis of a photonic crystal fiber based polarization filter using surface plasmon resonance,” Laser Phys. 26, 056201 (2016).
[Crossref]

Nat. Mater. (1)

M. Yaman, T. Khudiyev, E. Ozgur, M. Kanik, O. Aktas, E. O. Ozgur, H. Deniz, E. Korkut, and M. Bayindir, “Arrays of indefinitely long uniform nanowires and nanotubes,” Nat. Mater. 10, 494–501 (2011).
[Crossref]

Nature (2)

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Opt. Commun. (7)

Q. Liu, S. Li, Z.-K. Fan, W. Zhang, H. Li, J.-C. Zi, and G.-W. An, “Numerical analysis of ultrabroadband polarization splitter based on gold-filled dual-core photonic crystal fiber,” Opt. Commun. 334, 46–50(2015).
[Crossref]

L. Jiang, Y. Zheng, L. Hou, K. Zheng, J. Peng, and X. Zhao, “An ultrabroadband polarization splitter based on square-lattice dual-core photonic crystal fiber with a gold wire,” Opt. Commun. 351, 50–56 (2015).
[Crossref]

Y. Han, L. Xia, Y.-T. Zhang, and W. Li, “Ultra-broad band single-polarization single-mode photonic crystal fiber based on the zero-order surface plasmon polariton mode,” Opt. Commun. 345, 141–148 (2015).
[Crossref]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

M. Tian, P. Lu, L. Chen, C. Lv, and D. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun. 285, 1550–1554 (2012).
[Crossref]

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: plasmonic and directional,” Opt. Commun. 285, 2466–2471 (2012).
[Crossref]

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Opt. Express (31)

C. Jain, A. Tuniz, K. Reuther, T. Wieduwilt, M. Rettenmayr, and M. A. Schmidt, “Micron-sized gold-nickel alloy wire integrated silica optical fibers,” Opt. Express 6, 1790–1799 (2016).
[Crossref]

A. Khetani, A. Momenpour, E. I. Alarcon, and H. Anis, “Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS),” Opt. Express 6, 4599–4609 (2015).
[Crossref]

D. Poudereux, M. Caño-García, J. F. Algorri, B. García-Cámara, J. M. Sánchez-Pena, X. Quintana, M. A. Geday, and J. M. Otón, “Thermally tunable polarization by nanoparticle plasmonic resonance in photonic crystal fibers,” Opt. Express 23, 28935–28944 (2015).
[Crossref]

A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19, 3799–3808 (2011).
[Crossref]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23, 8576–8582 (2015).
[Crossref]

R. Otupiri, E. K. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Express 23, 15716–15727 (2015).
[Crossref]

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22, 15049–15063 (2014).
[Crossref]

M. F. O. Hameed, A. M. Heikal, B. M. Younis, M. Abdelrazzak, and S. S. A. Obayya, “Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter,” Opt. Express 23, 7007–7020 (2015).
[Crossref]

B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413–11426 (2007).
[Crossref]

F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Opt. Express 15, 13675–13681 (2007).
[Crossref]

X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15, 16270–16278 (2007).
[Crossref]

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16, 5983–5990 (2008).
[Crossref]

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300–8305 (2008).
[Crossref]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14, 11616–11621 (2006).
[Crossref]

L.-Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18, 11464–11471 (2010).
[Crossref]

X. Yu, S. Zhang, Y. Zhang, H.-P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express 18, 17950–17957(2010).
[Crossref]

A. Tuniz, B. T. Kuhlmey, P. Y. Chen, and S. C. Fleming, “Weaving the invisible thread: design of an optically invisible metamaterial fibre,” Opt. Express 18, 18095–18105 (2010).
[Crossref]

H. W. Lee, M. A. Schmidt, R. F. Russel, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St.J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19, 12180–12189(2011).
[Crossref]

L. Bigot, H. E. Hamzaoui, A. L. Rouge, G. Bouwmans, F. Chassagneux, B. Capoen, and M. Bouazaoui, “Linear and nonlinear optical properties of gold nanoparticle-doped photonic crystal fiber,” Opt. Express 19, 19061–19066 (2011).
[Crossref]

Y. Zhang, C. Zhou, L. Xia, X. Yu, and D. Liu, “Wagon wheel fiber based multichannel plasmonic sensor,” Opt. Express 19, 22863–22873 (2011).
[Crossref]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20, 5974 (2012).
[Crossref]

H.-Y. Lin, C.-H. Huang, G.-L. Cheng, N.-K. Chen, and H.-C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20, 21693–21701 (2012).
[Crossref]

B. Shuai, L. Xia, and D. Liu, “Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor,” Opt. Express 20, 25858–25866 (2012).
[Crossref]

P. Uebel, M. A. Schmidt, H. W. Lee, and P. St.J. Russell, “Polarisation-resolved near-field mapping of a coupled gold nanowire array,” Opt. Express 20, 28409–28417 (2012).
[Crossref]

P. Li and J. Zhao, “Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers,” Opt. Express 21, 5232–5238 (2013).
[Crossref]

A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, and H. Anis, “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express 21, 12340–12350 (2013).
[Crossref]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21, 13733–13740 (2013).
[Crossref]

Y. J. He, “Investigation of LPG-SPR sensors using the finite element method and eigenmode expansion method,” Opt. Express 21, 13875–13895 (2013).
[Crossref]

M. Napiorkowski and W. Urbanczyk, “Effect of bending on surface plasmon resonance spectrum in microstructured optical fibers,” Opt. Express 21, 22762–22772 (2013).
[Crossref]

B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013).
[Crossref]

Opt. Fiber Technol. (1)

L. Jiang, Y. Zheng, L. Hou, K. Zheng, and J. Peng, “Surface plasmon induced polarization filter of the gold-coated photonic crystal fiber with a liquid core,” Opt. Fiber Technol. 23, 42–47 (2015).
[Crossref]

Opt. Laser Eng. (1)

W. Qin, S. Li, Y. Yao, X. Xin, and J. Xue, “Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte,” Opt. Laser Eng. 58, 1–8 (2014).
[Crossref]

Opt. Laser Technol. (2)

L. Zheng, X. Zhang, X. Ren, J. Gao, L. Shi, X. Liu, Q. Wang, and Y. Huang, “Surface plasmon resonance sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Opt. Laser Technol. 43, 960–964 (2011).
[Crossref]

J. Villatoro and J. Zubia, “New perspectives in photonic crystal fibre sensors,” Opt. Laser Technol. 78, 67–75 (2016).
[Crossref]

Opt. Lett. (9)

H. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St.J. Russell, “Plasmon resonances on gold nanowires directly,” Opt. Lett. 35, 2573–2575 (2010).
[Crossref]

Y.-C. Kim, W. Peng, S. Banerji, and K. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett. 30, 2218–2220 (2005).
[Crossref]

A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett. 31, 2672–2674(2006).
[Crossref]

M. K. K. Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles,” Opt. Lett. 34, 968–970 (2009).
[Crossref]

A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34, 3890–3892 (2009).
[Crossref]

M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent field surface enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
[Crossref]

H. E. Arabi, M. Pournoury, J. H. Park, S. Im, and K. Oh, “Plasmonically enhanced optical transmission through a metalized nanostructured photonic crystal fiber taper,” Opt. Lett. 36, 2029–2031 (2011).
[Crossref]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37, 2283–2285 (2012).
[Crossref]

H. W. Lee, M. A. Schmidt, and P. St.J. Russell, “Excitation of a nanowire ‘molecule’ in gold-filled photonic crystal fiber,” Opt. Lett. 37, 2946–2948 (2012).
[Crossref]

Opt. Quantum Electron. (6)

B. Sun, M.-Y. Chen, Y.-K. Zhang, and J. Zhou, “Polarization-dependent coupling characteristics of metal-wire filled dual-core photonic crystal fiber,” Opt. Quantum Electron. 47, 441–451 (2015).
[Crossref]

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48, 142 (2016).
[Crossref]

J. N. Dash and R. Jha, “Highly sensitive D shaped PCF sensor based on SPR for near IR,” Opt. Quantum Electron. 48, 137 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, “Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance,” Opt. Quantum Electron. 48, 46 (2016).
[Crossref]

G. Wang, S. Li, G. An, X. Wang, and Y. Zhao, “Design of a polarization filtering photonic crystal fiber with a big gold-coated air hole,” Opt. Quantum Electron. 48, 457 (2016).
[Crossref]

L.-H. Jiang, Y. Zheng, J.-J. Yang, L.-T. Hou, J.-Y. Peng, and X.-T. Zhang, “Design of an ultrashort single-polarization wavelength splitter based on gold-filled square-lattice photonic crystal fiber,” Opt. Quantum Electron. 48, 409 (2016).
[Crossref]

Optik (2)

M. Wang, Y. Lu, C. Hao, X. Yang, and J. Yao, “Simulation analysis of a temperature sensor based on photonic crystal fiber filled with different shapes of nanowires,” Optik 126, 3687–3691 (2015).
[Crossref]

W. Wei, X. Zhang, X. Guo, L. Zheng, J. Gao, W. Shi, Q. Wang, Y. Huang, and X. Ren, “Refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers,” Optik 123, 1167–1170 (2012).
[Crossref]

Phys. Rev. B (1)

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[Crossref]

Phys. Rev. Lett. (1)

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmonic resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref]

Plasmonics (30)

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, R. A. S. Ferreira, P. S. André, and D. Viegas, “Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres,” Plasmonics 10, 319–327(2015).
[Crossref]

R. Jha, R. K. Verma, and B. D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a Teflon layer between core and metal layer,” Plasmonics 3, 151–156 (2008).
[Crossref]

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
[Crossref]

Y. Zhang, D. Yong, X. Yu, L. Xia, D. Liu, and Y. Zhang, “Amplification of surface-enhance Raman scattering in photonic crystal fiber using offset launch method,” Plasmonics 8, 209–215 (2013).
[Crossref]

J. Boehm, A. Francois, H. Ebendorff-Heidepriem, and T. M. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6, 133–136 (2011).
[Crossref]

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber,” Plasmonics 9, 167–173 (2014).
[Crossref]

X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance,” Plasmonics 12, 489–496 (2017).
[Crossref]

J. N. Dash and R. Jha, “On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,” Plasmonics 10, 1123–1131 (2015).
[Crossref]

G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics 9, 1355–1360 (2014).
[Crossref]

J. N. Dash and R. Jha, “Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR,” Plasmonics 11, 1505–1509(2016).
[Crossref]

S. Ge, F. Shi, G. Zhou, S. Liu, Z. Hou, and L. Peng, “U-shaped photonic crystal fiber based surface plasmon resonance sensors,” Plasmonics 11, 1307–1312 (2016).
[Crossref]

F. Shi, L. Peng, G. Zhou, X. Cang, Z. Hou, and C. Xia, “An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit,” Plasmonics 10, 1263–1268 (2015).
[Crossref]

G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, and Z. Hao, “Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Plasmonics 12, 465–471(2016).
[Crossref]

L. Jiang, Y. Zheng, J. Yang, L. Hou, Z. Li, and X. Zhao, “An ultra-broadband single polarization filter based on plasmonic photonic crystal fiber with a liquid crystal core,” Plasmonics 12, 411–417 (2017).
[Crossref]

J. Zi, S. Li, W. Zhang, and G. An, “Polarization filter characteristics of square lattice photonic crystal fiber with a large diameter gold-coated air hole,” Plasmonics 10, 1499–1504 (2015).
[Crossref]

J. Zi, S. Li, H. Chen, J. Li, and H. Li, “Photonic crystal fiber polarization filter based on surface plasmon polaritons,” Plasmonics 11, 65–69 (2016).
[Crossref]

Q. Liu, S. Li, H. Li, J. Zi, W. Zhang, Z. Fan, G. An, and Y. Bao, “Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter,” Plasmonics 10, 931–939 (2015).
[Crossref]

H. Chen, S. Li, M. Ma, Z. Fan, and Y. Wu, “Ultrabroad bandwidth polarization filter based on D-shaped photonic crystal fibers with gold film,” Plasmonics 10, 1239–1242 (2015).
[Crossref]

H. Chen, S. Li, G. An, J. Li, Z. Fan, and Y. Han, “Polarization splitter based on D-shaped dual-core photonic crystal fibers with gold film,” Plasmonics 10, 57–61 (2015).
[Crossref]

Z. Fan, S. Li, Q. Liu, J. Li, and Y. Xie, “Plasmonic polarization beam splitter based on dual-core photonic crystal fiber,” Plasmonics 10, 1283–1289(2015).
[Crossref]

C. Dou, X. Jing, S. Li, Q. Liu, and J. Bian, “A photonic crystal fiber polarized filter at 1.55 μm based on surface plasmon resonance,” Plasmonics 11, 1163–1168 (2015).
[Crossref]

X. Wang, S. Li, H. Chen, Q. Liu, G. Wang, and Y. Zhao, “Compatibility of temperature sensor and polarization filter based on Au film and glycerin selectively infilling photonic crystal fibers,” Plasmonics 11, 1265–1271 (2016).
[Crossref]

G. Wang, S. Li, X. Wang, Y. Zhao, Q. Liu, J. Zi, H. Li, and H. Chen, “A kind of broadband polarization filter based on photonic crystal fiber with nanoscale gold film,” Plasmonics 12, 377–382 (2017).

Z. Fan, S. Li, Q. Liu, H. Chen, and X. Wang, “Plasmonic broadband polarization splitter based on dual-core photonic crystal fiber with elliptical metallic nanowires,” Plasmonics 11, 1565–1572 (2016).
[Crossref]

F. Shi, G. Zhou, D. Li, L. Peng, Z. Hou, and C. Xia, “Surface plasmon mode coupling in photonic crystal fiber symmetrically filled with Ag/Au alloy wires,” Plasmonics 10, 335–340 (2015).
[Crossref]

H. Chen, S. Li, M. Ma, J. Li, Z. Fan, and M. Shi, “Surface plasmon induced polarization filter based on Au wires and liquid crystal infiltrated photonic crystal fibers,” Plasmonics 11, 459–464 (2016).
[Crossref]

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[Crossref]

Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An, J. Li, and Y. Bao, “Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance,” Plasmonics 10, 675–680(2015).
[Crossref]

H. Li, S. Li, H. Chen, J. Li, G. An, and J. Zi, “A polarization filter based on photonic crystal fiber with asymmetry around gold-coated holes,” Plasmonics 11, 103–108 (2016).
[Crossref]

Q. Liu, S. Li, J. Li, H. Chen, Z. Fan, G. An, H. Li, and J. Zi, “Photonic crystal fiber polarization filter based on coupling between core mode and SPP mode,” Plasmonics 11, 857–863 (2016).
[Crossref]

Pure Appl. Opt. (1)

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[Crossref]

Science (2)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopolan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Sens. Actuators A (1)

H.-Y. Lin, Y.-C. Tsao, W.-H. Tsai, Y.-W. Yang, T.-R. Yan, and B.-C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850  nm-LED,” Sens. Actuators A 138, 299–305 (2007).
[Crossref]

Sens. Actuators B (4)

Y. Zhao, Z. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B 202, 557–567 (2014).
[Crossref]

M.-H. Chiu, C.-H. Shih, and M.-H. Chi, “Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement,” Sens. Actuators B 123, 1120–1124 (2007).
[Crossref]

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B 160, 196–201 (2011).
[Crossref]

N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, and L. Wei, “Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing,” Sens. Actuators B 223, 195–201 (2016).
[Crossref]

Sens. Actuators B Chem. (2)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12, 213–220 (1993).
[Crossref]

R. Slavík, J. Homola, and J. Čtyroký, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B Chem. 54, 74–79 (1999).
[Crossref]

Sensors (6)

E. Klantsataya, A. Francois, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors 15, 25090–25102 (2015).
[Crossref]

Y. Lu, C.-J. Hao, B.-Q. Wu, M. Musideke, L.-C. Duan, W.-Q. Wen, and J.-Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors 13, 956–965 (2013).
[Crossref]

Y. Lu, C.-J. Hao, B.-Q. Wu, X.-H. Huang, W.-Q. Wen, X.-Y. Fu, and J.-Q. Yao, “Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments,” Sensors 12, 12016–12025 (2012).
[Crossref]

X. Yang, Y. Lu, M. Wang, and J. Yao, “An exposed-core grapefruit fibers based surface plasmon resonance sensor,” Sensors 15, 17106–17114 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiragi, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors 15, 11499–11510 (2015).
[Crossref]

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
[Crossref]

Small (1)

A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schroder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers,” Small 6, 2584–2589 (2010).
[Crossref]

Z. Naturforsch. A (1)

E. Kretschmann and H. Z. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Other (4)

M. Born and E. Wolf, “Basic properties of the electromagnetic field,” in Principles of Optics, 7th ed. (Cambridge University, 1999), pp. 752–758.

P. Yeh, Optical Waves in Layered Media (Wiley, 1998).

T. Huang, “Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength,” Plasmonics, 1–6 (2016).
[Crossref]

M. Sadeghi, V. Ahmadi, and M. Ebnali-Heidari, “Metal-coated silicon nanowire embedded plasmonic photonic crystal fiber: Kerr nonlinearity and two-photon absorption,” Plasmonics, 1–9 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Figure 1
Figure 1

Typical SPR sensor based on the (a) Kretschmann and (b) fiber configurations.

Figure 2
Figure 2

(a) Schematic representation of a PCF with a metal wire. (b) Dispersion relations of metal-wire-filled PCF: x -polarized (red curve) and y -polarized (blue curve) core modes, the SPP modes of different orders excited on the gold wire (green curves), core mode without metal wire (dashed black curve), cladding mode (dotted curve), and index of silica material (dashed–dotted curve). The SPP mode profiles of the gold wires are shown as inset figures. (c) Mode profile of the x -component of the electric field distributions of the x -polarized core mode at a phase-matching wavelength. (d) Confinement loss of the x -polarized (red curve) and y -polarized (blue curve) core modes. Reprinted with permission from [38]. Copyright 2011 Optical Society of America.

Figure 3
Figure 3

(a) Cross section of the proposed sensor. (b) Dispersion relations of core guided mode (black solid line), plasmonic mode (black dotted line) and imaginary part of core guided mode (solid red). (c) Plasmonic excitation of core guided mode and (d) plasmon mode. © 2014 IEEE. Reprinted with permission from Dash and Jha, IEEE Photon. Technol. Lett. 26, 594–598 (2014) [39].

Figure 4
Figure 4

(a) Gold nanostars on a fiber facet with an illustration of 3 × 3 unit cells: the image plane is at 1 nm above the top of the nanostar surface; a = 52 nm, g = 45 nm, h = 40 nm, and d = 20 nm for the 633 nm design and d = 40 nm for the 533 nm design. (b) Max | E | 2 of the 533 nm nanostar at the image plane with incident electric field of 1 V/m. (c) | E | 2 of the 533 nm nanostar at the image plane with a color bar maximum of 200    ( V / m ) 2 . Reprinted with permission from Sun et al., Appl. Phys. A 115, 87-91 (2014) (Figs. 1, 3, and 5) [41]. Copyright 2013 Springer-Verlag Berlin Heidelberg.

Figure 5
Figure 5

SEM images of metallic optical fiber with one ring of copper rods. (a) shows a cleaved fiber end face with six copper wires protruding from the surface. (b) Higher magnification image of the six copper wires. (c) Backscattered electron image of the polished fiber sample end face. (d) Shows details of the copper rods in (c). Reprinted with permission from [42]. Copyright 2008 Optical Society of America.

Figure 6
Figure 6

(a) SEM of the end face of a cleaved metal-filled PCF, polished by focused ion beam etching (hole diameter of 1.52 μm, hole spacing of 2.9 μm). The wires undergo ductile thinning during cleaving, breaking at random positions. Those that protrude from the end face are polished and appear as bright disks in the SEM; the rest (six in total) are dull in appearance. (b) SEM image of the unpolished end face of a PCF with two metal nanowires located next to the solid core. Reprinted with permission from Schmidt et al., Phys. Rev. B 77, 033417 (2008) (Fig. 1) [45]. Copyright 2008 by the American Physical Society, https://doi.org/10.1103/PhysRevB.77.033417.

Figure 7
Figure 7

Optical side-views of the splices (left-hand column) and SEM images of the cleaved end faces (right-hand column). (a) Solid-core PCF with all its channels filled with gold. (b) PCF in which only two channels are filled with gold. (c) Modified step index fiber with a parallel gold nanowire. Reprinted with permission from [47]. Copyright 2011 Optical Society of America.

Figure 8
Figure 8

(a) An 80 nm thick smooth gold annulus deposited on a silicon tube. Contrast between silica and silicon is low. Scale bar, 2 mm. (b) Optical micrograph of an array of gold particles written with a focused 514.5 nm laser beam within a 1.6 mm capillary. From Sazio et al., Science311, 1583–1586 (2006) [58]. Reprinted with permission from AAAS.

Figure 9
Figure 9

Low magnification SEM micrograph of plasmonic mPOF, showing two coated holes (top). Elemental analysis shows the presence of silver (dots in the image). SEM image of the silver surface of a coated hole is shown on the bottom. Reprinted with permission from [60]. Copyright 2007 Optical Society of America.

Figure 10
Figure 10

(a) Exposed core fiber (ECF) cross section with a triangular core and (b) silver film deposited on ECF. Reproduced from [61] under the terms of the Creative Commons Attribution 4.0 License. http://creativecommons.org/licenses/by/4.0/.

Figure 11
Figure 11

SEM images of the inner walls coated with gold NPs: (a) an overview and (b) zoomed in. (c) Tilted front view of one hole’s cross section at the starting point. (d) A view of the fiber end. Csaki et al., Small 6, 2584–2589 (2010)[85]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

Figure 12
Figure 12

SEM images showing a range of silver deposition profiles obtained by tuning the experimental parameters. A, deposition time = 0.5    h with a precursor concentration of 5    mg mL 1 ; 1 μm scale bar. B, deposition time = 0.5    h with a precursor concentration of 10   mg mL 1 ; scale bar is 1 μm. C, deposition time = 2    h with a precursor concentration of 10    mg mL 1 ; scale bars are 2 and 20 μm on the inset. D, deposition time = 3    h with a precursor concentration of 15    mg mL 1 ; 2 μm scale bar. Amezcua-Correa et al., Adv. Funct. Mater. 17, 2024–2030 (2007) [87]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

Figure 13
Figure 13

Schematics of PCF-based SPR sensors with a central void in the core region and (a) two layers of air holes in the cladding; the second-layer air holes are metal-coated and analyte filled. (b) One layer of air holes and two large metal-coated analyte filled channels. (c) Calculated loss spectra of the MOF core guided mode exhibiting three loss peaks corresponding to the excitation of various plasmonic modes in the metallized holes. Black solid line, na = 1.33 ; blue dotted line, na = 1.34 . For comparison, the red dashed line shows the confinement loss of a core guided mode in the absence of a metal coating. (d) Sensitivity of the MOF-based SPR sensor for the 30, 40, 50, and 65 nm thicknesses of gold coating. Reprinted with permission from [95]. Copyright 2006 Optical Society of America.

Figure 14
Figure 14

Loss spectra of the fiber core mode as a function of varying analyte RI index and the relationship between the resonance wavelength and analyte RI in (a), (b) silver-coated PCF and (c), (d) gold-coated PCF. Reprinted from Zheng et al., Opt. Laser Technol. 43, 960–964 (2007) [97]. Copyright 2010, with permission from Elsevier.

Figure 15
Figure 15

(a) Cross section of the proposed PCF design. (b) Dispersion relations of core guided modes and SPs in the vicinity of the phase-matching point of the first plasmonic peak. Caculated loss spectra of the fundamental modes (c) HE 11 x and (d) HE 11 y . © 2012 IEEE. Reprinted with permission from Akowuah et al., IEEE J. Quantum Electron. 48, 1403–1410 (2012) [100].

Figure 16
Figure 16

(a) Cross-section of the commercial grapefruit fiber; (b) schematic of the designed EC-GF-based SPR sensor. Reproduced from [113] under the terms of the Creative Commons Attribution 4.0 License. http://creativecommons.org/licenses/by/4.0/.

Figure 17
Figure 17

(a) Schematic structure of near-panda PCF-based SPR sensor; (b) x -polarized and (c) y -polarized core mode pattern of the proposed SPR sensor; loss spectra of PCF-based SPR sensors when (d) d 1 / d 2 = 0.95 and (e) d 1 / d 2 = 0.4 with analyte RI at 1.38. Reprinted from Zhang et al., J. Opt. 18, 065005 (2016) [124]. © IOP Publishing. Reproduced with permission. All rights reserved.

Figure 18
Figure 18

(a) Schematic of a gold-coated analyte-filled core PCF and (b) RI sensitivity by monitoring the resonance wavelength and peak loss. Reprinted with permission from [136]. Copyright 2012 Optical Society of America. (c) Cross section of the PCF SPR sensor. (d) Loss spectra of the fundamental mode for analyte RI varying from 1.46 to 1.485. Reprinted from Qin et al., Opt. Laser Eng. 58 1–8 (2014) [137], Copyright 2014, with permission from Elsevier.

Figure 19
Figure 19

Schematics of photonic-crystal waveguide-based SPR sensor schemes. (a) Single-mode planar photonic-crystal-waveguide-based SPR sensor. The dispersion relation of the core guided mode is in solid blue; that of the plasmon is in thick dashed red. Inset: coupler schematic; | Sz | of a plasmon (left) and a core mode (right). (b) Solid core Bragg-fiber-based SPR sensor. (c) Microstructured core, honeycomb photonic-crystal-fiber-based SPR sensor. Reprinted with permission from [141]. Copyright 2007 Optical Society of America.

Figure 20
Figure 20

Examples of SCPCF with triangular lattice and filled with metal wires for polarization filter devices. (a) Schematic diagram of the simple designed HB-PCF. Diameters of the two big air holes, the eight small air holes, and the other air holes are d 1 = 2.6 μ m , d 3 = 1.0 μ m and d 2 = 1.9 μ m . The pitch between the adjacent air holes is 2.4 µm. The diameters of the two filling gold wires are d m = 1.7 μ m . (b) Schematic diagram of the specially designed HB-PCF. The diameters of the two big air holes, the second big air holes and the other air holes are d 1 = 2.6 μ m , d 2 = 2.2 μ m and d 3 = 1.6 μ m . The diameters of the two filling gold wires are d m = 1.6 μ m . The pitch between the adjacent air holes in the horizontal direction is 2.4 µm. Reprinted from Du et al., Appl. Phys. B 109, 65–74 (2012) (Figs. 7 and 9) [156]. Copyright © 2012, Springer-Verlag. (c) Schematic diagram of the designed D-PCF with gold nanowire. Reprinted with permission from Fan et al., Plasmonics 10, 675–682 (2015) (Fig. 1) [157]. Copyright © 2014, Springer Science+Business Media New York. (d) Cross section of the PLC-PCF filter filled with a metal wire and sandwiched between two electrodes. Reprinted with permission from [161]. Copyright © 2015 Optical Society of America.

Figure 21
Figure 21

(a) Cross section of the proposed single polarization PCF wavelength splitter. (b) Wavelength dependence of modal losses and the real parts of the effective indices of the x - and y -polarized core modes. The red lines represent the dispersion relations of the x - and y -polarized second-order SPP modes. Reprinted with permission from Jiang et al., Opt. Quantum Electron. 48, 409 (2016) (Figs. 1 and 3) [165]. Copyright © 2016, Springer Science+Business Media New York.

Figure 22
Figure 22

(a) Effective refractive indices of core modes and SPP modes in the y -polarization direction. (b) Confinement loss spectra of core modes in the y -polarization direction. (c) The schematic of the d-shaped PCF polarization splitter. The gold film is deposited on the polished plane. (d) The output power and ER as the thickness of gold film increasing to 0.05 μm. The transferring length is set as 4 mm. Reprinted from Chen et al., Plasmonics 10, 1239–1242 (2015) (Figs. 1, 4, and 6) [188]. Copyright © 2015, Springer Science+Business Media New York.

Tables (8)

Tables Icon

Table 1. Characteristics of the Metal-Wire-Filled PCFs

Tables Icon

Table 2. Characteristics of the Metal-Coated PCFs

Tables Icon

Table 3. Performance Figures of NP-Based Plasmonic PCF Sensors

Tables Icon

Table 4. Simulated Performance of Metal-Coated Plasmonic PCF Sensors Based on SPR for Aqueous Analyte RI Detection

Tables Icon

Table 5. Performance of the Plasmonic PCF Temperature Sensors

Tables Icon

Table 6. Simulated Performance Figures of Metal-Wire-Based Plasmonic PCF Polarization Splitters

Tables Icon

Table 7. Performance Figures of Dual Core Metal-Wire-Based Plasmonic PCFs for Polarization Splitters

Tables Icon

Table 8. Performance of Gold-Coated PCF-Based Polarization Splitters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

r pmd = | r pmd | e j ϕ = E r E i = r p m + r m d exp ( 2 i K m y q ) 1 + r p m r m d exp ( 2 i K m y q ) ,
r k l = ϵ l k k y ϵ k k l y ϵ l k k y + ϵ k k l y ,
K k y = ( 2 π λ ) 2 ϵ k K x 2 .
α = 8.686 × 2 π λ Im ( n eff ) × 10 4 ,
S A ( λ ) [ RIU 1 ] = 1 P ( L , λ , n a ) P ( L , λ , n a ) n a = 1 α ( λ , n a ) α ( λ , n a ) n a ,
S λ [ nm · RIU 1 ] = d λ peak ( n a ) d n a ,
FOM = S ( nm / RIU ) FWHM ( nm ) ,
ϕ d = 2 π λ ( Re ( n TM ) Re ( n TE ) ) ,
S ϕ [ deg · RIU 1 · cm 1 ] = d ϕ d ( n a ) d n a ,

Metrics