Abstract

We review the history of photoacoustics from the discovery in 1880 that modulated light produces acoustic waves to the current time, when the pulsed variant of the discovery is fast developing into a powerful biomedical imaging modality. We trace the meandering and fascinating passage of the effect along several conceptual and methodological trajectories to several variants of the method, each with its set of proposed applications. The differences in mechanisms between the intensity modulated effect and the pulsed version are described in detail. We also learn the several names given to the effect, and trace the modern-day divide in nomenclature.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical simulation of the influence of the elastic modulus of a tumor on laser-induced ultrasonics in soft tissue

Rong Rong An, Xiao Sen Luo, and Zhong Hua Shen
Appl. Opt. 51(32) 7869-7876 (2012)

Pulsed indirect photoacoustic spectroscopy: application to remote detection of condensed phases

Michael Harris, Guy N. Pearson, David V. Willetts, Kevin Ridley, Paul R. Tapster, and Brian Perrett
Appl. Opt. 39(6) 1032-1041 (2000)

References

  • View by:
  • |
  • |
  • |

  1. C. Lutzweiler and D. Razansky, “Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification,” Sensors 13, 7345–7384 (2013).
    [Crossref]
  2. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
    [Crossref]
  3. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1, 602–631 (2011).
    [Crossref]
  4. S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29, 213–221 (2011).
    [Crossref]
  5. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
    [Crossref]
  6. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. R. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
    [Crossref]
  7. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
    [Crossref]
  8. R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40, 113301 (2013).
    [Crossref]
  9. Y. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
    [Crossref]
  10. A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).
  11. M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localized vibration tagging (LOVIT),” Photoacoustics 1, 19–29 (2013).
    [Crossref]
  12. X. L. Deán-Ben and D. Razansky, “Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally-enriched tomography,” Light Sci. Appl. 3, e137 (2014).
    [Crossref]
  13. I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough, “Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system,” Opt. Express 17, 7285–7294 (2009).
    [Crossref]
  14. V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110, 2783–2794 (2010).
    [Crossref]
  15. S. J. Ford, P. L. Bigliardi, T. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Invest. Dermatol. 136, 753–761 (2016).
    [Crossref]
  16. J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
    [Crossref]
  17. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
    [Crossref]
  18. M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6, 42–46 (2015).
    [Crossref]
  19. E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4, 855–860 (2009).
    [Crossref]
  20. M. Mehrmohammadi, S. J. Yoon, D. Yeager, and S. Y. Emelianov, “Photoacoustic imaging for cancer detection and staging,” Curr. Mol. Imaging 2, 89–105 (2013).
    [Crossref]
  21. I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
    [Crossref]
  22. G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18, 010502 (2013).
    [Crossref]
  23. P. Van Es, S. K. Biswas, H. J. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19, 060501 (2014).
    [Crossref]
  24. C. Lutzweiler, R. Meier, E. Rummeny, V. Ntziachristos, and D. Razansky, “Real-time optoacoustic tomography of indocyanine green perfusion and oxygenation parameters in human finger vasculature,” Opt. Lett. 39, 4061–4064 (2014).
    [Crossref]
  25. J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
    [Crossref]
  26. L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
    [Crossref]
  27. S. Gottschalk, T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Non-invasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography,” J. Cereb. Blood Flow Metab. 35, 531–535 (2015).
    [Crossref]
  28. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18, 3967–3972 (2010).
    [Crossref]
  29. K. Jansen, A. F. W. Van der Steen, H. M. M. Van Beusekom, J. W. Oosterhuis, and G. Van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36, 597–599 (2010).
    [Crossref]
  30. F. M. Mims, “Alexander Graham Bell and the photophone: the centennial of the invention of light-wave communications, 1880–1980,” Opt. News 6(1), 8–16 (1980).
    [Crossref]
  31. W. Smith, “The action of light on selenium,” J. Soc. Telegraph Eng. 2, 31–33 (1873).
    [Crossref]
  32. A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 118, 305–324 (1880).
    [Crossref]
  33. A. G. Bell, “Selenium and the photophone,” Nature 22, 500–503 (1880).
    [Crossref]
  34. A. G. Bell, “Production of sound by radiant energy,” J. Franklin Inst. 111, 401–428 (1881).
    [Crossref]
  35. A. G. Bell, “The spectrophone,” Bull. Philos. Soc. 4, 42 (1881).
  36. Rayleigh, “The photophone,” Nature 23, 274–275 (1881).
    [Crossref]
  37. E. Mercadier, “Sur la radiophonie,” J. Phys. Theor. Appl. 10, 53–68 (1881).
    [Crossref]
  38. E. Mercadier, “Sur la radiophonie (2e mémoire),” J. Phys. Theor. Appl. 10, 147–154 (1881).
  39. W. H. Preece, “On the conversion of radiant energy into sonorous vibrations,” Proc. R. Soc. London 31, 506–520 (1880).
    [Crossref]
  40. W. C. Röntgen, “Ueber Töne, welche durch intermittirende Bestrahlung eines Gases entstehen,” Ann. Phys. 248, 155–159 (1881).
    [Crossref]
  41. J. Tyndall, “Action of an intermittent beam of radiant heat upon gaseous matter,” Proc. R. Soc. London 31, 307–317 (1880).
    [Crossref]
  42. W. H. Preece, “Radiophony,” J. Soc. Telegraph Eng. Electr. 10, 212–231 (1881).
  43. A. O. Rankine, “On the transmission of speech by light,” Proc. Phys. Soc. London 31, 242–268 (1918).
    [Crossref]
  44. M. Groth, “Photophones revisited,” in Amateur Radio Magazine (Wireless Institute of Australia, 1987), pp. 12–17.
  45. Alcatel-Lucent, Bell Labs Announces New Optical Transmission Record and Breaks 100 Petabit Per Second Kilometer Barrier (Press Release) (Alcatel-Lucent, 2009).
  46. M. L. Veingerov, “A method of gas analysis based on the Tyndall-Röntgen optico-acoustic effect,” Dokl. Akad. Nauk SSSR 19, 687–688 (1938).
  47. M. L. Veingerov, “An optical-acoustic method of gas analysis,” Nature 158, 28–29 (1946).
    [Crossref]
  48. A. H. Pfund, “Atmospheric contamination,” Science 90, 326–327 (1939).
    [Crossref]
  49. K. F. Luft, “Infrared techniques for the measurement of carbon monoxide,” Ann. Occup. Hyg. 18, 45–51 (1975).
    [Crossref]
  50. K. F. Luft, “Über eine neue methode der registrierenden Gasanalyse mit Hilfe der absorption ultraroter Strahlen ohne spektrale Zerlegung,” Z. Tech. Phys. 5, 97–104 (1943).
  51. M. L. Veingerov, “Spectrophone - an instrument for investigation of infrared absorption spectra of gases and for quantitative and qualitative spectrum analysis of multicomponent gas mixtures,” Dokl. Akad. Nauk SSSR 46, 182 (1945) [in Russian].
  52. G. Gorelik, “On a possible method of studying the energy exchange time between the different degrees of freedom of molecules in a gas,” Dokl. Akad. Nauk SSSR 54, 779 (1946) [in Russian].
  53. P. V. Slobodskaya, “Determination of the energy transfer rate from vibrational to translational molecular motion by means of a spectrophone,” Izvest. Akad. Nauk SSSR 12, 656–662 (1948) [in Russian].
  54. B. I. Stepanov and O. P. Girin, Zh. Eksp. Teor. Ftz.20, 947 (1950) [in Russian].
  55. T. L. Cottrell, “The absorption of interrupted infra-red radiation,” Trans. Faraday Soc. 46, 1025–1030 (1950).
    [Crossref]
  56. T. L. Cottrell, I. M. Macfarlane, A. W. Read, and A. H. Young, “Measurement of vibrational relaxation times by the spectrophone. Application to CH4, CO2, N2O, COS, NH3 and HCN,” Trans. Faraday Soc. 62, 2655–2666 (1966).
    [Crossref]
  57. R. Kaiser, “On the theory of the spectrophone,” Can. J. Phys. 37, 1499–1513 (1959).
    [Crossref]
  58. M. E. Delany, “The optic-acoustic effect in gases,” Sci. Prog. 47, 459–467 (1959).
  59. E. L. Kerr and J. G. Atwood, “The laser illuminated absorptivity spectrophone: a method for measurement of weak absorptivity in gases at laser wavelengths,” Appl. Opt. 7, 915–921 (1968).
    [Crossref]
  60. L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42, 2934–2943 (1971).
    [Crossref]
  61. A. Mandelis, “Diffusion waves and their uses,” Phys. Today 53(8), 29–34 (2000).
    [Crossref]
  62. A. J. Ångström, “Neue methode, das Wärmeleitungsvermögen der Körper zu bestimmen,” Ann. Phys. Chem. 190, 513–530 (1861).
    [Crossref]
  63. A. Rosencwaig and A. Gersho, “Photoacoustic effect with solids: a theoretical treatment,” Science 190, 556–557 (1975).
    [Crossref]
  64. A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64–69 (1976).
    [Crossref]
  65. A. Rosencwaig, “Thermal wave microscopy with photoacoustics,” J. Appl. Phys. 51, 2210–2211 (1980).
    [Crossref]
  66. A. Rosencwaig, “Thermal-wave imaging,” Science 218, 223–228 (1982).
    [Crossref]
  67. F. A. McDonald and G. C. Wetsel, “Generalized theory of the photoacoustic effect,” J. Appl. Phys. 49, 2313–2322 (1978).
    [Crossref]
  68. F. A. McDonald, “Photoacoustic effect and the physics of waves,” Am. J. Phys. 48, 41–47 (1980).
    [Crossref]
  69. A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
    [Crossref]
  70. A. Mandelis, “Frequency-domain photopyroelectric spectroscopy of condensed phases (PPES): a new, simple and powerful spectroscopic technique,” Chem. Phys. Lett. 108, 388–392 (1984).
    [Crossref]
  71. P. E. Nordal and S. O. Kanstad, “Photothermal radiometry,” Phys. Scripta 20, 659–662 (1979).
    [Crossref]
  72. F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic, 1990).
  73. H. S. Carslaw and J. C. Jaeger, Heat Conduction in Solids (Clarendon, 1959).
  74. S. L. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993).
    [Crossref]
  75. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
    [Crossref]
  76. L. V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007), Chap. 12, pp. 283–321.
  77. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, 1993).
  78. J. Curie and P. Curie, “Développement par pression de l’électricité polaire dans les cristaux hémièdres à faces inclines,” Comptes Rendus 91, 294–295 (1880).
  79. C. M. Chilowsky and M. P. Langévin, “Procédés et appareils pour la production de signaux sous-marins dirigés et pour la localisation á distance d’obstacles sous-marins,” French patentFR502913 (May 29, 1916).
  80. R. W. Wood and A. L. Loomis, “The physical and biological effects of high frequency sound-waves of great intensity,” Philos. Mag. 4(22), 417–436 (1927).
    [Crossref]
  81. L. Bergmann, Der Ultraschall und seine Anwendungen in Wissenschaft und Technik (VDI-Verlag, 1937).
  82. K. T. Dussik, “Über die Möglichkeit, hochfrequente mechanische Schwingungen als diagnostisches Hilfsmittel zu verwerten [On the possibility of using ultrasound waves as a diagnostic aid],” Z. gesamte Neurol. Psychiat. 174, 153–168 (1942).
    [Crossref]
  83. G. D. Ludwig and F. W. Struthers, “Considerations underlying the use of ultrasound to detect gallstones and foreign bodies in tissue,” (Naval Medical Research Institute, 1949).
  84. J. J. Wild and J. M. Reid, “Application of echo-ranging techniques to the determination of structure of biological tissues,” Science 115, 226–230 (1952).
  85. D. H. Howry, “Sound-wave portrait in the flesh,” in Life Magazine (Medicine Section) (1954), pp. 71–72.
  86. J. E. Michaels, “Thermal impact—the mechanical response of solids to extreme electromagnetic radiation,” Planet. Space Sci. 7, 427–433 (1961).
    [Crossref]
  87. R. M. White, “An elastic wave method for the measurement of pulse-power density,” IRE Trans. Instrum. I-11, 294–298 (1962).
    [Crossref]
  88. R. M. White, “Generation of elastic waves by transient surface heating,” J. Appl. Phys. 34, 3559–3567 (1963).
    [Crossref]
  89. G. A. Askaryan, A. M. Prokhorov, G. F. Chanturia, and G. P. Shipulo, “Propagation of a laser beam through a liquid,” Zh. Eksp. Teor. Fiz. 44, 2180–2182 (1963).
  90. L. M. Lyamshev, “Lasers in acoustics,” Sov. Phys. Usp. 30, 252–279 (1987).
    [Crossref]
  91. L. M. Lyamshev, Radiation Acoustics (CRC Press, 2004).
  92. L. M. Lyamshev, “Radiation acoustics,” Sov. Phys. Usp. 35, 276–302 (1987).
    [Crossref]
  93. E. F. Carome, N. A. Clark, and C. E. Moeller, “Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
    [Crossref]
  94. L. S. Gournay, “Conversion of electromagnetic to acoustic energy by surface heating,” J. Acoust. Soc. Am. 40, 1322–1330 (1966).
    [Crossref]
  95. C. L. Hu, “Spherical model of an acoustical wave generated by rapid laser heating in a liquid,” J. Acoust. Soc. Am. 46, 728–736 (1969).
    [Crossref]
  96. M. W. Sigrist and F. K. Kneubühl, “Laser-generated stress waves in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
    [Crossref]
  97. S. G. Kasoev and L. M. Lyamshev, “Theory of laser-pulse generation of sound in a liquid,” Sov. Phys. Acoust. 23, 510–514 (1977).
  98. E. F. Kozyaev and K. A. Naugol’nikh, “On thermal acousto-optic effect,” Acoust. J. 22, 366–369 (1976).
  99. C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
    [Crossref]
  100. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
    [Crossref]
  101. V. P. Zharov and V. S. Letokhov, Laser Optoacoustic Spectroscopy, Vol. 37 of Springer Series in Optical Sciences (Springer-Verlag, 1986).
  102. H. M. Ledbetter and J. C. Moulder, “Laser-induced Rayleigh waves in aluminium,” J. Acoust. Soc. Am. 65, 840–842 (1979).
    [Crossref]
  103. A. N. Bondarenko, Yu. B. Drobot, and S. V. Kruglov, “Optical excitation and registration of nanosecond pulses in non-destructive testing,” Defectoskopiya 6, 85–88 (1976) [in Russian].
  104. R. J. Von Gutfeld and R. L. Melcher, “MHz acoustic waves from pulsed thermoelastic expansions and their application to flaw detection,” Mater. Eval. 35, 97–99 (1977).
  105. C. B. Scruby, “Some applications of laser ultrasound,” Ultrasonics 27, 195–209 (1989).
    [Crossref]
  106. C. B. Scruby and L. E. Drain, Laser Ultrasonics Techniques and Applications (CRC Press, 1990).
  107. S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
    [Crossref]
  108. C. B. Scruby and H. N. G. Wadley, “A calibrated capacitance transducer for the detection of acoustic emission,” J. Phys. D 11, 1487–1494 (1978).
    [Crossref]
  109. A. M. Aindow, J. A. Cooper, R. J. Dewhurst, and S. B. Palmer, “A spherical capacitance transducer for ultrasonic displacement measurements in NDE,” J. Phys. E 20, 204–209 (1987).
    [Crossref]
  110. R. J. Dewhurst, C. Edwards, and S. B. Palmer, “Noncontact detection of surface-breaking cracks using a laser acoustic source and an electromagnetic acoustic receiver,” Appl. Phys. Lett. 49, 374–376 (1986).
    [Crossref]
  111. D. A. Hutchins and D. E. Wilkins, “Elastic waveforms using laser generation and electromagnetic acoustic transducer detection,” J. Appl. Phys. 58, 2469–2477 (1985).
    [Crossref]
  112. J. P. Monchalin, “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer,” Appl. Phys. Lett. 47, 14–16 (1985).
    [Crossref]
  113. J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485–499 (1986).
    [Crossref]
  114. J. D. Aussel and J. P. Monchalin, “Precision laser-ultrasonic velocity measurement and elastic constant determination,” Ultrasonics 27, 165–177 (1989).
    [Crossref]
  115. A. C. Tam, “Pulsed-laser generation of ultrashort acoustic pulses: application for thin-film ultrasonic measurements,” Appl. Phys. Lett. 45, 510–512 (1984).
    [Crossref]
  116. H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
    [Crossref]
  117. J. G. Parker, “Optical absorption in glass: investigation using an acoustic technique,” Appl. Opt. 12, 2974–2977 (1973).
    [Crossref]
  118. A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Opt. Commun. 7, 305–308 (1973).
    [Crossref]
  119. W. R. Harshbarger and M. B. Robin, “Opto-acoustic effect. Revival of an old technique for molecular spectroscopy,” Acc. Chem. Res. 6, 329–334 (1973).
    [Crossref]
  120. G. M. Sessler and J. E. West, “Electret transducers: a review,” J. Acoust. Soc. Am. 53, 1589–1600 (1973).
    [Crossref]
  121. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).
  122. A. Rosencwaig, “Photoacoustic spectroscopy of biological materials,” Science 181, 657–658 (1973).
    [Crossref]
  123. Y. H. Wong, R. L. Thomas, and G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32, 538–539 (1978).
    [Crossref]
  124. M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett. 15, 325–326 (1979).
    [Crossref]
  125. R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo, and A. Rosencwaig, “Subsurface flaw detection in metals by photoacoustic microscopy,” J. Appl. Phys. 51, 1152–1156 (1980).
    [Crossref]
  126. G. Busse, “Imaging with the optoacoustic effect,” Opt. Laser Technol. 12, 149–154 (1980).
    [Crossref]
  127. S. Kaiplavil and A. Mandelis, “Highly depth-resolved chirped pulse photothermal radar for bone diagnostics,” Rev. Sci. Instrum. 82, 074906 (2011).
    [Crossref]
  128. B. Lashkari and A. Mandelis, “Features of the frequency- and time-domain photoacoustic modalities,” Int. J. Thermophys. 34, 1398–1404 (2013).
    [Crossref]
  129. L. Amar, M. Bruma, P. Desvignes, M. Leblanc, G. Perdriel, and M. Velghe, “Detection, d’ondes élastiques (ultrasonores) sur l’os occipital, induites par impulsions laser dans l’oeil d’un lapin,” C. R. Acad. Sci. Paris 259, 3653–3655 (1964).
  130. L. Amar, M. Bruma, M. Velghe, and P. Desvigne, “On detection of laser induced ultrasonic waves in human eye and elaboration of a theory of fundamental mechanism of vision,” Z. Angew. Math. Phys. 16, 182–183 (1965).
    [Crossref]
  131. S. F. Cleary and P. E. Hamrick, “Laser-induced acoustic transients in the mammalian eye,” J. Acoust. Soc. Am. 46, 1037–1044 (1969).
    [Crossref]
  132. A. H. Frey, “Auditory system response to radio frequency energy,” Aerosp. Med. 32, 1140–1142 (1961).
  133. A. H. Frey and R. Messenger, “Human perception of illumination with pulsed ultrahigh-frequency electromagnetic energy,” Science 181, 356–358 (1973).
    [Crossref]
  134. J. C. Sharp, H. M. Grove, and O. P. Gandhi, “Generation of acoustic signals by pulsed microwave energy,” IEEE Trans. Microwave Theory Tech. 22, 583–584 (1974).
    [Crossref]
  135. J. A. Elder and C. K. Chou, “Auditory response to pulsed radiofrequency energy,” Bioelectromagnetics 24, S162–S173 (2003).
    [Crossref]
  136. K. R. Foster and E. D. Finch, “Microwave hearing: evidence for thermoacoustic auditory stimulation by pulsed microwaves,” Science 185, 256–258 (1974).
    [Crossref]
  137. D. Borth and C. A. Cain, “Theoretical analysis of acoustic signal generation in materials irradiated with microwave energy,” IEEE Trans. Microwave Theory Tech. 25, 944–954 (1977).
    [Crossref]
  138. A. Rosencwaig, “Photoacoustic spectroscopy. New tool for investigation of solids,” Anal. Chem. 47, 592A–604A (1975).
    [Crossref]
  139. A. Rosencwaig, “Photoacoustic spectroscopy,” Adv. Electron. Electron Phys. 46, 207–311 (1978).
    [Crossref]
  140. S. D. Campbell, S. S. Yee, and M. A. Afromowitz, “Applications of photoacoustic spectroscopy to problems in dermatology research,” IEEE Trans. Biomed. Eng. BME-26, 220–227 (1979).
    [Crossref]
  141. R. G. Olsen and W. C. Hammer, “Microwave-induced pressure waves in a model of muscle tissue,” Bioelectromagnetics 1, 45–54 (1980).
    [Crossref]
  142. T. Bowen, “Radiation-induced thermoacoustic soft tissue imaging,” in Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 817–822.
  143. T. Bowen, R. L. Nasoni, A. E. Pifer, and G. H. Sembroski, “Some experimental results on the thermoacoustic imaging of tissue equivalent phantom materials,” in Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 823–827.
  144. R. L. Nasoni, G. A. Evanoff, P. G. Halverson, and T. Bowen, “Thermoacoustic emission by deeply penetrating microwave radiation,” in Proceedings 1984 Ultrasonics Symposium (IEEE, 1984), pp. 633–638.
  145. R. G. Olsen, “Generation of acoustical images from the absorption of pulsed microwave energy,” Acoust. Imaging 11, 53–59 (1982).
    [Crossref]
  146. R. G. Olsen and J. C. Lin, “Acoustical imaging of a model of a human hand using pulsed microwave irradiation,” Bioelectromagnetics 4, 397–400 (1983).
    [Crossref]
  147. K. Wada, T. Masujima, H. Yoshida, T. Murakami, N. Yata, and H. Imai, “Application of photoacoustic microscopy to analysis of biological components in tissue sections,” Chem. Pharm. Bull. 34, 1688–1693 (1986).
    [Crossref]
  148. T. Masujima, Y. Munekane, C. Kawai, H. Yoshida, H. Imai, L. Juing-Yi, and Y. Sato, “Photoacoustic imaging immunoassay for biological component microanalysis,” in Photoacoustic and Photothermal Phenomena, P. D. P. Hess and P. D. J. Pelzl, eds. (Springer-Verlag, 1988), pp. 558–569.
  149. F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, and A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50, 1019–1021 (1987).
  150. D. L. Singleton, G. Paraskevopoulos, G. S. Jolly, R. S. Irwin, D. J. McKenney, W. S. Nip, E. M. Farrell, and L. A. J. Higginson, “Excimer lasers in cardiovascular surgery: ablation products and photoacoustic spectrum of the arterial wall,” Appl. Phys. Lett. 48, 878–880 (1986).
    [Crossref]
  151. F. W. Cross, R. K. Al-Dhahir, and P. E. Dyer, “Ablation and acoustic response of pulsed laser irradiated vascular tissue in liquid,” Proc. SPIE 0908, 139–144 (1988).
    [Crossref]
  152. R. K. Al Dhahir, P. E. Dyer, and Z. Zhu, “Photoacoustic studies and selective ablation of vascular tissue using a pulsed dye laser,” Appl. Phys. B 51, 81–85 (1990).
    [Crossref]
  153. Q. X. Chen, R. J. Dewhurst, P. A. Payne, and A. Davies, “Photo-acoustic probe for intra-arterial imaging and therapy,” Electron. Lett. 29, 1632–1633 (1993).
    [Crossref]
  154. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” Proc. SPIE 1882, 86–101 (1993).
    [Crossref]
  155. A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134, 122–128 (1994).
  156. R. A. Kruger, “Photoacoustic ultrasound,” Med. Phys. 21, 127–131 (1994).
    [Crossref]
  157. R. A. Kruger and P. Liu, “Photoacoustic ultrasound: pulse production and detection in 0.5% Liposyn,” Med. Phys. 21, 1179–1184 (1994).
    [Crossref]
  158. A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, S. L. Thomsen, and F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” Proc. SPIE 2389, 198–208 (1995).
    [Crossref]
  159. R. A. Kruger, P. Liu, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
    [Crossref]
  160. A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: principles,” Proc. SPIE 2676, 22–31 (1996).
    [Crossref]
  161. R. O. Esenaliev, A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: experiments with biological tissues,” Proc. SPIE 2676, 84–90 (1996).
    [Crossref]
  162. C. G. Hoelen, G. Hamhuis, N. Pagoulatos, I. van den Ham, F. F. de Mul, and J. Greve, “Photoacoustic location of optical absorbers in phantom tissue,” Proc. SPIE 2927, 142–153 (1996).
    [Crossref]
  163. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
    [Crossref]
  164. R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, and A. A. Oraevsky, “Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with x-ray and ultrasound imaging,” Proc. SPIE 2979, 71–82 (1997).
    [Crossref]
  165. P. C. Beard and T. N. Mills, “Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532  nm,” Phys. Med. Biol. 42, 177–198 (1997).
    [Crossref]
  166. C. G. A. Hoelen, F. F. M. De Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
    [Crossref]
  167. R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
    [Crossref]
  168. A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352–363 (1999).
    [Crossref]
  169. J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
    [Crossref]
  170. G. Paltauf, H. Schmidt-Kloiber, K. Koestli, and M. Frenz, “Two-dimensional recording of optoacoustic waves,” Proc. SPIE 3601, 248–255 (1999).
    [Crossref]
  171. R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
    [Crossref]
  172. A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Phys. Today 28(9), 23–30 (1975).
    [Crossref]
  173. O. V. Sidorov, A. M. Shchetinin, and S. V. Sidorov, “Photoacoustic methods of investigating fibre materials,” Fibre Chem. 31, 484–488 (1999).
    [Crossref]
  174. B. Higgins, “On the sound produced by a current of hydrogen gas passing through a tube,” J. Nat. Philos. Chem. Arts 1, 129–131 (1802).
  175. C. Sondhauss, “Über die Schallschwingungen der Luft in erhitzten Glasröhren und in gedeckten Pfeifen von ungleicher Weite,” Ann. Phys. 155, 1–34 (1850).
    [Crossref]
  176. P. L. Rijke, “Notice of a new method of causing a vibration of the air contained in a tube open at both ends,” Philos. Mag. 17(116), 419–422 (1859).
  177. K. Y. Kim and W. Sachse, “X-ray generated ultrasound,” Appl. Phys. Lett. 43, 1099–1101 (1983).
    [Crossref]
  178. H. I. Ringermacher and J. S. Heyman, “Observation of a sono-acoustic effect using piezoelectric thermo-acoustic detection,” in Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 840–843.
  179. R. M. White, “Elastic wave generation by electron bombardment or electromagnetic wave absorption,” J. Appl. Phys. 34, 2123–2124 (1963).
  180. F. Braun, “Notiz über thermophonie,” Ann. Phys. 301, 358–360 (1898).
    [Crossref]
  181. M. Hirn, “The sound of thunder,” Sci. Am. 59, 201 (1888).
    [Crossref]
  182. G. Vasilev and M. Zhabotinskii, “Measurements of power of centimeter waves by thermoacoustic method,” J. Exp. Theor. Phys. USSR 24, 571–574 (1953) [in Russian].

2016 (1)

S. J. Ford, P. L. Bigliardi, T. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Invest. Dermatol. 136, 753–761 (2016).
[Crossref]

2015 (5)

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6, 42–46 (2015).
[Crossref]

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

S. Gottschalk, T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Non-invasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography,” J. Cereb. Blood Flow Metab. 35, 531–535 (2015).
[Crossref]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

2014 (4)

P. Van Es, S. K. Biswas, H. J. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19, 060501 (2014).
[Crossref]

C. Lutzweiler, R. Meier, E. Rummeny, V. Ntziachristos, and D. Razansky, “Real-time optoacoustic tomography of indocyanine green perfusion and oxygenation parameters in human finger vasculature,” Opt. Lett. 39, 4061–4064 (2014).
[Crossref]

Y. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref]

X. L. Deán-Ben and D. Razansky, “Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally-enriched tomography,” Light Sci. Appl. 3, e137 (2014).
[Crossref]

2013 (6)

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40, 113301 (2013).
[Crossref]

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localized vibration tagging (LOVIT),” Photoacoustics 1, 19–29 (2013).
[Crossref]

C. Lutzweiler and D. Razansky, “Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification,” Sensors 13, 7345–7384 (2013).
[Crossref]

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18, 010502 (2013).
[Crossref]

M. Mehrmohammadi, S. J. Yoon, D. Yeager, and S. Y. Emelianov, “Photoacoustic imaging for cancer detection and staging,” Curr. Mol. Imaging 2, 89–105 (2013).
[Crossref]

B. Lashkari and A. Mandelis, “Features of the frequency- and time-domain photoacoustic modalities,” Int. J. Thermophys. 34, 1398–1404 (2013).
[Crossref]

2012 (2)

L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

2011 (3)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1, 602–631 (2011).
[Crossref]

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29, 213–221 (2011).
[Crossref]

S. Kaiplavil and A. Mandelis, “Highly depth-resolved chirped pulse photothermal radar for bone diagnostics,” Rev. Sci. Instrum. 82, 074906 (2011).
[Crossref]

2010 (4)

2009 (3)

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref]

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4, 855–860 (2009).
[Crossref]

I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough, “Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system,” Opt. Express 17, 7285–7294 (2009).
[Crossref]

2006 (1)

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[Crossref]

2003 (2)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. R. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[Crossref]

J. A. Elder and C. K. Chou, “Auditory response to pulsed radiofrequency energy,” Bioelectromagnetics 24, S162–S173 (2003).
[Crossref]

2001 (1)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[Crossref]

2000 (1)

A. Mandelis, “Diffusion waves and their uses,” Phys. Today 53(8), 29–34 (2000).
[Crossref]

1999 (6)

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[Crossref]

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352–363 (1999).
[Crossref]

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[Crossref]

G. Paltauf, H. Schmidt-Kloiber, K. Koestli, and M. Frenz, “Two-dimensional recording of optoacoustic waves,” Proc. SPIE 3601, 248–255 (1999).
[Crossref]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[Crossref]

O. V. Sidorov, A. M. Shchetinin, and S. V. Sidorov, “Photoacoustic methods of investigating fibre materials,” Fibre Chem. 31, 484–488 (1999).
[Crossref]

1998 (1)

1997 (3)

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
[Crossref]

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, and A. A. Oraevsky, “Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with x-ray and ultrasound imaging,” Proc. SPIE 2979, 71–82 (1997).
[Crossref]

P. C. Beard and T. N. Mills, “Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532  nm,” Phys. Med. Biol. 42, 177–198 (1997).
[Crossref]

1996 (4)

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: principles,” Proc. SPIE 2676, 22–31 (1996).
[Crossref]

R. O. Esenaliev, A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: experiments with biological tissues,” Proc. SPIE 2676, 84–90 (1996).
[Crossref]

C. G. Hoelen, G. Hamhuis, N. Pagoulatos, I. van den Ham, F. F. de Mul, and J. Greve, “Photoacoustic location of optical absorbers in phantom tissue,” Proc. SPIE 2927, 142–153 (1996).
[Crossref]

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
[Crossref]

1995 (2)

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, S. L. Thomsen, and F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” Proc. SPIE 2389, 198–208 (1995).
[Crossref]

R. A. Kruger, P. Liu, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[Crossref]

1994 (3)

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134, 122–128 (1994).

R. A. Kruger, “Photoacoustic ultrasound,” Med. Phys. 21, 127–131 (1994).
[Crossref]

R. A. Kruger and P. Liu, “Photoacoustic ultrasound: pulse production and detection in 0.5% Liposyn,” Med. Phys. 21, 1179–1184 (1994).
[Crossref]

1993 (4)

Q. X. Chen, R. J. Dewhurst, P. A. Payne, and A. Davies, “Photo-acoustic probe for intra-arterial imaging and therapy,” Electron. Lett. 29, 1632–1633 (1993).
[Crossref]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” Proc. SPIE 1882, 86–101 (1993).
[Crossref]

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
[Crossref]

S. L. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993).
[Crossref]

1990 (1)

R. K. Al Dhahir, P. E. Dyer, and Z. Zhu, “Photoacoustic studies and selective ablation of vascular tissue using a pulsed dye laser,” Appl. Phys. B 51, 81–85 (1990).
[Crossref]

1989 (2)

C. B. Scruby, “Some applications of laser ultrasound,” Ultrasonics 27, 195–209 (1989).
[Crossref]

J. D. Aussel and J. P. Monchalin, “Precision laser-ultrasonic velocity measurement and elastic constant determination,” Ultrasonics 27, 165–177 (1989).
[Crossref]

1988 (1)

F. W. Cross, R. K. Al-Dhahir, and P. E. Dyer, “Ablation and acoustic response of pulsed laser irradiated vascular tissue in liquid,” Proc. SPIE 0908, 139–144 (1988).
[Crossref]

1987 (4)

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, and A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50, 1019–1021 (1987).

A. M. Aindow, J. A. Cooper, R. J. Dewhurst, and S. B. Palmer, “A spherical capacitance transducer for ultrasonic displacement measurements in NDE,” J. Phys. E 20, 204–209 (1987).
[Crossref]

L. M. Lyamshev, “Lasers in acoustics,” Sov. Phys. Usp. 30, 252–279 (1987).
[Crossref]

L. M. Lyamshev, “Radiation acoustics,” Sov. Phys. Usp. 35, 276–302 (1987).
[Crossref]

1986 (5)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[Crossref]

R. J. Dewhurst, C. Edwards, and S. B. Palmer, “Noncontact detection of surface-breaking cracks using a laser acoustic source and an electromagnetic acoustic receiver,” Appl. Phys. Lett. 49, 374–376 (1986).
[Crossref]

D. L. Singleton, G. Paraskevopoulos, G. S. Jolly, R. S. Irwin, D. J. McKenney, W. S. Nip, E. M. Farrell, and L. A. J. Higginson, “Excimer lasers in cardiovascular surgery: ablation products and photoacoustic spectrum of the arterial wall,” Appl. Phys. Lett. 48, 878–880 (1986).
[Crossref]

K. Wada, T. Masujima, H. Yoshida, T. Murakami, N. Yata, and H. Imai, “Application of photoacoustic microscopy to analysis of biological components in tissue sections,” Chem. Pharm. Bull. 34, 1688–1693 (1986).
[Crossref]

J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485–499 (1986).
[Crossref]

1985 (2)

D. A. Hutchins and D. E. Wilkins, “Elastic waveforms using laser generation and electromagnetic acoustic transducer detection,” J. Appl. Phys. 58, 2469–2477 (1985).
[Crossref]

J. P. Monchalin, “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer,” Appl. Phys. Lett. 47, 14–16 (1985).
[Crossref]

1984 (2)

A. C. Tam, “Pulsed-laser generation of ultrashort acoustic pulses: application for thin-film ultrasonic measurements,” Appl. Phys. Lett. 45, 510–512 (1984).
[Crossref]

A. Mandelis, “Frequency-domain photopyroelectric spectroscopy of condensed phases (PPES): a new, simple and powerful spectroscopic technique,” Chem. Phys. Lett. 108, 388–392 (1984).
[Crossref]

1983 (2)

R. G. Olsen and J. C. Lin, “Acoustical imaging of a model of a human hand using pulsed microwave irradiation,” Bioelectromagnetics 4, 397–400 (1983).
[Crossref]

K. Y. Kim and W. Sachse, “X-ray generated ultrasound,” Appl. Phys. Lett. 43, 1099–1101 (1983).
[Crossref]

1982 (2)

R. G. Olsen, “Generation of acoustical images from the absorption of pulsed microwave energy,” Acoust. Imaging 11, 53–59 (1982).
[Crossref]

A. Rosencwaig, “Thermal-wave imaging,” Science 218, 223–228 (1982).
[Crossref]

1981 (1)

C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
[Crossref]

1980 (7)

R. G. Olsen and W. C. Hammer, “Microwave-induced pressure waves in a model of muscle tissue,” Bioelectromagnetics 1, 45–54 (1980).
[Crossref]

R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo, and A. Rosencwaig, “Subsurface flaw detection in metals by photoacoustic microscopy,” J. Appl. Phys. 51, 1152–1156 (1980).
[Crossref]

G. Busse, “Imaging with the optoacoustic effect,” Opt. Laser Technol. 12, 149–154 (1980).
[Crossref]

F. A. McDonald, “Photoacoustic effect and the physics of waves,” Am. J. Phys. 48, 41–47 (1980).
[Crossref]

A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[Crossref]

A. Rosencwaig, “Thermal wave microscopy with photoacoustics,” J. Appl. Phys. 51, 2210–2211 (1980).
[Crossref]

F. M. Mims, “Alexander Graham Bell and the photophone: the centennial of the invention of light-wave communications, 1880–1980,” Opt. News 6(1), 8–16 (1980).
[Crossref]

1979 (4)

P. E. Nordal and S. O. Kanstad, “Photothermal radiometry,” Phys. Scripta 20, 659–662 (1979).
[Crossref]

M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett. 15, 325–326 (1979).
[Crossref]

S. D. Campbell, S. S. Yee, and M. A. Afromowitz, “Applications of photoacoustic spectroscopy to problems in dermatology research,” IEEE Trans. Biomed. Eng. BME-26, 220–227 (1979).
[Crossref]

H. M. Ledbetter and J. C. Moulder, “Laser-induced Rayleigh waves in aluminium,” J. Acoust. Soc. Am. 65, 840–842 (1979).
[Crossref]

1978 (6)

M. W. Sigrist and F. K. Kneubühl, “Laser-generated stress waves in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
[Crossref]

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[Crossref]

C. B. Scruby and H. N. G. Wadley, “A calibrated capacitance transducer for the detection of acoustic emission,” J. Phys. D 11, 1487–1494 (1978).
[Crossref]

A. Rosencwaig, “Photoacoustic spectroscopy,” Adv. Electron. Electron Phys. 46, 207–311 (1978).
[Crossref]

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32, 538–539 (1978).
[Crossref]

F. A. McDonald and G. C. Wetsel, “Generalized theory of the photoacoustic effect,” J. Appl. Phys. 49, 2313–2322 (1978).
[Crossref]

1977 (3)

D. Borth and C. A. Cain, “Theoretical analysis of acoustic signal generation in materials irradiated with microwave energy,” IEEE Trans. Microwave Theory Tech. 25, 944–954 (1977).
[Crossref]

R. J. Von Gutfeld and R. L. Melcher, “MHz acoustic waves from pulsed thermoelastic expansions and their application to flaw detection,” Mater. Eval. 35, 97–99 (1977).

S. G. Kasoev and L. M. Lyamshev, “Theory of laser-pulse generation of sound in a liquid,” Sov. Phys. Acoust. 23, 510–514 (1977).

1976 (3)

E. F. Kozyaev and K. A. Naugol’nikh, “On thermal acousto-optic effect,” Acoust. J. 22, 366–369 (1976).

A. N. Bondarenko, Yu. B. Drobot, and S. V. Kruglov, “Optical excitation and registration of nanosecond pulses in non-destructive testing,” Defectoskopiya 6, 85–88 (1976) [in Russian].

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64–69 (1976).
[Crossref]

1975 (4)

A. Rosencwaig and A. Gersho, “Photoacoustic effect with solids: a theoretical treatment,” Science 190, 556–557 (1975).
[Crossref]

K. F. Luft, “Infrared techniques for the measurement of carbon monoxide,” Ann. Occup. Hyg. 18, 45–51 (1975).
[Crossref]

A. Rosencwaig, “Photoacoustic spectroscopy. New tool for investigation of solids,” Anal. Chem. 47, 592A–604A (1975).
[Crossref]

A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Phys. Today 28(9), 23–30 (1975).
[Crossref]

1974 (2)

K. R. Foster and E. D. Finch, “Microwave hearing: evidence for thermoacoustic auditory stimulation by pulsed microwaves,” Science 185, 256–258 (1974).
[Crossref]

J. C. Sharp, H. M. Grove, and O. P. Gandhi, “Generation of acoustic signals by pulsed microwave energy,” IEEE Trans. Microwave Theory Tech. 22, 583–584 (1974).
[Crossref]

1973 (6)

A. H. Frey and R. Messenger, “Human perception of illumination with pulsed ultrahigh-frequency electromagnetic energy,” Science 181, 356–358 (1973).
[Crossref]

J. G. Parker, “Optical absorption in glass: investigation using an acoustic technique,” Appl. Opt. 12, 2974–2977 (1973).
[Crossref]

A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Opt. Commun. 7, 305–308 (1973).
[Crossref]

W. R. Harshbarger and M. B. Robin, “Opto-acoustic effect. Revival of an old technique for molecular spectroscopy,” Acc. Chem. Res. 6, 329–334 (1973).
[Crossref]

G. M. Sessler and J. E. West, “Electret transducers: a review,” J. Acoust. Soc. Am. 53, 1589–1600 (1973).
[Crossref]

A. Rosencwaig, “Photoacoustic spectroscopy of biological materials,” Science 181, 657–658 (1973).
[Crossref]

1971 (1)

L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42, 2934–2943 (1971).
[Crossref]

1969 (2)

C. L. Hu, “Spherical model of an acoustical wave generated by rapid laser heating in a liquid,” J. Acoust. Soc. Am. 46, 728–736 (1969).
[Crossref]

S. F. Cleary and P. E. Hamrick, “Laser-induced acoustic transients in the mammalian eye,” J. Acoust. Soc. Am. 46, 1037–1044 (1969).
[Crossref]

1968 (1)

1966 (2)

T. L. Cottrell, I. M. Macfarlane, A. W. Read, and A. H. Young, “Measurement of vibrational relaxation times by the spectrophone. Application to CH4, CO2, N2O, COS, NH3 and HCN,” Trans. Faraday Soc. 62, 2655–2666 (1966).
[Crossref]

L. S. Gournay, “Conversion of electromagnetic to acoustic energy by surface heating,” J. Acoust. Soc. Am. 40, 1322–1330 (1966).
[Crossref]

1965 (1)

L. Amar, M. Bruma, M. Velghe, and P. Desvigne, “On detection of laser induced ultrasonic waves in human eye and elaboration of a theory of fundamental mechanism of vision,” Z. Angew. Math. Phys. 16, 182–183 (1965).
[Crossref]

1964 (2)

L. Amar, M. Bruma, P. Desvignes, M. Leblanc, G. Perdriel, and M. Velghe, “Detection, d’ondes élastiques (ultrasonores) sur l’os occipital, induites par impulsions laser dans l’oeil d’un lapin,” C. R. Acad. Sci. Paris 259, 3653–3655 (1964).

E. F. Carome, N. A. Clark, and C. E. Moeller, “Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[Crossref]

1963 (3)

R. M. White, “Generation of elastic waves by transient surface heating,” J. Appl. Phys. 34, 3559–3567 (1963).
[Crossref]

G. A. Askaryan, A. M. Prokhorov, G. F. Chanturia, and G. P. Shipulo, “Propagation of a laser beam through a liquid,” Zh. Eksp. Teor. Fiz. 44, 2180–2182 (1963).

R. M. White, “Elastic wave generation by electron bombardment or electromagnetic wave absorption,” J. Appl. Phys. 34, 2123–2124 (1963).

1962 (1)

R. M. White, “An elastic wave method for the measurement of pulse-power density,” IRE Trans. Instrum. I-11, 294–298 (1962).
[Crossref]

1961 (2)

J. E. Michaels, “Thermal impact—the mechanical response of solids to extreme electromagnetic radiation,” Planet. Space Sci. 7, 427–433 (1961).
[Crossref]

A. H. Frey, “Auditory system response to radio frequency energy,” Aerosp. Med. 32, 1140–1142 (1961).

1959 (2)

R. Kaiser, “On the theory of the spectrophone,” Can. J. Phys. 37, 1499–1513 (1959).
[Crossref]

M. E. Delany, “The optic-acoustic effect in gases,” Sci. Prog. 47, 459–467 (1959).

1953 (1)

G. Vasilev and M. Zhabotinskii, “Measurements of power of centimeter waves by thermoacoustic method,” J. Exp. Theor. Phys. USSR 24, 571–574 (1953) [in Russian].

1952 (1)

J. J. Wild and J. M. Reid, “Application of echo-ranging techniques to the determination of structure of biological tissues,” Science 115, 226–230 (1952).

1950 (1)

T. L. Cottrell, “The absorption of interrupted infra-red radiation,” Trans. Faraday Soc. 46, 1025–1030 (1950).
[Crossref]

1948 (1)

P. V. Slobodskaya, “Determination of the energy transfer rate from vibrational to translational molecular motion by means of a spectrophone,” Izvest. Akad. Nauk SSSR 12, 656–662 (1948) [in Russian].

1946 (2)

G. Gorelik, “On a possible method of studying the energy exchange time between the different degrees of freedom of molecules in a gas,” Dokl. Akad. Nauk SSSR 54, 779 (1946) [in Russian].

M. L. Veingerov, “An optical-acoustic method of gas analysis,” Nature 158, 28–29 (1946).
[Crossref]

1945 (1)

M. L. Veingerov, “Spectrophone - an instrument for investigation of infrared absorption spectra of gases and for quantitative and qualitative spectrum analysis of multicomponent gas mixtures,” Dokl. Akad. Nauk SSSR 46, 182 (1945) [in Russian].

1943 (1)

K. F. Luft, “Über eine neue methode der registrierenden Gasanalyse mit Hilfe der absorption ultraroter Strahlen ohne spektrale Zerlegung,” Z. Tech. Phys. 5, 97–104 (1943).

1942 (1)

K. T. Dussik, “Über die Möglichkeit, hochfrequente mechanische Schwingungen als diagnostisches Hilfsmittel zu verwerten [On the possibility of using ultrasound waves as a diagnostic aid],” Z. gesamte Neurol. Psychiat. 174, 153–168 (1942).
[Crossref]

1939 (1)

A. H. Pfund, “Atmospheric contamination,” Science 90, 326–327 (1939).
[Crossref]

1938 (1)

M. L. Veingerov, “A method of gas analysis based on the Tyndall-Röntgen optico-acoustic effect,” Dokl. Akad. Nauk SSSR 19, 687–688 (1938).

1927 (1)

R. W. Wood and A. L. Loomis, “The physical and biological effects of high frequency sound-waves of great intensity,” Philos. Mag. 4(22), 417–436 (1927).
[Crossref]

1918 (1)

A. O. Rankine, “On the transmission of speech by light,” Proc. Phys. Soc. London 31, 242–268 (1918).
[Crossref]

1898 (1)

F. Braun, “Notiz über thermophonie,” Ann. Phys. 301, 358–360 (1898).
[Crossref]

1888 (1)

M. Hirn, “The sound of thunder,” Sci. Am. 59, 201 (1888).
[Crossref]

1881 (7)

W. H. Preece, “Radiophony,” J. Soc. Telegraph Eng. Electr. 10, 212–231 (1881).

W. C. Röntgen, “Ueber Töne, welche durch intermittirende Bestrahlung eines Gases entstehen,” Ann. Phys. 248, 155–159 (1881).
[Crossref]

A. G. Bell, “Production of sound by radiant energy,” J. Franklin Inst. 111, 401–428 (1881).
[Crossref]

A. G. Bell, “The spectrophone,” Bull. Philos. Soc. 4, 42 (1881).

Rayleigh, “The photophone,” Nature 23, 274–275 (1881).
[Crossref]

E. Mercadier, “Sur la radiophonie,” J. Phys. Theor. Appl. 10, 53–68 (1881).
[Crossref]

E. Mercadier, “Sur la radiophonie (2e mémoire),” J. Phys. Theor. Appl. 10, 147–154 (1881).

1880 (5)

W. H. Preece, “On the conversion of radiant energy into sonorous vibrations,” Proc. R. Soc. London 31, 506–520 (1880).
[Crossref]

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 118, 305–324 (1880).
[Crossref]

A. G. Bell, “Selenium and the photophone,” Nature 22, 500–503 (1880).
[Crossref]

J. Tyndall, “Action of an intermittent beam of radiant heat upon gaseous matter,” Proc. R. Soc. London 31, 307–317 (1880).
[Crossref]

J. Curie and P. Curie, “Développement par pression de l’électricité polaire dans les cristaux hémièdres à faces inclines,” Comptes Rendus 91, 294–295 (1880).

1873 (1)

W. Smith, “The action of light on selenium,” J. Soc. Telegraph Eng. 2, 31–33 (1873).
[Crossref]

1861 (1)

A. J. Ångström, “Neue methode, das Wärmeleitungsvermögen der Körper zu bestimmen,” Ann. Phys. Chem. 190, 513–530 (1861).
[Crossref]

1859 (1)

P. L. Rijke, “Notice of a new method of causing a vibration of the air contained in a tube open at both ends,” Philos. Mag. 17(116), 419–422 (1859).

1850 (1)

C. Sondhauss, “Über die Schallschwingungen der Luft in erhitzten Glasröhren und in gedeckten Pfeifen von ungleicher Weite,” Ann. Phys. 155, 1–34 (1850).
[Crossref]

1802 (1)

B. Higgins, “On the sound produced by a current of hydrogen gas passing through a tube,” J. Nat. Philos. Chem. Arts 1, 129–131 (1802).

Afromowitz, M. A.

S. D. Campbell, S. S. Yee, and M. A. Afromowitz, “Applications of photoacoustic spectroscopy to problems in dermatology research,” IEEE Trans. Biomed. Eng. BME-26, 220–227 (1979).
[Crossref]

Aindow, A. M.

A. M. Aindow, J. A. Cooper, R. J. Dewhurst, and S. B. Palmer, “A spherical capacitance transducer for ultrasonic displacement measurements in NDE,” J. Phys. E 20, 204–209 (1987).
[Crossref]

Aisen, A. M.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[Crossref]

Al Dhahir, R. K.

R. K. Al Dhahir, P. E. Dyer, and Z. Zhu, “Photoacoustic studies and selective ablation of vascular tissue using a pulsed dye laser,” Appl. Phys. B 51, 81–85 (1990).
[Crossref]

Al-Dhahir, R. K.

F. W. Cross, R. K. Al-Dhahir, and P. E. Dyer, “Ablation and acoustic response of pulsed laser irradiated vascular tissue in liquid,” Proc. SPIE 0908, 139–144 (1988).
[Crossref]

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, and A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50, 1019–1021 (1987).

Amar, L.

L. Amar, M. Bruma, M. Velghe, and P. Desvigne, “On detection of laser induced ultrasonic waves in human eye and elaboration of a theory of fundamental mechanism of vision,” Z. Angew. Math. Phys. 16, 182–183 (1965).
[Crossref]

L. Amar, M. Bruma, P. Desvignes, M. Leblanc, G. Perdriel, and M. Velghe, “Detection, d’ondes élastiques (ultrasonores) sur l’os occipital, induites par impulsions laser dans l’oeil d’un lapin,” C. R. Acad. Sci. Paris 259, 3653–3655 (1964).

Andreev, V. A.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352–363 (1999).
[Crossref]

Ångström, A. J.

A. J. Ångström, “Neue methode, das Wärmeleitungsvermögen der Körper zu bestimmen,” Ann. Phys. Chem. 190, 513–530 (1861).
[Crossref]

Appledorn, C. R.

R. A. Kruger, P. Liu, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[Crossref]

Askaryan, G. A.

G. A. Askaryan, A. M. Prokhorov, G. F. Chanturia, and G. P. Shipulo, “Propagation of a laser beam through a liquid,” Zh. Eksp. Teor. Fiz. 44, 2180–2182 (1963).

Atwood, J. G.

Aussel, J. D.

J. D. Aussel and J. P. Monchalin, “Precision laser-ultrasonic velocity measurement and elastic constant determination,” Ultrasonics 27, 165–177 (1989).
[Crossref]

Bachmann, H. S.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Badoz, J.

A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[Crossref]

Bamber, J. C.

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localized vibration tagging (LOVIT),” Photoacoustics 1, 19–29 (2013).
[Crossref]

Beard, P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1, 602–631 (2011).
[Crossref]

Beard, P. C.

P. C. Beard and T. N. Mills, “Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532  nm,” Phys. Med. Biol. 42, 177–198 (1997).
[Crossref]

Bell, A. G.

A. G. Bell, “Production of sound by radiant energy,” J. Franklin Inst. 111, 401–428 (1881).
[Crossref]

A. G. Bell, “The spectrophone,” Bull. Philos. Soc. 4, 42 (1881).

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 118, 305–324 (1880).
[Crossref]

A. G. Bell, “Selenium and the photophone,” Nature 22, 500–503 (1880).
[Crossref]

Berger, A. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[Crossref]

Bergmann, L.

L. Bergmann, Der Ultraschall und seine Anwendungen in Wissenschaft und Technik (VDI-Verlag, 1937).

Bevilacqua, F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[Crossref]

Bigliardi, P. L.

S. J. Ford, P. L. Bigliardi, T. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Invest. Dermatol. 136, 753–761 (2016).
[Crossref]

Biswas, S. K.

P. Van Es, S. K. Biswas, H. J. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19, 060501 (2014).
[Crossref]

Boccara, A. C.

A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[Crossref]

Bondarenko, A. N.

A. N. Bondarenko, Yu. B. Drobot, and S. V. Kruglov, “Optical excitation and registration of nanosecond pulses in non-destructive testing,” Defectoskopiya 6, 85–88 (1976) [in Russian].

Borth, D.

D. Borth and C. A. Cain, “Theoretical analysis of acoustic signal generation in materials irradiated with microwave energy,” IEEE Trans. Microwave Theory Tech. 25, 944–954 (1977).
[Crossref]

Bowen, T.

T. Bowen, “Radiation-induced thermoacoustic soft tissue imaging,” in Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 817–822.

T. Bowen, R. L. Nasoni, A. E. Pifer, and G. H. Sembroski, “Some experimental results on the thermoacoustic imaging of tissue equivalent phantom materials,” in Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 823–827.

R. L. Nasoni, G. A. Evanoff, P. G. Halverson, and T. Bowen, “Thermoacoustic emission by deeply penetrating microwave radiation,” in Proceedings 1984 Ultrasonics Symposium (IEEE, 1984), pp. 633–638.

Braun, F.

F. Braun, “Notiz über thermophonie,” Ann. Phys. 301, 358–360 (1898).
[Crossref]

Bray, R. C.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[Crossref]

Bruma, M.

L. Amar, M. Bruma, M. Velghe, and P. Desvigne, “On detection of laser induced ultrasonic waves in human eye and elaboration of a theory of fundamental mechanism of vision,” Z. Angew. Math. Phys. 16, 182–183 (1965).
[Crossref]

L. Amar, M. Bruma, P. Desvignes, M. Leblanc, G. Perdriel, and M. Velghe, “Detection, d’ondes élastiques (ultrasonores) sur l’os occipital, induites par impulsions laser dans l’oeil d’un lapin,” C. R. Acad. Sci. Paris 259, 3653–3655 (1964).

Burton, N. C.

S. J. Ford, P. L. Bigliardi, T. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Invest. Dermatol. 136, 753–761 (2016).
[Crossref]

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Busse, G.

G. Busse, “Imaging with the optoacoustic effect,” Opt. Laser Technol. 12, 149–154 (1980).
[Crossref]

Butler, J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[Crossref]

Cain, C. A.

D. Borth and C. A. Cain, “Theoretical analysis of acoustic signal generation in materials irradiated with microwave energy,” IEEE Trans. Microwave Theory Tech. 25, 944–954 (1977).
[Crossref]

Campbell, S. D.

S. D. Campbell, S. S. Yee, and M. A. Afromowitz, “Applications of photoacoustic spectroscopy to problems in dermatology research,” IEEE Trans. Biomed. Eng. BME-26, 220–227 (1979).
[Crossref]

Carome, E. F.

E. F. Carome, N. A. Clark, and C. E. Moeller, “Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[Crossref]

Carslaw, H. S.

H. S. Carslaw and J. C. Jaeger, Heat Conduction in Solids (Clarendon, 1959).

Carson, P. L.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18, 010502 (2013).
[Crossref]

Cerussi, A. E.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[Crossref]

Chang, J.-Y.

L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
[Crossref]

Chanturia, G. F.

G. A. Askaryan, A. M. Prokhorov, G. F. Chanturia, and G. P. Shipulo, “Propagation of a laser beam through a liquid,” Zh. Eksp. Teor. Fiz. 44, 2180–2182 (1963).

Chen, Q. X.

Q. X. Chen, R. J. Dewhurst, P. A. Payne, and A. Davies, “Photo-acoustic probe for intra-arterial imaging and therapy,” Electron. Lett. 29, 1632–1633 (1993).
[Crossref]

Chen, Y.-Y.

L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
[Crossref]

Chilowsky, C. M.

C. M. Chilowsky and M. P. Langévin, “Procédés et appareils pour la production de signaux sous-marins dirigés et pour la localisation á distance d’obstacles sous-marins,” French patentFR502913 (May 29, 1916).

Chou, C. K.

J. A. Elder and C. K. Chou, “Auditory response to pulsed radiofrequency energy,” Bioelectromagnetics 24, S162–S173 (2003).
[Crossref]

Cicenaite, I.

Clark, N. A.

E. F. Carome, N. A. Clark, and C. E. Moeller, “Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[Crossref]

Claussen, J.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Cleary, S. F.

S. F. Cleary and P. E. Hamrick, “Laser-induced acoustic transients in the mammalian eye,” J. Acoust. Soc. Am. 46, 1037–1044 (1969).
[Crossref]

Conjusteau, A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref]

Cooper, J. A.

A. M. Aindow, J. A. Cooper, R. J. Dewhurst, and S. B. Palmer, “A spherical capacitance transducer for ultrasonic displacement measurements in NDE,” J. Phys. E 20, 204–209 (1987).
[Crossref]

Cottrell, T. L.

T. L. Cottrell, I. M. Macfarlane, A. W. Read, and A. H. Young, “Measurement of vibrational relaxation times by the spectrophone. Application to CH4, CO2, N2O, COS, NH3 and HCN,” Trans. Faraday Soc. 62, 2655–2666 (1966).
[Crossref]

T. L. Cottrell, “The absorption of interrupted infra-red radiation,” Trans. Faraday Soc. 46, 1025–1030 (1950).
[Crossref]

Cox, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Cross, F. W.

F. W. Cross, R. K. Al-Dhahir, and P. E. Dyer, “Ablation and acoustic response of pulsed laser irradiated vascular tissue in liquid,” Proc. SPIE 0908, 139–144 (1988).
[Crossref]

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, and A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50, 1019–1021 (1987).

Curie, J.

J. Curie and P. Curie, “Développement par pression de l’électricité polaire dans les cristaux hémièdres à faces inclines,” Comptes Rendus 91, 294–295 (1880).

Curie, P.

J. Curie and P. Curie, “Développement par pression de l’électricité polaire dans les cristaux hémièdres à faces inclines,” Comptes Rendus 91, 294–295 (1880).

Davies, A.

Q. X. Chen, R. J. Dewhurst, P. A. Payne, and A. Davies, “Photo-acoustic probe for intra-arterial imaging and therapy,” Electron. Lett. 29, 1632–1633 (1993).
[Crossref]

Davies, S. J.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
[Crossref]

de Mul, F. F.

C. G. Hoelen, G. Hamhuis, N. Pagoulatos, I. van den Ham, F. F. de Mul, and J. Greve, “Photoacoustic location of optical absorbers in phantom tissue,” Proc. SPIE 2927, 142–153 (1996).
[Crossref]

De Mul, F. F. M.

Deán-Ben, X. L.

S. Gottschalk, T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Non-invasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography,” J. Cereb. Blood Flow Metab. 35, 531–535 (2015).
[Crossref]

X. L. Deán-Ben and D. Razansky, “Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally-enriched tomography,” Light Sci. Appl. 3, e137 (2014).
[Crossref]

Dehghani, H.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. R. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[Crossref]

Dekker, A.

Del Rio, S. P.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40, 113301 (2013).
[Crossref]

Delany, M. E.

M. E. Delany, “The optic-acoustic effect in gases,” Sci. Prog. 47, 459–467 (1959).

Desvigne, P.

L. Amar, M. Bruma, M. Velghe, and P. Desvigne, “On detection of laser induced ultrasonic waves in human eye and elaboration of a theory of fundamental mechanism of vision,” Z. Angew. Math. Phys. 16, 182–183 (1965).
[Crossref]

Desvignes, P.

L. Amar, M. Bruma, P. Desvignes, M. Leblanc, G. Perdriel, and M. Velghe, “Detection, d’ondes élastiques (ultrasonores) sur l’os occipital, induites par impulsions laser dans l’oeil d’un lapin,” C. R. Acad. Sci. Paris 259, 3653–3655 (1964).

Dewhurst, R. J.

Q. X. Chen, R. J. Dewhurst, P. A. Payne, and A. Davies, “Photo-acoustic probe for intra-arterial imaging and therapy,” Electron. Lett. 29, 1632–1633 (1993).
[Crossref]

A. M. Aindow, J. A. Cooper, R. J. Dewhurst, and S. B. Palmer, “A spherical capacitance transducer for ultrasonic displacement measurements in NDE,” J. Phys. E 20, 204–209 (1987).
[Crossref]

R. J. Dewhurst, C. Edwards, and S. B. Palmer, “Noncontact detection of surface-breaking cracks using a laser acoustic source and an electromagnetic acoustic receiver,” Appl. Phys. Lett. 49, 374–376 (1986).
[Crossref]

Deyo, D. J.

Drain, L. E.

C. B. Scruby and L. E. Drain, Laser Ultrasonics Techniques and Applications (CRC Press, 1990).

Drobot, Yu. B.

A. N. Bondarenko, Yu. B. Drobot, and S. V. Kruglov, “Optical excitation and registration of nanosecond pulses in non-destructive testing,” Defectoskopiya 6, 85–88 (1976) [in Russian].

Duck, F. A.

F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic, 1990).

Duong, T. Q.

L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
[Crossref]

Dussik, K. T.

K. T. Dussik, “Über die Möglichkeit, hochfrequente mechanische Schwingungen als diagnostisches Hilfsmittel zu verwerten [On the possibility of using ultrasound waves as a diagnostic aid],” Z. gesamte Neurol. Psychiat. 174, 153–168 (1942).
[Crossref]

Dyer, P. E.

R. K. Al Dhahir, P. E. Dyer, and Z. Zhu, “Photoacoustic studies and selective ablation of vascular tissue using a pulsed dye laser,” Appl. Phys. B 51, 81–85 (1990).
[Crossref]

F. W. Cross, R. K. Al-Dhahir, and P. E. Dyer, “Ablation and acoustic response of pulsed laser irradiated vascular tissue in liquid,” Proc. SPIE 0908, 139–144 (1988).
[Crossref]

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, and A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50, 1019–1021 (1987).

Edwards, C.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
[Crossref]

R. J. Dewhurst, C. Edwards, and S. B. Palmer, “Noncontact detection of surface-breaking cracks using a laser acoustic source and an electromagnetic acoustic receiver,” Appl. Phys. Lett. 49, 374–376 (1986).
[Crossref]

Elder, J. A.

J. A. Elder and C. K. Chou, “Auditory response to pulsed radiofrequency energy,” Bioelectromagnetics 24, S162–S173 (2003).
[Crossref]

Emelianov, S.

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29, 213–221 (2011).
[Crossref]

Emelianov, S. Y.

M. Mehrmohammadi, S. J. Yoon, D. Yeager, and S. Y. Emelianov, “Photoacoustic imaging for cancer detection and staging,” Curr. Mol. Imaging 2, 89–105 (2013).
[Crossref]

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref]

Esenaliev, R. O.

I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough, “Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system,” Opt. Express 17, 7285–7294 (2009).
[Crossref]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[Crossref]

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352–363 (1999).
[Crossref]

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, and A. A. Oraevsky, “Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with x-ray and ultrasound imaging,” Proc. SPIE 2979, 71–82 (1997).
[Crossref]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: principles,” Proc. SPIE 2676, 22–31 (1996).
[Crossref]

R. O. Esenaliev, A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: experiments with biological tissues,” Proc. SPIE 2676, 84–90 (1996).
[Crossref]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, S. L. Thomsen, and F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” Proc. SPIE 2389, 198–208 (1995).
[Crossref]

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134, 122–128 (1994).

Evanoff, G. A.

R. L. Nasoni, G. A. Evanoff, P. G. Halverson, and T. Bowen, “Thermoacoustic emission by deeply penetrating microwave radiation,” in Proceedings 1984 Ultrasonics Symposium (IEEE, 1984), pp. 633–638.

Farrell, E. M.

D. L. Singleton, G. Paraskevopoulos, G. S. Jolly, R. S. Irwin, D. J. McKenney, W. S. Nip, E. M. Farrell, and L. A. J. Higginson, “Excimer lasers in cardiovascular surgery: ablation products and photoacoustic spectrum of the arterial wall,” Appl. Phys. Lett. 48, 878–880 (1986).
[Crossref]

Favro, L. D.

R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo, and A. Rosencwaig, “Subsurface flaw detection in metals by photoacoustic microscopy,” J. Appl. Phys. 51, 1152–1156 (1980).
[Crossref]

Fawzi, A.

Fehm, T. F.

S. Gottschalk, T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Non-invasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography,” J. Cereb. Blood Flow Metab. 35, 531–535 (2015).
[Crossref]

Finch, E. D.

K. R. Foster and E. D. Finch, “Microwave hearing: evidence for thermoacoustic auditory stimulation by pulsed microwaves,” Science 185, 256–258 (1974).
[Crossref]

Fleming, R. D.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352–363 (1999).
[Crossref]

Ford, S. J.

S. J. Ford, P. L. Bigliardi, T. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Invest. Dermatol. 136, 753–761 (2016).
[Crossref]

Fornage, B. D.

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, and A. A. Oraevsky, “Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with x-ray and ultrasound imaging,” Proc. SPIE 2979, 71–82 (1997).
[Crossref]

Foster, K. R.

K. R. Foster and E. D. Finch, “Microwave hearing: evidence for thermoacoustic auditory stimulation by pulsed microwaves,” Science 185, 256–258 (1974).
[Crossref]

Fournier, D.

A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[Crossref]

Fowlkes, J. B.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18, 010502 (2013).
[Crossref]

Frenz, M.

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localized vibration tagging (LOVIT),” Photoacoustics 1, 19–29 (2013).
[Crossref]

G. Paltauf, H. Schmidt-Kloiber, K. Koestli, and M. Frenz, “Two-dimensional recording of optoacoustic waves,” Proc. SPIE 3601, 248–255 (1999).
[Crossref]

Frey, A. H.

A. H. Frey and R. Messenger, “Human perception of illumination with pulsed ultrahigh-frequency electromagnetic energy,” Science 181, 356–358 (1973).
[Crossref]

A. H. Frey, “Auditory system response to radio frequency energy,” Aerosp. Med. 32, 1140–1142 (1961).

Galanzha, E. I.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4, 855–860 (2009).
[Crossref]

Gandhi, O. P.

J. C. Sharp, H. M. Grove, and O. P. Gandhi, “Generation of acoustic signals by pulsed microwave energy,” IEEE Trans. Microwave Theory Tech. 22, 583–584 (1974).
[Crossref]

Gatalica, Z.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352–363 (1999).
[Crossref]

Gersho, A.

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64–69 (1976).
[Crossref]

A. Rosencwaig and A. Gersho, “Photoacoustic effect with solids: a theoretical treatment,” Science 190, 556–557 (1975).
[Crossref]

Gibson, J. J.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. R. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[Crossref]

Girin, O. P.

B. I. Stepanov and O. P. Girin, Zh. Eksp. Teor. Ftz.20, 947 (1950) [in Russian].

Girish, G.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18, 010502 (2013).
[Crossref]

Gorelik, G.

G. Gorelik, “On a possible method of studying the energy exchange time between the different degrees of freedom of molecules in a gas,” Dokl. Akad. Nauk SSSR 54, 779 (1946) [in Russian].

Gottschalk, S.

S. Gottschalk, T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Non-invasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography,” J. Cereb. Blood Flow Metab. 35, 531–535 (2015).
[Crossref]

Gournay, L. S.

L. S. Gournay, “Conversion of electromagnetic to acoustic energy by surface heating,” J. Acoust. Soc. Am. 40, 1322–1330 (1966).
[Crossref]

Greve, J.

C. G. Hoelen, G. Hamhuis, N. Pagoulatos, I. van den Ham, F. F. de Mul, and J. Greve, “Photoacoustic location of optical absorbers in phantom tissue,” Proc. SPIE 2927, 142–153 (1996).
[Crossref]

Griewank, K.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Groth, M.

M. Groth, “Photophones revisited,” in Amateur Radio Magazine (Wireless Institute of Australia, 1987), pp. 12–17.

Grove, H. M.

J. C. Sharp, H. M. Grove, and O. P. Gandhi, “Generation of acoustic signals by pulsed microwave energy,” IEEE Trans. Microwave Theory Tech. 22, 583–584 (1974).
[Crossref]

Gunzer, M.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Gusev, V. E.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, 1993).

Halverson, P. G.

R. L. Nasoni, G. A. Evanoff, P. G. Halverson, and T. Bowen, “Thermoacoustic emission by deeply penetrating microwave radiation,” in Proceedings 1984 Ultrasonics Symposium (IEEE, 1984), pp. 633–638.

Hamhuis, G.

C. G. Hoelen, G. Hamhuis, N. Pagoulatos, I. van den Ham, F. F. de Mul, and J. Greve, “Photoacoustic location of optical absorbers in phantom tissue,” Proc. SPIE 2927, 142–153 (1996).
[Crossref]

Hammer, W. C.

R. G. Olsen and W. C. Hammer, “Microwave-induced pressure waves in a model of muscle tissue,” Bioelectromagnetics 1, 45–54 (1980).
[Crossref]

Hamrick, P. E.

S. F. Cleary and P. E. Hamrick, “Laser-induced acoustic transients in the mammalian eye,” J. Acoust. Soc. Am. 46, 1037–1044 (1969).
[Crossref]

Harshbarger, W. R.

W. R. Harshbarger and M. B. Robin, “Opto-acoustic effect. Revival of an old technique for molecular spectroscopy,” Acc. Chem. Res. 6, 329–334 (1973).
[Crossref]

Hawkins, G. F.

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32, 538–539 (1978).
[Crossref]

Heijblom, M.

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6, 42–46 (2015).
[Crossref]

Helfrich, I.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Heyman, J. S.

H. I. Ringermacher and J. S. Heyman, “Observation of a sono-acoustic effect using piezoelectric thermo-acoustic detection,” in Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 840–843.

Higgins, B.

B. Higgins, “On the sound produced by a current of hydrogen gas passing through a tube,” J. Nat. Philos. Chem. Arts 1, 129–131 (1802).

Higginson, L. A. J.

D. L. Singleton, G. Paraskevopoulos, G. S. Jolly, R. S. Irwin, D. J. McKenney, W. S. Nip, E. M. Farrell, and L. A. J. Higginson, “Excimer lasers in cardiovascular surgery: ablation products and photoacoustic spectrum of the arterial wall,” Appl. Phys. Lett. 48, 878–880 (1986).
[Crossref]

Hillen, U.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Hirn, M.

M. Hirn, “The sound of thunder,” Sci. Am. 59, 201 (1888).
[Crossref]

Hoelen, C. G.

C. G. Hoelen, G. Hamhuis, N. Pagoulatos, I. van den Ham, F. F. de Mul, and J. Greve, “Photoacoustic location of optical absorbers in phantom tissue,” Proc. SPIE 2927, 142–153 (1996).
[Crossref]

Hoelen, C. G. A.

Holcombe, R. F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[Crossref]

Howry, D. H.

D. H. Howry, “Sound-wave portrait in the flesh,” in Life Magazine (Medicine Section) (1954), pp. 71–72.

Hu, C. L.

C. L. Hu, “Spherical model of an acoustical wave generated by rapid laser heating in a liquid,” J. Acoust. Soc. Am. 46, 728–736 (1969).
[Crossref]

Hu, J.

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

Huang, C.-H.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Hutchins, D. A.

D. A. Hutchins and D. E. Wilkins, “Elastic waveforms using laser generation and electromagnetic acoustic transducer detection,” J. Appl. Phys. 58, 2469–2477 (1985).
[Crossref]

Imai, H.

K. Wada, T. Masujima, H. Yoshida, T. Murakami, N. Yata, and H. Imai, “Application of photoacoustic microscopy to analysis of biological components in tissue sections,” Chem. Pharm. Bull. 34, 1688–1693 (1986).
[Crossref]

T. Masujima, Y. Munekane, C. Kawai, H. Yoshida, H. Imai, L. Juing-Yi, and Y. Sato, “Photoacoustic imaging immunoassay for biological component microanalysis,” in Photoacoustic and Photothermal Phenomena, P. D. P. Hess and P. D. J. Pelzl, eds. (Springer-Verlag, 1988), pp. 558–569.

Irwin, R. S.

D. L. Singleton, G. Paraskevopoulos, G. S. Jolly, R. S. Irwin, D. J. McKenney, W. S. Nip, E. M. Farrell, and L. A. J. Higginson, “Excimer lasers in cardiovascular surgery: ablation products and photoacoustic spectrum of the arterial wall,” Appl. Phys. Lett. 48, 878–880 (1986).
[Crossref]

Jacques, S. L.

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[Crossref]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
[Crossref]

R. O. Esenaliev, A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: experiments with biological tissues,” Proc. SPIE 2676, 84–90 (1996).
[Crossref]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: principles,” Proc. SPIE 2676, 22–31 (1996).
[Crossref]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, S. L. Thomsen, and F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” Proc. SPIE 2389, 198–208 (1995).
[Crossref]

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134, 122–128 (1994).

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” Proc. SPIE 1882, 86–101 (1993).
[Crossref]

S. L. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993).
[Crossref]

Jaeger, J. C.

H. S. Carslaw and J. C. Jaeger, Heat Conduction in Solids (Clarendon, 1959).

Jaeger, M.

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localized vibration tagging (LOVIT),” Photoacoustics 1, 19–29 (2013).
[Crossref]

Jakubowski, D.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[Crossref]

Jansen, K.

Jathoul, A. P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Jiang, M.

Jiang, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. R. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[Crossref]

Jiao, S.

Jipson, V.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[Crossref]

Johnson, P.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Jolly, G. S.

D. L. Singleton, G. Paraskevopoulos, G. S. Jolly, R. S. Irwin, D. J. McKenney, W. S. Nip, E. M. Farrell, and L. A. J. Higginson, “Excimer lasers in cardiovascular surgery: ablation products and photoacoustic spectrum of the arterial wall,” Appl. Phys. Lett. 48, 878–880 (1986).
[Crossref]

Juing-Yi, L.

T. Masujima, Y. Munekane, C. Kawai, H. Yoshida, H. Imai, L. Juing-Yi, and Y. Sato, “Photoacoustic imaging immunoassay for biological component microanalysis,” in Photoacoustic and Photothermal Phenomena, P. D. P. Hess and P. D. J. Pelzl, eds. (Springer-Verlag, 1988), pp. 558–569.

Kacprowicz, M.

S. J. Ford, P. L. Bigliardi, T. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Invest. Dermatol. 136, 753–761 (2016).
[Crossref]

Kaiplavil, S.

S. Kaiplavil and A. Mandelis, “Highly depth-resolved chirped pulse photothermal radar for bone diagnostics,” Rev. Sci. Instrum. 82, 074906 (2011).
[Crossref]

Kaiser, R.

R. Kaiser, “On the theory of the spectrophone,” Can. J. Phys. 37, 1499–1513 (1959).
[Crossref]

Kanstad, S. O.

P. E. Nordal and S. O. Kanstad, “Photothermal radiometry,” Phys. Scripta 20, 659–662 (1979).
[Crossref]

Kaplan, M. J.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18, 010502 (2013).
[Crossref]

Karabutov, A.

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
[Crossref]

Karabutov, A. A.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352–363 (1999).
[Crossref]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[Crossref]

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, and A. A. Oraevsky, “Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with x-ray and ultrasound imaging,” Proc. SPIE 2979, 71–82 (1997).
[Crossref]

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, 1993).

Kasoev, S. G.

S. G. Kasoev and L. M. Lyamshev, “Theory of laser-pulse generation of sound in a liquid,” Sov. Phys. Acoust. 23, 510–514 (1977).

Kawai, C.

T. Masujima, Y. Munekane, C. Kawai, H. Yoshida, H. Imai, L. Juing-Yi, and Y. Sato, “Photoacoustic imaging immunoassay for biological component microanalysis,” in Photoacoustic and Photothermal Phenomena, P. D. P. Hess and P. D. J. Pelzl, eds. (Springer-Verlag, 1988), pp. 558–569.

Kelly, T.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4, 855–860 (2009).
[Crossref]

Kerr, E. L.

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref]

Kim, J.-W.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4, 855–860 (2009).
[Crossref]

Kim, K. Y.

K. Y. Kim and W. Sachse, “X-ray generated ultrasound,” Appl. Phys. Lett. 43, 1099–1101 (1983).
[Crossref]

Kiser, W. L.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[Crossref]

Klode, J.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Kneubühl, F. K.

M. W. Sigrist and F. K. Kneubühl, “Laser-generated stress waves in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
[Crossref]

Koestli, K.

G. Paltauf, H. Schmidt-Kloiber, K. Koestli, and M. Frenz, “Two-dimensional recording of optoacoustic waves,” Proc. SPIE 3601, 248–255 (1999).
[Crossref]

Kogel, C.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. R. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[Crossref]

Kopecky, K. K.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[Crossref]

Kozyaev, E. F.

E. F. Kozyaev and K. A. Naugol’nikh, “On thermal acousto-optic effect,” Acoust. J. 22, 366–369 (1976).

Kreuzer, L. B.

L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42, 2934–2943 (1971).
[Crossref]

Kruger, G. A.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[Crossref]

Kruger, R. A.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40, 113301 (2013).
[Crossref]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[Crossref]

R. A. Kruger, P. Liu, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[Crossref]

R. A. Kruger, “Photoacoustic ultrasound,” Med. Phys. 21, 127–131 (1994).
[Crossref]

R. A. Kruger and P. Liu, “Photoacoustic ultrasound: pulse production and detection in 0.5% Liposyn,” Med. Phys. 21, 1179–1184 (1994).
[Crossref]

Kruglov, S. V.

A. N. Bondarenko, Yu. B. Drobot, and S. V. Kruglov, “Optical excitation and registration of nanosecond pulses in non-destructive testing,” Defectoskopiya 6, 85–88 (1976) [in Russian].

Kuo, P. K.

R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo, and A. Rosencwaig, “Subsurface flaw detection in metals by photoacoustic microscopy,” J. Appl. Phys. 51, 1152–1156 (1980).
[Crossref]

Kuzmiak, C. M.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40, 113301 (2013).
[Crossref]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref]

Lai, H.-Y.

L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
[Crossref]

Lam, R. B.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40, 113301 (2013).
[Crossref]

Langévin, M. P.

C. M. Chilowsky and M. P. Langévin, “Procédés et appareils pour la production de signaux sous-marins dirigés et pour la localisation á distance d’obstacles sous-marins,” French patentFR502913 (May 29, 1916).

Lashkari, B.

B. Lashkari and A. Mandelis, “Features of the frequency- and time-domain photoacoustic modalities,” Int. J. Thermophys. 34, 1398–1404 (2013).
[Crossref]

Laufer, J.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Leblanc, M.

L. Amar, M. Bruma, P. Desvignes, M. Leblanc, G. Perdriel, and M. Velghe, “Detection, d’ondes élastiques (ultrasonores) sur l’os occipital, induites par impulsions laser dans l’oeil d’un lapin,” C. R. Acad. Sci. Paris 259, 3653–3655 (1964).

Ledbetter, H. M.

H. M. Ledbetter and J. C. Moulder, “Laser-induced Rayleigh waves in aluminium,” J. Acoust. Soc. Am. 65, 840–842 (1979).
[Crossref]

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref]

Letokhov, V. S.

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
[Crossref]

V. P. Zharov and V. S. Letokhov, Laser Optoacoustic Spectroscopy, Vol. 37 of Springer Series in Optical Sciences (Springer-Verlag, 1986).

Leyh, J.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Li, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Li, M. L.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[Crossref]

Li, M.-L.

L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
[Crossref]

Liao, L.-D.

L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
[Crossref]

Lin, C.-T.

L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
[Crossref]

Lin, J. C.

R. G. Olsen and J. C. Lin, “Acoustical imaging of a model of a human hand using pulsed microwave irradiation,” Bioelectromagnetics 4, 397–400 (1983).
[Crossref]

Liu, P.

R. A. Kruger, P. Liu, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[Crossref]

R. A. Kruger and P. Liu, “Photoacoustic ultrasound: pulse production and detection in 0.5% Liposyn,” Med. Phys. 21, 1179–1184 (1994).
[Crossref]

Loomis, A. L.

R. W. Wood and A. L. Loomis, “The physical and biological effects of high frequency sound-waves of great intensity,” Philos. Mag. 4(22), 417–436 (1927).
[Crossref]

Ludwig, G. D.

G. D. Ludwig and F. W. Struthers, “Considerations underlying the use of ultrasound to detect gallstones and foreign bodies in tissue,” (Naval Medical Research Institute, 1949).

Luft, K. F.

K. F. Luft, “Infrared techniques for the measurement of carbon monoxide,” Ann. Occup. Hyg. 18, 45–51 (1975).
[Crossref]

K. F. Luft, “Über eine neue methode der registrierenden Gasanalyse mit Hilfe der absorption ultraroter Strahlen ohne spektrale Zerlegung,” Z. Tech. Phys. 5, 97–104 (1943).

Luke, G. P.

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29, 213–221 (2011).
[Crossref]

Lutzweiler, C.

C. Lutzweiler, R. Meier, E. Rummeny, V. Ntziachristos, and D. Razansky, “Real-time optoacoustic tomography of indocyanine green perfusion and oxygenation parameters in human finger vasculature,” Opt. Lett. 39, 4061–4064 (2014).
[Crossref]

C. Lutzweiler and D. Razansky, “Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification,” Sensors 13, 7345–7384 (2013).
[Crossref]

Luukkala, M.

M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett. 15, 325–326 (1979).
[Crossref]

Lyamshev, L. M.

L. M. Lyamshev, “Lasers in acoustics,” Sov. Phys. Usp. 30, 252–279 (1987).
[Crossref]

L. M. Lyamshev, “Radiation acoustics,” Sov. Phys. Usp. 35, 276–302 (1987).
[Crossref]

S. G. Kasoev and L. M. Lyamshev, “Theory of laser-pulse generation of sound in a liquid,” Sov. Phys. Acoust. 23, 510–514 (1977).

L. M. Lyamshev, Radiation Acoustics (CRC Press, 2004).

Lythgoe, M. F.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Macfarlane, I. M.

T. L. Cottrell, I. M. Macfarlane, A. W. Read, and A. H. Young, “Measurement of vibrational relaxation times by the spectrophone. Application to CH4, CO2, N2O, COS, NH3 and HCN,” Trans. Faraday Soc. 62, 2655–2666 (1966).
[Crossref]

MacRobert, A. J.

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, and A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50, 1019–1021 (1987).

Mallidi, S.

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29, 213–221 (2011).
[Crossref]

Mandelis, A.

B. Lashkari and A. Mandelis, “Features of the frequency- and time-domain photoacoustic modalities,” Int. J. Thermophys. 34, 1398–1404 (2013).
[Crossref]

S. Kaiplavil and A. Mandelis, “Highly depth-resolved chirped pulse photothermal radar for bone diagnostics,” Rev. Sci. Instrum. 82, 074906 (2011).
[Crossref]

A. Mandelis, “Diffusion waves and their uses,” Phys. Today 53(8), 29–34 (2000).
[Crossref]

A. Mandelis, “Frequency-domain photopyroelectric spectroscopy of condensed phases (PPES): a new, simple and powerful spectroscopic technique,” Chem. Phys. Lett. 108, 388–392 (1984).
[Crossref]

Manohar, S.

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6, 42–46 (2015).
[Crossref]

P. Van Es, S. K. Biswas, H. J. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19, 060501 (2014).
[Crossref]

Marafioti, T.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Maslov, K.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[Crossref]

Maslov, K. I.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Masujima, T.

K. Wada, T. Masujima, H. Yoshida, T. Murakami, N. Yata, and H. Imai, “Application of photoacoustic microscopy to analysis of biological components in tissue sections,” Chem. Pharm. Bull. 34, 1688–1693 (1986).
[Crossref]

T. Masujima, Y. Munekane, C. Kawai, H. Yoshida, H. Imai, L. Juing-Yi, and Y. Sato, “Photoacoustic imaging immunoassay for biological component microanalysis,” in Photoacoustic and Photothermal Phenomena, P. D. P. Hess and P. D. J. Pelzl, eds. (Springer-Verlag, 1988), pp. 558–569.

McDonald, F. A.

F. A. McDonald, “Photoacoustic effect and the physics of waves,” Am. J. Phys. 48, 41–47 (1980).
[Crossref]

F. A. McDonald and G. C. Wetsel, “Generalized theory of the photoacoustic effect,” J. Appl. Phys. 49, 2313–2322 (1978).
[Crossref]

McKenney, D. J.

D. L. Singleton, G. Paraskevopoulos, G. S. Jolly, R. S. Irwin, D. J. McKenney, W. S. Nip, E. M. Farrell, and L. A. J. Higginson, “Excimer lasers in cardiovascular surgery: ablation products and photoacoustic spectrum of the arterial wall,” Appl. Phys. Lett. 48, 878–880 (1986).
[Crossref]

Mehrmohammadi, M.

M. Mehrmohammadi, S. J. Yoon, D. Yeager, and S. Y. Emelianov, “Photoacoustic imaging for cancer detection and staging,” Curr. Mol. Imaging 2, 89–105 (2013).
[Crossref]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref]

Meier, R.

Melcher, R. L.

R. J. Von Gutfeld and R. L. Melcher, “MHz acoustic waves from pulsed thermoelastic expansions and their application to flaw detection,” Mater. Eval. 35, 97–99 (1977).

Mercadier, E.

E. Mercadier, “Sur la radiophonie,” J. Phys. Theor. Appl. 10, 53–68 (1881).
[Crossref]

E. Mercadier, “Sur la radiophonie (2e mémoire),” J. Phys. Theor. Appl. 10, 147–154 (1881).

Messenger, R.

A. H. Frey and R. Messenger, “Human perception of illumination with pulsed ultrahigh-frequency electromagnetic energy,” Science 181, 356–358 (1973).
[Crossref]

Michaels, J. E.

J. E. Michaels, “Thermal impact—the mechanical response of solids to extreme electromagnetic radiation,” Planet. Space Sci. 7, 427–433 (1961).
[Crossref]

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref]

Mills, T. N.

P. C. Beard and T. N. Mills, “Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532  nm,” Phys. Med. Biol. 42, 177–198 (1997).
[Crossref]

Mims, F. M.

F. M. Mims, “Alexander Graham Bell and the photophone: the centennial of the invention of light-wave communications, 1880–1980,” Opt. News 6(1), 8–16 (1980).
[Crossref]

Moeller, C. E.

E. F. Carome, N. A. Clark, and C. E. Moeller, “Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[Crossref]

Moens, H. J.

P. Van Es, S. K. Biswas, H. J. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19, 060501 (2014).
[Crossref]

Monchalin, J. P.

J. D. Aussel and J. P. Monchalin, “Precision laser-ultrasonic velocity measurement and elastic constant determination,” Ultrasonics 27, 165–177 (1989).
[Crossref]

J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485–499 (1986).
[Crossref]

J. P. Monchalin, “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer,” Appl. Phys. Lett. 47, 14–16 (1985).
[Crossref]

Morscher, S.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Moulder, J. C.

H. M. Ledbetter and J. C. Moulder, “Laser-induced Rayleigh waves in aluminium,” J. Acoust. Soc. Am. 65, 840–842 (1979).
[Crossref]

Munekane, Y.

T. Masujima, Y. Munekane, C. Kawai, H. Yoshida, H. Imai, L. Juing-Yi, and Y. Sato, “Photoacoustic imaging immunoassay for biological component microanalysis,” in Photoacoustic and Photothermal Phenomena, P. D. P. Hess and P. D. J. Pelzl, eds. (Springer-Verlag, 1988), pp. 558–569.

Murakami, T.

K. Wada, T. Masujima, H. Yoshida, T. Murakami, N. Yata, and H. Imai, “Application of photoacoustic microscopy to analysis of biological components in tissue sections,” Chem. Pharm. Bull. 34, 1688–1693 (1986).
[Crossref]

Nasoni, R. L.

R. L. Nasoni, G. A. Evanoff, P. G. Halverson, and T. Bowen, “Thermoacoustic emission by deeply penetrating microwave radiation,” in Proceedings 1984 Ultrasonics Symposium (IEEE, 1984), pp. 633–638.

T. Bowen, R. L. Nasoni, A. E. Pifer, and G. H. Sembroski, “Some experimental results on the thermoacoustic imaging of tissue equivalent phantom materials,” in Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 823–827.

Naugol’nikh, K. A.

E. F. Kozyaev and K. A. Naugol’nikh, “On thermal acousto-optic effect,” Acoust. J. 22, 366–369 (1976).

Nip, W. S.

D. L. Singleton, G. Paraskevopoulos, G. S. Jolly, R. S. Irwin, D. J. McKenney, W. S. Nip, E. M. Farrell, and L. A. J. Higginson, “Excimer lasers in cardiovascular surgery: ablation products and photoacoustic spectrum of the arterial wall,” Appl. Phys. Lett. 48, 878–880 (1986).
[Crossref]

Nordal, P. E.

P. E. Nordal and S. O. Kanstad, “Photothermal radiometry,” Phys. Scripta 20, 659–662 (1979).
[Crossref]

Ntziachristos, V.

C. Lutzweiler, R. Meier, E. Rummeny, V. Ntziachristos, and D. Razansky, “Real-time optoacoustic tomography of indocyanine green perfusion and oxygenation parameters in human finger vasculature,” Opt. Lett. 39, 4061–4064 (2014).
[Crossref]

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110, 2783–2794 (2010).
[Crossref]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

Ogunlade, O.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Oh, J. T.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[Crossref]

Olivo, M.

S. J. Ford, P. L. Bigliardi, T. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Invest. Dermatol. 136, 753–761 (2016).
[Crossref]

Olsen, R. G.

R. G. Olsen and J. C. Lin, “Acoustical imaging of a model of a human hand using pulsed microwave irradiation,” Bioelectromagnetics 4, 397–400 (1983).
[Crossref]

R. G. Olsen, “Generation of acoustical images from the absorption of pulsed microwave energy,” Acoust. Imaging 11, 53–59 (1982).
[Crossref]

R. G. Olsen and W. C. Hammer, “Microwave-induced pressure waves in a model of muscle tissue,” Bioelectromagnetics 1, 45–54 (1980).
[Crossref]

Oosterhuis, J. W.

Oraevsky, A. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[Crossref]

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352–363 (1999).
[Crossref]

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, and A. A. Oraevsky, “Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with x-ray and ultrasound imaging,” Proc. SPIE 2979, 71–82 (1997).
[Crossref]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
[Crossref]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: principles,” Proc. SPIE 2676, 22–31 (1996).
[Crossref]

R. O. Esenaliev, A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: experiments with biological tissues,” Proc. SPIE 2676, 84–90 (1996).
[Crossref]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, S. L. Thomsen, and F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” Proc. SPIE 2389, 198–208 (1995).
[Crossref]

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134, 122–128 (1994).

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” Proc. SPIE 1882, 86–101 (1993).
[Crossref]

Pagoulatos, N.

C. G. Hoelen, G. Hamhuis, N. Pagoulatos, I. van den Ham, F. F. de Mul, and J. Greve, “Photoacoustic location of optical absorbers in phantom tissue,” Proc. SPIE 2927, 142–153 (1996).
[Crossref]

Palmer, S. B.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
[Crossref]

A. M. Aindow, J. A. Cooper, R. J. Dewhurst, and S. B. Palmer, “A spherical capacitance transducer for ultrasonic displacement measurements in NDE,” J. Phys. E 20, 204–209 (1987).
[Crossref]

R. J. Dewhurst, C. Edwards, and S. B. Palmer, “Noncontact detection of surface-breaking cracks using a laser acoustic source and an electromagnetic acoustic receiver,” Appl. Phys. Lett. 49, 374–376 (1986).
[Crossref]

Paltauf, G.

G. Paltauf, H. Schmidt-Kloiber, K. Koestli, and M. Frenz, “Two-dimensional recording of optoacoustic waves,” Proc. SPIE 3601, 248–255 (1999).
[Crossref]

Paraskevopoulos, G.

D. L. Singleton, G. Paraskevopoulos, G. S. Jolly, R. S. Irwin, D. J. McKenney, W. S. Nip, E. M. Farrell, and L. A. J. Higginson, “Excimer lasers in cardiovascular surgery: ablation products and photoacoustic spectrum of the arterial wall,” Appl. Phys. Lett. 48, 878–880 (1986).
[Crossref]

Parker, J. G.

Patel, C. K. N.

C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
[Crossref]

Paulsen, K. D.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. R. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[Crossref]

Payne, P. A.

Q. X. Chen, R. J. Dewhurst, P. A. Payne, and A. Davies, “Photo-acoustic probe for intra-arterial imaging and therapy,” Electron. Lett. 29, 1632–1633 (1993).
[Crossref]

Pedley, R. B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Penttinen, A.

M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett. 15, 325–326 (1979).
[Crossref]

Perdriel, G.

L. Amar, M. Bruma, P. Desvignes, M. Leblanc, G. Perdriel, and M. Velghe, “Detection, d’ondes élastiques (ultrasonores) sur l’os occipital, induites par impulsions laser dans l’oeil d’un lapin,” C. R. Acad. Sci. Paris 259, 3653–3655 (1964).

Petrov, Y. Y.

Petrova, I. Y.

Pfund, A. H.

A. H. Pfund, “Atmospheric contamination,” Science 90, 326–327 (1939).
[Crossref]

Philip, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Pifer, A. E.

T. Bowen, R. L. Nasoni, A. E. Pifer, and G. H. Sembroski, “Some experimental results on the thermoacoustic imaging of tissue equivalent phantom materials,” in Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 823–827.

Pizzey, A. R.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Podymova, N. B.

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
[Crossref]

Poeppel, T. D.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Pogue, B. W.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. R. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[Crossref]

Pongers, R.

Poplack, S. P.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. R. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[Crossref]

Pouch, J. J.

R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo, and A. Rosencwaig, “Subsurface flaw detection in metals by photoacoustic microscopy,” J. Appl. Phys. 51, 1152–1156 (1980).
[Crossref]

Prahl, S. A.

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[Crossref]

Preece, W. H.

W. H. Preece, “Radiophony,” J. Soc. Telegraph Eng. Electr. 10, 212–231 (1881).

W. H. Preece, “On the conversion of radiant energy into sonorous vibrations,” Proc. R. Soc. London 31, 506–520 (1880).
[Crossref]

Prokhorov, A. M.

G. A. Askaryan, A. M. Prokhorov, G. F. Chanturia, and G. P. Shipulo, “Propagation of a laser beam through a liquid,” Zh. Eksp. Teor. Fiz. 44, 2180–2182 (1963).

Prough, D. S.

Pule, M. A.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Puliafito, C. A.

Quate, C. F.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[Crossref]

Rajian, J. R.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18, 010502 (2013).
[Crossref]

Rankine, A. O.

A. O. Rankine, “On the transmission of speech by light,” Proc. Phys. Soc. London 31, 242–268 (1918).
[Crossref]

Rayleigh,

Rayleigh, “The photophone,” Nature 23, 274–275 (1881).
[Crossref]

Razansky, D.

S. J. Ford, P. L. Bigliardi, T. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Invest. Dermatol. 136, 753–761 (2016).
[Crossref]

S. Gottschalk, T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Non-invasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography,” J. Cereb. Blood Flow Metab. 35, 531–535 (2015).
[Crossref]

X. L. Deán-Ben and D. Razansky, “Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally-enriched tomography,” Light Sci. Appl. 3, e137 (2014).
[Crossref]

C. Lutzweiler, R. Meier, E. Rummeny, V. Ntziachristos, and D. Razansky, “Real-time optoacoustic tomography of indocyanine green perfusion and oxygenation parameters in human finger vasculature,” Opt. Lett. 39, 4061–4064 (2014).
[Crossref]

C. Lutzweiler and D. Razansky, “Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification,” Sensors 13, 7345–7384 (2013).
[Crossref]

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110, 2783–2794 (2010).
[Crossref]

Read, A. W.

T. L. Cottrell, I. M. Macfarlane, A. W. Read, and A. H. Young, “Measurement of vibrational relaxation times by the spectrophone. Application to CH4, CO2, N2O, COS, NH3 and HCN,” Trans. Faraday Soc. 62, 2655–2666 (1966).
[Crossref]

Reid, J. M.

J. J. Wild and J. M. Reid, “Application of echo-ranging techniques to the determination of structure of biological tissues,” Science 115, 226–230 (1952).

Reinecke, D. R.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40, 113301 (2013).
[Crossref]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[Crossref]

Rijke, P. L.

P. L. Rijke, “Notice of a new method of causing a vibration of the air contained in a tube open at both ends,” Philos. Mag. 17(116), 419–422 (1859).

Ringermacher, H. I.

H. I. Ringermacher and J. S. Heyman, “Observation of a sono-acoustic effect using piezoelectric thermo-acoustic detection,” in Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 840–843.

Robin, M. B.

W. R. Harshbarger and M. B. Robin, “Opto-acoustic effect. Revival of an old technique for molecular spectroscopy,” Acc. Chem. Res. 6, 329–334 (1973).
[Crossref]

Roesch, A.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Röntgen, W. C.

W. C. Röntgen, “Ueber Töne, welche durch intermittirende Bestrahlung eines Gases entstehen,” Ann. Phys. 248, 155–159 (1881).
[Crossref]

Rosencwaig, A.

A. Rosencwaig, “Thermal-wave imaging,” Science 218, 223–228 (1982).
[Crossref]

A. Rosencwaig, “Thermal wave microscopy with photoacoustics,” J. Appl. Phys. 51, 2210–2211 (1980).
[Crossref]

R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo, and A. Rosencwaig, “Subsurface flaw detection in metals by photoacoustic microscopy,” J. Appl. Phys. 51, 1152–1156 (1980).
[Crossref]

A. Rosencwaig, “Photoacoustic spectroscopy,” Adv. Electron. Electron Phys. 46, 207–311 (1978).
[Crossref]

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64–69 (1976).
[Crossref]

A. Rosencwaig and A. Gersho, “Photoacoustic effect with solids: a theoretical treatment,” Science 190, 556–557 (1975).
[Crossref]

A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Phys. Today 28(9), 23–30 (1975).
[Crossref]

A. Rosencwaig, “Photoacoustic spectroscopy. New tool for investigation of solids,” Anal. Chem. 47, 592A–604A (1975).
[Crossref]

A. Rosencwaig, “Photoacoustic spectroscopy of biological materials,” Science 181, 657–658 (1973).
[Crossref]

A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Opt. Commun. 7, 305–308 (1973).
[Crossref]

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).

Rummeny, E.

Sachse, W.

K. Y. Kim and W. Sachse, “X-ray generated ultrasound,” Appl. Phys. Lett. 43, 1099–1101 (1983).
[Crossref]

Salcedo, J. R.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[Crossref]

Sardella, T.

S. J. Ford, P. L. Bigliardi, T. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Invest. Dermatol. 136, 753–761 (2016).
[Crossref]

Sardella, T. C. P.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Sato, Y.

T. Masujima, Y. Munekane, C. Kawai, H. Yoshida, H. Imai, L. Juing-Yi, and Y. Sato, “Photoacoustic imaging immunoassay for biological component microanalysis,” in Photoacoustic and Photothermal Phenomena, P. D. P. Hess and P. D. J. Pelzl, eds. (Springer-Verlag, 1988), pp. 558–569.

Schadendorf, D.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Schmidt-Kloiber, H.

G. Paltauf, H. Schmidt-Kloiber, K. Koestli, and M. Frenz, “Two-dimensional recording of optoacoustic waves,” Proc. SPIE 3601, 248–255 (1999).
[Crossref]

Scruby, C. B.

C. B. Scruby, “Some applications of laser ultrasound,” Ultrasonics 27, 195–209 (1989).
[Crossref]

C. B. Scruby and H. N. G. Wadley, “A calibrated capacitance transducer for the detection of acoustic emission,” J. Phys. D 11, 1487–1494 (1978).
[Crossref]

C. B. Scruby and L. E. Drain, Laser Ultrasonics Techniques and Applications (CRC Press, 1990).

Sembroski, G. H.

T. Bowen, R. L. Nasoni, A. E. Pifer, and G. H. Sembroski, “Some experimental results on the thermoacoustic imaging of tissue equivalent phantom materials,” in Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 823–827.

Sessler, G. M.

G. M. Sessler and J. E. West, “Electret transducers: a review,” J. Acoust. Soc. Am. 53, 1589–1600 (1973).
[Crossref]

Shah, N.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[Crossref]

Sharp, J. C.

J. C. Sharp, H. M. Grove, and O. P. Gandhi, “Generation of acoustic signals by pulsed microwave energy,” IEEE Trans. Microwave Theory Tech. 22, 583–584 (1974).
[Crossref]

Shashkov, E. V.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4, 855–860 (2009).
[Crossref]

Shchetinin, A. M.

O. V. Sidorov, A. M. Shchetinin, and S. V. Sidorov, “Photoacoustic methods of investigating fibre materials,” Fibre Chem. 31, 484–488 (1999).
[Crossref]

Shih, Y.-Y. I.

L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
[Crossref]

Shipulo, G. P.

G. A. Askaryan, A. M. Prokhorov, G. F. Chanturia, and G. P. Shipulo, “Propagation of a laser beam through a liquid,” Zh. Eksp. Teor. Fiz. 44, 2180–2182 (1963).

Shung, K. K.

Sidorov, O. V.

O. V. Sidorov, A. M. Shchetinin, and S. V. Sidorov, “Photoacoustic methods of investigating fibre materials,” Fibre Chem. 31, 484–488 (1999).
[Crossref]

Sidorov, S. V.

O. V. Sidorov, A. M. Shchetinin, and S. V. Sidorov, “Photoacoustic methods of investigating fibre materials,” Fibre Chem. 31, 484–488 (1999).
[Crossref]

Sigrist, M. W.

M. W. Sigrist and F. K. Kneubühl, “Laser-generated stress waves in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
[Crossref]

Singh, H.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352–363 (1999).
[Crossref]

Singleton, D. L.

D. L. Singleton, G. Paraskevopoulos, G. S. Jolly, R. S. Irwin, D. J. McKenney, W. S. Nip, E. M. Farrell, and L. A. J. Higginson, “Excimer lasers in cardiovascular surgery: ablation products and photoacoustic spectrum of the arterial wall,” Appl. Phys. Lett. 48, 878–880 (1986).
[Crossref]

Slobodskaya, P. V.

P. V. Slobodskaya, “Determination of the energy transfer rate from vibrational to translational molecular motion by means of a spectrophone,” Izvest. Akad. Nauk SSSR 12, 656–662 (1948) [in Russian].

Smith, W.

W. Smith, “The action of light on selenium,” J. Soc. Telegraph Eng. 2, 31–33 (1873).
[Crossref]

Soho, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. R. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[Crossref]

Sondhauss, C.

C. Sondhauss, “Über die Schallschwingungen der Luft in erhitzten Glasröhren und in gedeckten Pfeifen von ungleicher Weite,” Ann. Phys. 155, 1–34 (1850).
[Crossref]

Srinivasan, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. R. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[Crossref]

Steed, D.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40, 113301 (2013).
[Crossref]

Steenbergen, W.

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6, 42–46 (2015).
[Crossref]

P. Van Es, S. K. Biswas, H. J. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19, 060501 (2014).
[Crossref]

Stelling, C.

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, and A. A. Oraevsky, “Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with x-ray and ultrasound imaging,” Proc. SPIE 2979, 71–82 (1997).
[Crossref]

Stepanov, B. I.

B. I. Stepanov and O. P. Girin, Zh. Eksp. Teor. Ftz.20, 947 (1950) [in Russian].

Stoffels, I.

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Stoica, G.

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[Crossref]

Struthers, F. W.

G. D. Ludwig and F. W. Struthers, “Considerations underlying the use of ultrasound to detect gallstones and foreign bodies in tissue,” (Naval Medical Research Institute, 1949).

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[Crossref]

A. C. Tam, “Pulsed-laser generation of ultrashort acoustic pulses: application for thin-film ultrasonic measurements,” Appl. Phys. Lett. 45, 510–512 (1984).
[Crossref]

C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
[Crossref]

Taylor, G. S.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
[Crossref]

Thomas, R. L.

R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo, and A. Rosencwaig, “Subsurface flaw detection in metals by photoacoustic microscopy,” J. Appl. Phys. 51, 1152–1156 (1980).
[Crossref]

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32, 538–539 (1978).
[Crossref]

Thomsen, S. L.

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, and A. A. Oraevsky, “Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with x-ray and ultrasound imaging,” Proc. SPIE 2979, 71–82 (1997).
[Crossref]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, S. L. Thomsen, and F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” Proc. SPIE 2389, 198–208 (1995).
[Crossref]

Tittel, F. K.

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, and A. A. Oraevsky, “Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with x-ray and ultrasound imaging,” Proc. SPIE 2979, 71–82 (1997).
[Crossref]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
[Crossref]

R. O. Esenaliev, A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: experiments with biological tissues,” Proc. SPIE 2676, 84–90 (1996).
[Crossref]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: principles,” Proc. SPIE 2676, 22–31 (1996).
[Crossref]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, S. L. Thomsen, and F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” Proc. SPIE 2389, 198–208 (1995).
[Crossref]

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134, 122–128 (1994).

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” Proc. SPIE 1882, 86–101 (1993).
[Crossref]

Tosteson, T. R.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. R. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[Crossref]

Treeby, B.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Tromberg, B. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[Crossref]

Tsang, S.

L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
[Crossref]

Tyndall, J.

J. Tyndall, “Action of an intermittent beam of radiant heat upon gaseous matter,” Proc. R. Soc. London 31, 307–317 (1880).
[Crossref]

Urich, A.

S. J. Ford, P. L. Bigliardi, T. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Invest. Dermatol. 136, 753–761 (2016).
[Crossref]

Van Beusekom, H. M. M.

van den Ham, I.

C. G. Hoelen, G. Hamhuis, N. Pagoulatos, I. van den Ham, F. F. de Mul, and J. Greve, “Photoacoustic location of optical absorbers in phantom tissue,” Proc. SPIE 2927, 142–153 (1996).
[Crossref]

Van der Steen, A. F. W.

Van Es, P.

P. Van Es, S. K. Biswas, H. J. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19, 060501 (2014).
[Crossref]

Van Soest, G.

Vasilev, G.

G. Vasilev and M. Zhabotinskii, “Measurements of power of centimeter waves by thermoacoustic method,” J. Exp. Theor. Phys. USSR 24, 571–574 (1953) [in Russian].

Veingerov, M. L.

M. L. Veingerov, “An optical-acoustic method of gas analysis,” Nature 158, 28–29 (1946).
[Crossref]

M. L. Veingerov, “Spectrophone - an instrument for investigation of infrared absorption spectra of gases and for quantitative and qualitative spectrum analysis of multicomponent gas mixtures,” Dokl. Akad. Nauk SSSR 46, 182 (1945) [in Russian].

M. L. Veingerov, “A method of gas analysis based on the Tyndall-Röntgen optico-acoustic effect,” Dokl. Akad. Nauk SSSR 19, 687–688 (1938).

Velghe, M.

L. Amar, M. Bruma, M. Velghe, and P. Desvigne, “On detection of laser induced ultrasonic waves in human eye and elaboration of a theory of fundamental mechanism of vision,” Z. Angew. Math. Phys. 16, 182–183 (1965).
[Crossref]

L. Amar, M. Bruma, P. Desvignes, M. Leblanc, G. Perdriel, and M. Velghe, “Detection, d’ondes élastiques (ultrasonores) sur l’os occipital, induites par impulsions laser dans l’oeil d’un lapin,” C. R. Acad. Sci. Paris 259, 3653–3655 (1964).

Viator, J. A.

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[Crossref]

Von Gutfeld, R. J.

R. J. Von Gutfeld and R. L. Melcher, “MHz acoustic waves from pulsed thermoelastic expansions and their application to flaw detection,” Mater. Eval. 35, 97–99 (1977).

Wada, K.

K. Wada, T. Masujima, H. Yoshida, T. Murakami, N. Yata, and H. Imai, “Application of photoacoustic microscopy to analysis of biological components in tissue sections,” Chem. Pharm. Bull. 34, 1688–1693 (1986).
[Crossref]

Wadley, H. N. G.

C. B. Scruby and H. N. G. Wadley, “A calibrated capacitance transducer for the detection of acoustic emission,” J. Phys. D 11, 1487–1494 (1978).
[Crossref]

Wang, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Wang, L. V.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Y. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[Crossref]

L. V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007), Chap. 12, pp. 283–321.

Wang, P.-H.

L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
[Crossref]

Wang, X.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18, 010502 (2013).
[Crossref]

West, J. E.

G. M. Sessler and J. E. West, “Electret transducers: a review,” J. Acoust. Soc. Am. 53, 1589–1600 (1973).
[Crossref]

Wetsel, G. C.

F. A. McDonald and G. C. Wetsel, “Generalized theory of the photoacoustic effect,” J. Appl. Phys. 49, 2313–2322 (1978).
[Crossref]

White, R. M.

R. M. White, “Generation of elastic waves by transient surface heating,” J. Appl. Phys. 34, 3559–3567 (1963).
[Crossref]

R. M. White, “Elastic wave generation by electron bombardment or electromagnetic wave absorption,” J. Appl. Phys. 34, 2123–2124 (1963).

R. M. White, “An elastic wave method for the measurement of pulse-power density,” IRE Trans. Instrum. I-11, 294–298 (1962).
[Crossref]

Wickramasinghe, H. K.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[Crossref]

Wild, J. J.

J. J. Wild and J. M. Reid, “Application of echo-ranging techniques to the determination of structure of biological tissues,” Science 115, 226–230 (1952).

Wilkins, D. E.

D. A. Hutchins and D. E. Wilkins, “Elastic waveforms using laser generation and electromagnetic acoustic transducer detection,” J. Appl. Phys. 58, 2469–2477 (1985).
[Crossref]

Wong, T. T. W.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Wong, Y. H.

R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo, and A. Rosencwaig, “Subsurface flaw detection in metals by photoacoustic microscopy,” J. Appl. Phys. 51, 1152–1156 (1980).
[Crossref]

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32, 538–539 (1978).
[Crossref]

Wood, R. W.

R. W. Wood and A. L. Loomis, “The physical and biological effects of high frequency sound-waves of great intensity,” Philos. Mag. 4(22), 417–436 (1927).
[Crossref]

Wu, H.-I.

L. V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007), Chap. 12, pp. 283–321.

Wu, R.

L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
[Crossref]

Xu, G.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18, 010502 (2013).
[Crossref]

Yang, J.-M.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Yang, L.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4, 855–860 (2009).
[Crossref]

Yao, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Yao, Y.

Y. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref]

Yata, N.

K. Wada, T. Masujima, H. Yoshida, T. Murakami, N. Yata, and H. Imai, “Application of photoacoustic microscopy to analysis of biological components in tissue sections,” Chem. Pharm. Bull. 34, 1688–1693 (1986).
[Crossref]

Yeager, D.

M. Mehrmohammadi, S. J. Yoon, D. Yeager, and S. Y. Emelianov, “Photoacoustic imaging for cancer detection and staging,” Curr. Mol. Imaging 2, 89–105 (2013).
[Crossref]

Yee, S. S.

S. D. Campbell, S. S. Yee, and M. A. Afromowitz, “Applications of photoacoustic spectroscopy to problems in dermatology research,” IEEE Trans. Biomed. Eng. BME-26, 220–227 (1979).
[Crossref]

Yoon, S. J.

M. Mehrmohammadi, S. J. Yoon, D. Yeager, and S. Y. Emelianov, “Photoacoustic imaging for cancer detection and staging,” Curr. Mol. Imaging 2, 89–105 (2013).
[Crossref]

Yoshida, H.

K. Wada, T. Masujima, H. Yoshida, T. Murakami, N. Yata, and H. Imai, “Application of photoacoustic microscopy to analysis of biological components in tissue sections,” Chem. Pharm. Bull. 34, 1688–1693 (1986).
[Crossref]

T. Masujima, Y. Munekane, C. Kawai, H. Yoshida, H. Imai, L. Juing-Yi, and Y. Sato, “Photoacoustic imaging immunoassay for biological component microanalysis,” in Photoacoustic and Photothermal Phenomena, P. D. P. Hess and P. D. J. Pelzl, eds. (Springer-Verlag, 1988), pp. 558–569.

Young, A. H.

T. L. Cottrell, I. M. Macfarlane, A. W. Read, and A. H. Young, “Measurement of vibrational relaxation times by the spectrophone. Application to CH4, CO2, N2O, COS, NH3 and HCN,” Trans. Faraday Soc. 62, 2655–2666 (1966).
[Crossref]

Zhabotinskii, M.

G. Vasilev and M. Zhabotinskii, “Measurements of power of centimeter waves by thermoacoustic method,” J. Exp. Theor. Phys. USSR 24, 571–574 (1953) [in Russian].

Zhang, E.

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Zhang, H. F.

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18, 3967–3972 (2010).
[Crossref]

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[Crossref]

Zharov, V. P.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4, 855–860 (2009).
[Crossref]

V. P. Zharov and V. S. Letokhov, Laser Optoacoustic Spectroscopy, Vol. 37 of Springer Series in Optical Sciences (Springer-Verlag, 1986).

Zhou, Q.

Zhu, Z.

R. K. Al Dhahir, P. E. Dyer, and Z. Zhu, “Photoacoustic studies and selective ablation of vascular tissue using a pulsed dye laser,” Appl. Phys. B 51, 81–85 (1990).
[Crossref]

Zou, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Acad. Radiol. (1)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[Crossref]

Acc. Chem. Res. (1)

W. R. Harshbarger and M. B. Robin, “Opto-acoustic effect. Revival of an old technique for molecular spectroscopy,” Acc. Chem. Res. 6, 329–334 (1973).
[Crossref]

Acoust. Imaging (1)

R. G. Olsen, “Generation of acoustical images from the absorption of pulsed microwave energy,” Acoust. Imaging 11, 53–59 (1982).
[Crossref]

Acoust. J. (1)

E. F. Kozyaev and K. A. Naugol’nikh, “On thermal acousto-optic effect,” Acoust. J. 22, 366–369 (1976).

Adv. Electron. Electron Phys. (1)

A. Rosencwaig, “Photoacoustic spectroscopy,” Adv. Electron. Electron Phys. 46, 207–311 (1978).
[Crossref]

Aerosp. Med. (1)

A. H. Frey, “Auditory system response to radio frequency energy,” Aerosp. Med. 32, 1140–1142 (1961).

Am. J. Phys. (1)

F. A. McDonald, “Photoacoustic effect and the physics of waves,” Am. J. Phys. 48, 41–47 (1980).
[Crossref]

Am. J. Sci. (1)

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 118, 305–324 (1880).
[Crossref]

Anal. Chem. (1)

A. Rosencwaig, “Photoacoustic spectroscopy. New tool for investigation of solids,” Anal. Chem. 47, 592A–604A (1975).
[Crossref]

Ann. Occup. Hyg. (1)

K. F. Luft, “Infrared techniques for the measurement of carbon monoxide,” Ann. Occup. Hyg. 18, 45–51 (1975).
[Crossref]

Ann. Phys. (3)

W. C. Röntgen, “Ueber Töne, welche durch intermittirende Bestrahlung eines Gases entstehen,” Ann. Phys. 248, 155–159 (1881).
[Crossref]

C. Sondhauss, “Über die Schallschwingungen der Luft in erhitzten Glasröhren und in gedeckten Pfeifen von ungleicher Weite,” Ann. Phys. 155, 1–34 (1850).
[Crossref]

F. Braun, “Notiz über thermophonie,” Ann. Phys. 301, 358–360 (1898).
[Crossref]

Ann. Phys. Chem. (1)

A. J. Ångström, “Neue methode, das Wärmeleitungsvermögen der Körper zu bestimmen,” Ann. Phys. Chem. 190, 513–530 (1861).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (2)

R. K. Al Dhahir, P. E. Dyer, and Z. Zhu, “Photoacoustic studies and selective ablation of vascular tissue using a pulsed dye laser,” Appl. Phys. B 51, 81–85 (1990).
[Crossref]

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
[Crossref]

Appl. Phys. Lett. (10)

E. F. Carome, N. A. Clark, and C. E. Moeller, “Generation of acoustic signals in liquids by ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[Crossref]

A. C. Tam, “Pulsed-laser generation of ultrashort acoustic pulses: application for thin-film ultrasonic measurements,” Appl. Phys. Lett. 45, 510–512 (1984).
[Crossref]

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, and J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[Crossref]

R. J. Dewhurst, C. Edwards, and S. B. Palmer, “Noncontact detection of surface-breaking cracks using a laser acoustic source and an electromagnetic acoustic receiver,” Appl. Phys. Lett. 49, 374–376 (1986).
[Crossref]

J. P. Monchalin, “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer,” Appl. Phys. Lett. 47, 14–16 (1985).
[Crossref]

Y. H. Wong, R. L. Thomas, and G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32, 538–539 (1978).
[Crossref]

A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[Crossref]

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, and A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50, 1019–1021 (1987).

D. L. Singleton, G. Paraskevopoulos, G. S. Jolly, R. S. Irwin, D. J. McKenney, W. S. Nip, E. M. Farrell, and L. A. J. Higginson, “Excimer lasers in cardiovascular surgery: ablation products and photoacoustic spectrum of the arterial wall,” Appl. Phys. Lett. 48, 878–880 (1986).
[Crossref]

K. Y. Kim and W. Sachse, “X-ray generated ultrasound,” Appl. Phys. Lett. 43, 1099–1101 (1983).
[Crossref]

Bioelectromagnetics (3)

R. G. Olsen and J. C. Lin, “Acoustical imaging of a model of a human hand using pulsed microwave irradiation,” Bioelectromagnetics 4, 397–400 (1983).
[Crossref]

J. A. Elder and C. K. Chou, “Auditory response to pulsed radiofrequency energy,” Bioelectromagnetics 24, S162–S173 (2003).
[Crossref]

R. G. Olsen and W. C. Hammer, “Microwave-induced pressure waves in a model of muscle tissue,” Bioelectromagnetics 1, 45–54 (1980).
[Crossref]

Bull. Philos. Soc. (1)

A. G. Bell, “The spectrophone,” Bull. Philos. Soc. 4, 42 (1881).

C. R. Acad. Sci. Paris (1)

L. Amar, M. Bruma, P. Desvignes, M. Leblanc, G. Perdriel, and M. Velghe, “Detection, d’ondes élastiques (ultrasonores) sur l’os occipital, induites par impulsions laser dans l’oeil d’un lapin,” C. R. Acad. Sci. Paris 259, 3653–3655 (1964).

Can. J. Phys. (1)

R. Kaiser, “On the theory of the spectrophone,” Can. J. Phys. 37, 1499–1513 (1959).
[Crossref]

Chem. Pharm. Bull. (1)

K. Wada, T. Masujima, H. Yoshida, T. Murakami, N. Yata, and H. Imai, “Application of photoacoustic microscopy to analysis of biological components in tissue sections,” Chem. Pharm. Bull. 34, 1688–1693 (1986).
[Crossref]

Chem. Phys. Lett. (1)

A. Mandelis, “Frequency-domain photopyroelectric spectroscopy of condensed phases (PPES): a new, simple and powerful spectroscopic technique,” Chem. Phys. Lett. 108, 388–392 (1984).
[Crossref]

Chem. Rev. (1)

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110, 2783–2794 (2010).
[Crossref]

Comptes Rendus (1)

J. Curie and P. Curie, “Développement par pression de l’électricité polaire dans les cristaux hémièdres à faces inclines,” Comptes Rendus 91, 294–295 (1880).

Curr. Mol. Imaging (1)

M. Mehrmohammadi, S. J. Yoon, D. Yeager, and S. Y. Emelianov, “Photoacoustic imaging for cancer detection and staging,” Curr. Mol. Imaging 2, 89–105 (2013).
[Crossref]

Defectoskopiya (1)

A. N. Bondarenko, Yu. B. Drobot, and S. V. Kruglov, “Optical excitation and registration of nanosecond pulses in non-destructive testing,” Defectoskopiya 6, 85–88 (1976) [in Russian].

Dokl. Akad. Nauk SSSR (3)

M. L. Veingerov, “A method of gas analysis based on the Tyndall-Röntgen optico-acoustic effect,” Dokl. Akad. Nauk SSSR 19, 687–688 (1938).

M. L. Veingerov, “Spectrophone - an instrument for investigation of infrared absorption spectra of gases and for quantitative and qualitative spectrum analysis of multicomponent gas mixtures,” Dokl. Akad. Nauk SSSR 46, 182 (1945) [in Russian].

G. Gorelik, “On a possible method of studying the energy exchange time between the different degrees of freedom of molecules in a gas,” Dokl. Akad. Nauk SSSR 54, 779 (1946) [in Russian].

Electron. Lett. (2)

M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett. 15, 325–326 (1979).
[Crossref]

Q. X. Chen, R. J. Dewhurst, P. A. Payne, and A. Davies, “Photo-acoustic probe for intra-arterial imaging and therapy,” Electron. Lett. 29, 1632–1633 (1993).
[Crossref]

Fibre Chem. (1)

O. V. Sidorov, A. M. Shchetinin, and S. V. Sidorov, “Photoacoustic methods of investigating fibre materials,” Fibre Chem. 31, 484–488 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[Crossref]

J. A. Viator, S. L. Jacques, and S. A. Prahl, “Depth profiling of absorbing soft materials using photoacoustic methods,” IEEE J. Sel. Top. Quantum Electron. 5, 989–996 (1999).
[Crossref]

IEEE Pulse (1)

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6, 42–46 (2015).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

S. D. Campbell, S. S. Yee, and M. A. Afromowitz, “Applications of photoacoustic spectroscopy to problems in dermatology research,” IEEE Trans. Biomed. Eng. BME-26, 220–227 (1979).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

J. C. Sharp, H. M. Grove, and O. P. Gandhi, “Generation of acoustic signals by pulsed microwave energy,” IEEE Trans. Microwave Theory Tech. 22, 583–584 (1974).
[Crossref]

D. Borth and C. A. Cain, “Theoretical analysis of acoustic signal generation in materials irradiated with microwave energy,” IEEE Trans. Microwave Theory Tech. 25, 944–954 (1977).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485–499 (1986).
[Crossref]

Int. J. Thermophys. (1)

B. Lashkari and A. Mandelis, “Features of the frequency- and time-domain photoacoustic modalities,” Int. J. Thermophys. 34, 1398–1404 (2013).
[Crossref]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1, 602–631 (2011).
[Crossref]

IRE Trans. Instrum. (1)

R. M. White, “An elastic wave method for the measurement of pulse-power density,” IRE Trans. Instrum. I-11, 294–298 (1962).
[Crossref]

Izvest. Akad. Nauk SSSR (1)

P. V. Slobodskaya, “Determination of the energy transfer rate from vibrational to translational molecular motion by means of a spectrophone,” Izvest. Akad. Nauk SSSR 12, 656–662 (1948) [in Russian].

J. Acoust. Soc. Am. (6)

L. S. Gournay, “Conversion of electromagnetic to acoustic energy by surface heating,” J. Acoust. Soc. Am. 40, 1322–1330 (1966).
[Crossref]

C. L. Hu, “Spherical model of an acoustical wave generated by rapid laser heating in a liquid,” J. Acoust. Soc. Am. 46, 728–736 (1969).
[Crossref]

M. W. Sigrist and F. K. Kneubühl, “Laser-generated stress waves in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
[Crossref]

S. F. Cleary and P. E. Hamrick, “Laser-induced acoustic transients in the mammalian eye,” J. Acoust. Soc. Am. 46, 1037–1044 (1969).
[Crossref]

G. M. Sessler and J. E. West, “Electret transducers: a review,” J. Acoust. Soc. Am. 53, 1589–1600 (1973).
[Crossref]

H. M. Ledbetter and J. C. Moulder, “Laser-induced Rayleigh waves in aluminium,” J. Acoust. Soc. Am. 65, 840–842 (1979).
[Crossref]

J. Appl. Phys. (8)

R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo, and A. Rosencwaig, “Subsurface flaw detection in metals by photoacoustic microscopy,” J. Appl. Phys. 51, 1152–1156 (1980).
[Crossref]

D. A. Hutchins and D. E. Wilkins, “Elastic waveforms using laser generation and electromagnetic acoustic transducer detection,” J. Appl. Phys. 58, 2469–2477 (1985).
[Crossref]

R. M. White, “Generation of elastic waves by transient surface heating,” J. Appl. Phys. 34, 3559–3567 (1963).
[Crossref]

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64–69 (1976).
[Crossref]

A. Rosencwaig, “Thermal wave microscopy with photoacoustics,” J. Appl. Phys. 51, 2210–2211 (1980).
[Crossref]

F. A. McDonald and G. C. Wetsel, “Generalized theory of the photoacoustic effect,” J. Appl. Phys. 49, 2313–2322 (1978).
[Crossref]

L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42, 2934–2943 (1971).
[Crossref]

R. M. White, “Elastic wave generation by electron bombardment or electromagnetic wave absorption,” J. Appl. Phys. 34, 2123–2124 (1963).

J. Biomed. Opt. (4)

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[Crossref]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[Crossref]

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18, 010502 (2013).
[Crossref]

P. Van Es, S. K. Biswas, H. J. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19, 060501 (2014).
[Crossref]

J. Cereb. Blood Flow Metab. (2)

L.-D. Liao, C.-T. Lin, Y.-Y. I. Shih, T. Q. Duong, H.-Y. Lai, P.-H. Wang, R. Wu, S. Tsang, J.-Y. Chang, M.-L. Li, and Y.-Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32, 938–951 (2012).
[Crossref]

S. Gottschalk, T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Non-invasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography,” J. Cereb. Blood Flow Metab. 35, 531–535 (2015).
[Crossref]

J. Exp. Theor. Phys. USSR (1)

G. Vasilev and M. Zhabotinskii, “Measurements of power of centimeter waves by thermoacoustic method,” J. Exp. Theor. Phys. USSR 24, 571–574 (1953) [in Russian].

J. Franklin Inst. (1)

A. G. Bell, “Production of sound by radiant energy,” J. Franklin Inst. 111, 401–428 (1881).
[Crossref]

J. Invest. Dermatol. (1)

S. J. Ford, P. L. Bigliardi, T. Sardella, A. Urich, N. C. Burton, M. Kacprowicz, M. Olivo, and D. Razansky, “Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography,” J. Invest. Dermatol. 136, 753–761 (2016).
[Crossref]

J. Nat. Philos. Chem. Arts (1)

B. Higgins, “On the sound produced by a current of hydrogen gas passing through a tube,” J. Nat. Philos. Chem. Arts 1, 129–131 (1802).

J. Phys. D (2)

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329–348 (1993).
[Crossref]

C. B. Scruby and H. N. G. Wadley, “A calibrated capacitance transducer for the detection of acoustic emission,” J. Phys. D 11, 1487–1494 (1978).
[Crossref]

J. Phys. E (1)

A. M. Aindow, J. A. Cooper, R. J. Dewhurst, and S. B. Palmer, “A spherical capacitance transducer for ultrasonic displacement measurements in NDE,” J. Phys. E 20, 204–209 (1987).
[Crossref]

J. Phys. Theor. Appl. (2)

E. Mercadier, “Sur la radiophonie,” J. Phys. Theor. Appl. 10, 53–68 (1881).
[Crossref]

E. Mercadier, “Sur la radiophonie (2e mémoire),” J. Phys. Theor. Appl. 10, 147–154 (1881).

J. Soc. Telegraph Eng. (1)

W. Smith, “The action of light on selenium,” J. Soc. Telegraph Eng. 2, 31–33 (1873).
[Crossref]

J. Soc. Telegraph Eng. Electr. (1)

W. H. Preece, “Radiophony,” J. Soc. Telegraph Eng. Electr. 10, 212–231 (1881).

Light Sci. Appl. (1)

X. L. Deán-Ben and D. Razansky, “Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally-enriched tomography,” Light Sci. Appl. 3, e137 (2014).
[Crossref]

Mater. Eval. (1)

R. J. Von Gutfeld and R. L. Melcher, “MHz acoustic waves from pulsed thermoelastic expansions and their application to flaw detection,” Mater. Eval. 35, 97–99 (1977).

Med. Phys. (4)

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40, 113301 (2013).
[Crossref]

R. A. Kruger, “Photoacoustic ultrasound,” Med. Phys. 21, 127–131 (1994).
[Crossref]

R. A. Kruger and P. Liu, “Photoacoustic ultrasound: pulse production and detection in 0.5% Liposyn,” Med. Phys. 21, 1179–1184 (1994).
[Crossref]

R. A. Kruger, P. Liu, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[Crossref]

Nat. Methods (2)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12, 407–410 (2015).
[Crossref]

Nat. Nanotechnol. (1)

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4, 855–860 (2009).
[Crossref]

Nat. Photonics (1)

A. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, and P. Beard, “Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter,” Nat. Photonics 9, 239–246 (2015).

Nature (3)

Rayleigh, “The photophone,” Nature 23, 274–275 (1881).
[Crossref]

A. G. Bell, “Selenium and the photophone,” Nature 22, 500–503 (1880).
[Crossref]

M. L. Veingerov, “An optical-acoustic method of gas analysis,” Nature 158, 28–29 (1946).
[Crossref]

Opt. Commun. (1)

A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Opt. Commun. 7, 305–308 (1973).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

G. Busse, “Imaging with the optoacoustic effect,” Opt. Laser Technol. 12, 149–154 (1980).
[Crossref]

Opt. Lett. (3)

Opt. News (1)

F. M. Mims, “Alexander Graham Bell and the photophone: the centennial of the invention of light-wave communications, 1880–1980,” Opt. News 6(1), 8–16 (1980).
[Crossref]

Philos. Mag. (2)

R. W. Wood and A. L. Loomis, “The physical and biological effects of high frequency sound-waves of great intensity,” Philos. Mag. 4(22), 417–436 (1927).
[Crossref]

P. L. Rijke, “Notice of a new method of causing a vibration of the air contained in a tube open at both ends,” Philos. Mag. 17(116), 419–422 (1859).

Photoacoustics (2)

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localized vibration tagging (LOVIT),” Photoacoustics 1, 19–29 (2013).
[Crossref]

Y. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref]

Phys. Med. Biol. (1)

P. C. Beard and T. N. Mills, “Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532  nm,” Phys. Med. Biol. 42, 177–198 (1997).
[Crossref]

Phys. Scripta (1)

P. E. Nordal and S. O. Kanstad, “Photothermal radiometry,” Phys. Scripta 20, 659–662 (1979).
[Crossref]

Phys. Today (2)

A. Mandelis, “Diffusion waves and their uses,” Phys. Today 53(8), 29–34 (2000).
[Crossref]

A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Phys. Today 28(9), 23–30 (1975).
[Crossref]

Planet. Space Sci. (1)

J. E. Michaels, “Thermal impact—the mechanical response of solids to extreme electromagnetic radiation,” Planet. Space Sci. 7, 427–433 (1961).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. R. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[Crossref]

Proc. Phys. Soc. London (1)

A. O. Rankine, “On the transmission of speech by light,” Proc. Phys. Soc. London 31, 242–268 (1918).
[Crossref]

Proc. R. Soc. London (2)

W. H. Preece, “On the conversion of radiant energy into sonorous vibrations,” Proc. R. Soc. London 31, 506–520 (1880).
[Crossref]

J. Tyndall, “Action of an intermittent beam of radiant heat upon gaseous matter,” Proc. R. Soc. London 31, 307–317 (1880).
[Crossref]

Proc. SPIE (10)

R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, and A. A. Oraevsky, “Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with x-ray and ultrasound imaging,” Proc. SPIE 2979, 71–82 (1997).
[Crossref]

G. Paltauf, H. Schmidt-Kloiber, K. Koestli, and M. Frenz, “Two-dimensional recording of optoacoustic waves,” Proc. SPIE 3601, 248–255 (1999).
[Crossref]

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, R. D. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, “Laser optoacoustic imaging of the breast: detection of cancer angiogenesis,” Proc. SPIE 3597, 352–363 (1999).
[Crossref]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: principles,” Proc. SPIE 2676, 22–31 (1996).
[Crossref]

R. O. Esenaliev, A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Laser optoacoustic tomography for medical diagnostics: experiments with biological tissues,” Proc. SPIE 2676, 84–90 (1996).
[Crossref]

C. G. Hoelen, G. Hamhuis, N. Pagoulatos, I. van den Ham, F. F. de Mul, and J. Greve, “Photoacoustic location of optical absorbers in phantom tissue,” Proc. SPIE 2927, 142–153 (1996).
[Crossref]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, S. L. Thomsen, and F. K. Tittel, “Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” Proc. SPIE 2389, 198–208 (1995).
[Crossref]

F. W. Cross, R. K. Al-Dhahir, and P. E. Dyer, “Ablation and acoustic response of pulsed laser irradiated vascular tissue in liquid,” Proc. SPIE 0908, 139–144 (1988).
[Crossref]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” Proc. SPIE 1882, 86–101 (1993).
[Crossref]

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser-based optoacoustic imaging in biological tissues,” Proc. SPIE 2134, 122–128 (1994).

Radiology (1)

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[Crossref]

Rev. Mod. Phys. (2)

C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53, 517–550 (1981).
[Crossref]

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[Crossref]

Rev. Sci. Instrum. (1)

S. Kaiplavil and A. Mandelis, “Highly depth-resolved chirped pulse photothermal radar for bone diagnostics,” Rev. Sci. Instrum. 82, 074906 (2011).
[Crossref]

Sci. Am. (1)

M. Hirn, “The sound of thunder,” Sci. Am. 59, 201 (1888).
[Crossref]

Sci. Prog. (1)

M. E. Delany, “The optic-acoustic effect in gases,” Sci. Prog. 47, 459–467 (1959).

Sci. Transl. Med. (1)

I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, “Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,” Sci. Transl. Med. 7, 317ra199 (2015).
[Crossref]

Science (8)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref]

A. Rosencwaig and A. Gersho, “Photoacoustic effect with solids: a theoretical treatment,” Science 190, 556–557 (1975).
[Crossref]

A. Rosencwaig, “Thermal-wave imaging,” Science 218, 223–228 (1982).
[Crossref]

A. H. Pfund, “Atmospheric contamination,” Science 90, 326–327 (1939).
[Crossref]

A. Rosencwaig, “Photoacoustic spectroscopy of biological materials,” Science 181, 657–658 (1973).
[Crossref]

K. R. Foster and E. D. Finch, “Microwave hearing: evidence for thermoacoustic auditory stimulation by pulsed microwaves,” Science 185, 256–258 (1974).
[Crossref]

A. H. Frey and R. Messenger, “Human perception of illumination with pulsed ultrahigh-frequency electromagnetic energy,” Science 181, 356–358 (1973).
[Crossref]

J. J. Wild and J. M. Reid, “Application of echo-ranging techniques to the determination of structure of biological tissues,” Science 115, 226–230 (1952).

Sensors (1)

C. Lutzweiler and D. Razansky, “Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification,” Sensors 13, 7345–7384 (2013).
[Crossref]

Sov. Phys. Acoust. (1)

S. G. Kasoev and L. M. Lyamshev, “Theory of laser-pulse generation of sound in a liquid,” Sov. Phys. Acoust. 23, 510–514 (1977).

Sov. Phys. Usp. (2)

L. M. Lyamshev, “Radiation acoustics,” Sov. Phys. Usp. 35, 276–302 (1987).
[Crossref]

L. M. Lyamshev, “Lasers in acoustics,” Sov. Phys. Usp. 30, 252–279 (1987).
[Crossref]

Trans. Faraday Soc. (2)

T. L. Cottrell, “The absorption of interrupted infra-red radiation,” Trans. Faraday Soc. 46, 1025–1030 (1950).
[Crossref]

T. L. Cottrell, I. M. Macfarlane, A. W. Read, and A. H. Young, “Measurement of vibrational relaxation times by the spectrophone. Application to CH4, CO2, N2O, COS, NH3 and HCN,” Trans. Faraday Soc. 62, 2655–2666 (1966).
[Crossref]

Trends Biotechnol. (1)

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29, 213–221 (2011).
[Crossref]

Ultrasonics (2)

C. B. Scruby, “Some applications of laser ultrasound,” Ultrasonics 27, 195–209 (1989).
[Crossref]

J. D. Aussel and J. P. Monchalin, “Precision laser-ultrasonic velocity measurement and elastic constant determination,” Ultrasonics 27, 165–177 (1989).
[Crossref]

Z. Angew. Math. Phys. (1)

L. Amar, M. Bruma, M. Velghe, and P. Desvigne, “On detection of laser induced ultrasonic waves in human eye and elaboration of a theory of fundamental mechanism of vision,” Z. Angew. Math. Phys. 16, 182–183 (1965).
[Crossref]

Z. gesamte Neurol. Psychiat. (1)

K. T. Dussik, “Über die Möglichkeit, hochfrequente mechanische Schwingungen als diagnostisches Hilfsmittel zu verwerten [On the possibility of using ultrasound waves as a diagnostic aid],” Z. gesamte Neurol. Psychiat. 174, 153–168 (1942).
[Crossref]

Z. Tech. Phys. (1)

K. F. Luft, “Über eine neue methode der registrierenden Gasanalyse mit Hilfe der absorption ultraroter Strahlen ohne spektrale Zerlegung,” Z. Tech. Phys. 5, 97–104 (1943).

Zh. Eksp. Teor. Fiz. (1)

G. A. Askaryan, A. M. Prokhorov, G. F. Chanturia, and G. P. Shipulo, “Propagation of a laser beam through a liquid,” Zh. Eksp. Teor. Fiz. 44, 2180–2182 (1963).

Other (20)

L. M. Lyamshev, Radiation Acoustics (CRC Press, 2004).

G. D. Ludwig and F. W. Struthers, “Considerations underlying the use of ultrasound to detect gallstones and foreign bodies in tissue,” (Naval Medical Research Institute, 1949).

D. H. Howry, “Sound-wave portrait in the flesh,” in Life Magazine (Medicine Section) (1954), pp. 71–72.

L. Bergmann, Der Ultraschall und seine Anwendungen in Wissenschaft und Technik (VDI-Verlag, 1937).

C. M. Chilowsky and M. P. Langévin, “Procédés et appareils pour la production de signaux sous-marins dirigés et pour la localisation á distance d’obstacles sous-marins,” French patentFR502913 (May 29, 1916).

L. V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007), Chap. 12, pp. 283–321.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, 1993).

C. B. Scruby and L. E. Drain, Laser Ultrasonics Techniques and Applications (CRC Press, 1990).

V. P. Zharov and V. S. Letokhov, Laser Optoacoustic Spectroscopy, Vol. 37 of Springer Series in Optical Sciences (Springer-Verlag, 1986).

T. Bowen, “Radiation-induced thermoacoustic soft tissue imaging,” in Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 817–822.

T. Bowen, R. L. Nasoni, A. E. Pifer, and G. H. Sembroski, “Some experimental results on the thermoacoustic imaging of tissue equivalent phantom materials,” in Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 823–827.

R. L. Nasoni, G. A. Evanoff, P. G. Halverson, and T. Bowen, “Thermoacoustic emission by deeply penetrating microwave radiation,” in Proceedings 1984 Ultrasonics Symposium (IEEE, 1984), pp. 633–638.

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).

B. I. Stepanov and O. P. Girin, Zh. Eksp. Teor. Ftz.20, 947 (1950) [in Russian].

M. Groth, “Photophones revisited,” in Amateur Radio Magazine (Wireless Institute of Australia, 1987), pp. 12–17.

Alcatel-Lucent, Bell Labs Announces New Optical Transmission Record and Breaks 100 Petabit Per Second Kilometer Barrier (Press Release) (Alcatel-Lucent, 2009).

F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic, 1990).

H. S. Carslaw and J. C. Jaeger, Heat Conduction in Solids (Clarendon, 1959).

H. I. Ringermacher and J. S. Heyman, “Observation of a sono-acoustic effect using piezoelectric thermo-acoustic detection,” in Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 840–843.

T. Masujima, Y. Munekane, C. Kawai, H. Yoshida, H. Imai, L. Juing-Yi, and Y. Sato, “Photoacoustic imaging immunoassay for biological component microanalysis,” in Photoacoustic and Photothermal Phenomena, P. D. P. Hess and P. D. J. Pelzl, eds. (Springer-Verlag, 1988), pp. 558–569.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Figure 1
Figure 1

Photophone designed and built by Alexander G. Bell and Charles S. Tainter is considered the first implementation of wireless telephony or, in fact, of an optical communication device [32]. The first voice telephone message was transmitted by means of light over some 213 m in Washington, D.C. in June 1880.

Figure 2
Figure 2

Optico-acoustic gas analysis apparatus developed in Leningrad, USSR in 1938 by Veingerov was the first widespread application of the photophonic effect [46,47].

Figure 3
Figure 3

A variety of techniques can be applied to probe properties of materials using intermittent light radiation, including the original Bell gas-microphone thermal wave detection method [32], measurement of refractive index gradients in an adjacent coupling liquid (beam deflection spectroscopy) [69], temperature monitoring using pyroelectric sensors (photopyroelectric spectroscopy) [70], measurement of thermal emission changes using infrared detectors (photothermal radiometry) [71], or photoacoustic spectroscopy by means of piezoelectric detection of acoustic vibrations and waves [61].

Figure 4
Figure 4

Pulsed photoacoustic effect. (a) Scattering sample containing optical absorbers is illuminated with short laser pulses. (b) Absorption of the light energy leads to thermoelastic expansion and subsequent generation of propagating elastic waves that are recorded using detector/s placed outside the sample.

Figure 5
Figure 5

Thermal impact experiment studying acoustic waves induced in solids due to pulsed light exposure [86]. (a) Schematic of the experimental setup. Short light pulses produced by an underwater spark were focused onto an aluminum rod. The acoustic waves produced in the rod due to absorption of the pulsed light radiation were detected by a piezoelectric detector mounted on the other side of the rod. (b) Close-up view of an underwater exploding wire spark. (c) General view of the entire thermal impact facility. Reprinted from Planet. Space Sci. 7, J. E. Michaels, “Thermal impact—the mechanical response of solids to extreme electromagnetic radiation,” 427–433 [86]. Copyright 1961, with permission from Elsevier.

Figure 6
Figure 6

Photoacoustic spectra of whole blood, red blood cells, and hemoglobin measured using a Xe lamp and the gas-microphone method. From A. Rosencwaig, Science 181, 657–658 (1973) [122]. Reprinted with permission from AAAS.

Figure 7
Figure 7

(a) Schematic representation of the physical processes that occur during thermal wave imaging. (b) Example of subsurface mechanical defect in silicon integrated circuit that is not visible in backscattered-electron images; (c) thermal-wave microscopy image of the same area reveals a subsurface microcrack. From A. Rosencwaig, Science 218, 223–228 (1982) [66]. Reprinted with permission from AAAS.

Figure 8
Figure 8

First photoacoustic traces acquired from a biological sample. (a) Photograph from the rabbit used in the experiment; (b) opto-acoustic traces obtained from a rabbit retina in vivo using a pulsed ruby laser and barium titanate piezo-electric detector. Reproduced with permission from Amar et al., C. R. Acad. Sci. Paris 259, 3653–3655 (1964) [129].

Figure 9
Figure 9

(a) Example of a thermoacoustic signal trace recorded from a human arm in vivo. (b) Schematics of the experiment that was used to generate thermoacoustic waves by fast discharge of a high-voltage capacitor. © 1981 IEEE. Bowen et al., Proceedings 1981 Ultrasonics Symposium (IEEE, 1981), pp. 823–827 [143].

Figure 10
Figure 10

Thermoacoustic 2D projection image (a) from a human hand phantom (b) obtained using a short-pulsed 5.66 GHz microwave source and a 20×20 ultrasound detector array. Olsen and Lin, Bioelectromagnetics 4, 397–400 (1983) [146]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

Figure 11
Figure 11

Time-line of various significant events in the history of photoacoustics from 1880 toward the modern times. Red arrows indicate the low frequency intensity modulated variant; blue arrows indicate the short pulsed variant.

Tables (2)

Tables Icon

Table 1. Differences between Continuous Wave and Pulsed Photoacoustics

Tables Icon

Table 2. Various Names and Embodiments over the Years

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

q(x,t)=(T1T0)πtexp(x2d02).
ΔVV=KΔp+βΔT=0,
Δp0=βΔTK=βK{EaρCv},
Δp0=ΓEa,where  Γ=βKρCv=βvs2Cp.

Metrics