Abstract

Recently, there has been tremendous interest in excitable optoelectronic devices and in particular excitable semiconductor lasers that could potentially enable unconventional processing approaches beyond conventional binary-logic-based approaches. In parallel, there has been renewed investigation of non-von Neumann architectures driven in part by incipient limitations in aspects of Moore’s law. These neuromorphic architectures attempt to decentralize processing by interweaving interconnection with computing while simultaneously incorporating time-resolved dynamics, loosely classified as spiking (a.k.a. excitability). The rapid and efficient advances in CMOS-compatible photonic interconnect technologies have led to opportunities in optics and photonics for unconventional circuits and systems. Effort in the budding research field of photonic spike processing aims to synergistically integrate the underlying physics of photonics with bio-inspired processing. Lasers operating in the excitable regime are dynamically analogous with the spiking dynamics observed in neuron biophysics but roughly 8 orders of magnitude faster. The field is reaching a critical juncture at which there is a shift from studying single devices to studying an interconnected network of lasers. In this paper, we review the recent research in the information processing abilities of such lasers, dubbed “photonic neurons,” “laser neurons,” or “optical neurons.” An integrated network of such lasers on a chip could potentially grant the capacity for complex, ultrafast categorization and decision making to provide a range of computing and signal processing applications, such as sensing and manipulating the radio frequency spectrum and for hypersonic aircraft control.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
SIMPEL: Circuit model for photonic spike processing laser neurons

Bhavin J. Shastri, Mitchell A. Nahmias, Alexander N. Tait, Ben Wu, and Paul R. Prucnal
Opt. Express 23(6) 8029-8044 (2015)

Excitable laser processing network node in hybrid silicon: analysis and simulation

Mitchell A. Nahmias, Alexander N. Tait, Bhavin J. Shastri, Thomas Ferreira de Lima, and Paul R. Prucnal
Opt. Express 23(20) 26800-26813 (2015)

Optoelectronic neuromorphic system using the neural engineering framework

Rui Wang, Cheng Qian, Quansheng Ren, and Jianye Zhao
Appl. Opt. 56(5) 1517-1525 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (53)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription