Abstract

The tremendous progress in the synthesis of different inorganic nanoparticles with pretailored size, shape, structural, compositional, and surface properties has significantly raised their potential applications in biomedicine. Optically active inorganic nanoparticles are those that, based on inorganic materials, can produce fluorescence or scattered light under suitable optical excitation. These outgoing radiations can be conveniently used for bioimaging purposes. In this work, the different types of optically active inorganic nanoparticles that are being used for optical bioimaging are reviewed in detail. Special attention is paid to fluorescent and inorganic persistent luminescence nanoparticles and how their different excitation mechanisms (no-photon, one-photon, or multiphoton excited fluorescence) and working spectral ranges can be conveniently applied for in vitro and in vivo high-contrast optical bioimaging.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoprobes for optical bioimaging

Keunsoo Jeong, Youngsun Kim, Chi Soo Kang, Hong-Jun Cho, Yong-Deok Lee, Ick Chan Kwon, and Sehoon Kim
Opt. Mater. Express 6(4) 1262-1279 (2016)

Nanoparticles for highly efficient multiphoton fluorescence bioimaging

Laura Martinez Maestro, Emma Martín Rodriguez, Fiorenzo Vetrone, Rafik Naccache, Hector Loro Ramirez, Daniel Jaque, John A. Capobianco, and José García Solé
Opt. Express 18(23) 23544-23553 (2010)

Biocompatible near-infrared fluorescent nanoparticles for macro and microscopic in vivo functional bioimaging

Liliang Chu, Shaowei Wang, Kanghui Li, Wang Xi, Xinyuan Zhao, and Jun Qian
Biomed. Opt. Express 5(11) 4076-4088 (2014)

References

  • View by:
  • |
  • |
  • |

  1. I. N. Bankman, Handbook of Medical Image Processing and Analysis (Academic, 2009).
  2. C. Balas, “Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis,” Meas. Sci. Technol. 20, 104020 (2009).
    [Crossref]
  3. S. H. Yun, G. J. Teamey, and B. E. Bouma, “Biomedical imaging using optical technologies,” Proc. SPIE 5502, 17–24 (2004).
  4. J. Mertz, Introduction to Optical Microscopy (Roberts, 2010).
  5. B. Herman, Fluorescence Microscopy (BIOS Scientific, 1998).
  6. B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications (Wiley, 2012).
  7. H. J. M. A. A. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala, and H. J. Tanke, “Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology,” Anal. Biochem. 267, 30–36 (1999).
    [Crossref]
  8. E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5, 11339–11361 (2013).
    [Crossref]
  9. C. Betz, M. Mehlmann, K. Rick, H. Stepp, G. Grevers, R. Baumgartner, and A. Leunig, “Autofluorescence imaging and spectroscopy of normal and malignant mucosa in patients with head and neck cancer,” Lasers Surg. Med. 25, 323–334 (1999).
    [Crossref]
  10. T. Wilson and J. W. Hastings, “Bioluminescence,” Annu. Rev. Cell Dev. Biol. 14, 197–230 (1998).
    [Crossref]
  11. A. De and S. S. Gambhir, “Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer,” FASEB J. 19, 2017–2019 (2005).
  12. J. S. Sparks, R. C. Schelly, W. L. Smith, M. P. Davis, D. Tchernov, V. A. Pieribone, and D. F. Gruber, “The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon,” PLoS ONE 9, e83259 (2014).
    [Crossref]
  13. P. Ellinger, “Fluorescence microscopy in biology,” Biol. Rev. 15, 323–347 (1940).
    [Crossref]
  14. D. Wittekind, “Fluorescence microscopy and the living cell,” J. R. Microsc. Soc. 83, 83–94 (1964).
    [Crossref]
  15. O. Shimomura, F. H. Johnson, and Y. Saiga, “Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea,” J. Cell. Comp. Physiol. 59, 223–239 (1962).
    [Crossref]
  16. O. Shimomura, “Structure of the chromophore of Aequorea green fluorescent protein,” FEBS Lett. 104, 220–222 (1979).
    [Crossref]
  17. D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast, and M. J. Cormier, “Primary structure of the Aequorea victoria green-fluorescent protein,” Gene 111, 229–233 (1992).
    [Crossref]
  18. D. C. Prasher, “Using GFP to see the light,” Trends Genet. 11, 320–323 (1995).
    [Crossref]
  19. M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
    [Crossref]
  20. J. S. Donner, S. A. Thompson, C. Alonso-Ortega, J. Morales, L. G. Rico, S. I. C. O. Santos, and R. Quidant, “Imaging of plasmonic heating in a living organism,” ACS Nano 7, 8666–8672 (2013).
    [Crossref]
  21. R. D. Goldman, D. L. Spector, and A. C. Swedlund, Live Cell Imaging: a Laboratory Manual (Cold Spring Harbor Laboratory, 2005).
  22. J. Délèze, B. Delage, O. Hentati-Ksibi, F. Verrecchia, and J.-C. Hervé, “Fluorescence recovery after photobleaching,” in Connexin Methods and Protocols (Springer, 2001), pp. 313–327.
  23. A. Carisey, M. Stroud, R. Tsang, and C. Ballestrem, “Fluorescence recovery after photobleaching,” in Cell Migration (Springer, 2011), pp. 387–402.
  24. S. M. Dunham, H. E. Pudavar, P. N. Prasad, and M. K. Stachowiak, “Cellular signaling and protein–protein interactions studied using fluorescence recovery after photobleaching,” J. Phys. Chem. B 108, 10540–10546 (2004).
    [Crossref]
  25. M.-M. Poo and R. A. Cone, “Lateral diffusion of rhodopsin in the photoreceptor membrane,” Nature 247, 438–441 (1974).
    [Crossref]
  26. J. White and E. Stelzer, “Photobleaching GFP reveals protein dynamics inside live cells,” Trends Cell Biol. 9, 61–65 (1999).
    [Crossref]
  27. P. Wu and L. Brand, “Resonance energy transfer: methods and applications,” Anal. Biochem. 218, 1–13 (1994).
    [Crossref]
  28. C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells,” PLoS ONE 5, e9344 (2010).
    [Crossref]
  29. P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. M. Schlag, “Hyperthermia in combined treatment of cancer,” Lancet Oncol. 3, 487–497 (2002).
    [Crossref]
  30. M. E. Dockter, A. Steinemann, and G. Schatz, “Mapping of yeast cytochrome c oxidase by fluorescence resonance energy transfer. Distances between subunit II, heme a, and cytochrome c bound to subunit III,” J. Biol. Chem. 253, 311–317 (1978).
  31. D. M. Shcherbakova, O. M. Subach, and V. V. Verkhusha, “Red fluorescent proteins: advanced imaging applications and future design,” Angew. Chem. Int. Ed. 51, 10724–10738 (2012).
    [Crossref]
  32. L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng, and Y. Li, “Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles,” Angew. Chem. Int. Ed. 44, 6054–6057 (2005).
  33. K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001).
    [Crossref]
  34. R. B. Sekar and A. Periasamy, “Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations,” J. Cell Biol. 160, 629–633 (2003).
    [Crossref]
  35. B. Schuler and W. A. Eaton, “Protein folding studied by single-molecule FRET,” Curr. Opin. Struct. Biol. 18, 16–26 (2008).
    [Crossref]
  36. M. A. Rizzo, G. H. Springer, B. Granada, and D. W. Piston, “An improved cyan fluorescent protein variant useful for FRET,” Nat. Biotechnol. 22, 445–449 (2004).
    [Crossref]
  37. S. Bassnett, L. Reinisch, and D. C. Beebe, “Intracellular pH measurement using single excitation-dual emission fluorescence ratios,” Am. J. Physiol. Cell Physiol. 258, C171–C178 (1990).
  38. O. Seksek, N. Henry-Toulmé, F. Sureau, and J. Bolard, “SNARF-1 as an intracellular pH indicator in laser microspectrofluorometry: a critical assessment,” Anal. Biochem. 193, 49–54 (1991).
    [Crossref]
  39. J. R. Casey, S. Grinstein, and J. Orlowski, “Sensors and regulators of intracellular pH,” Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).
    [Crossref]
  40. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [Crossref]
  41. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
    [Crossref]
  42. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
    [Crossref]
  43. K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8, 432–439 (2003).
    [Crossref]
  44. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2, 124–129 (2003).
    [Crossref]
  45. L. J. Steven, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37 (2013).
    [Crossref]
  46. M. Yang, P. Jiang, F.-X. Sun, S. Hasegawa, E. Baranov, T. Chishima, H. Shimada, A. Moossa, and R. M. Hoffman, “A fluorescent orthotopic bone metastasis model of human prostate cancer,” Cancer Res. 59, 781–786 (1999).
  47. M. Yang, E. Baranov, P. Jiang, F.-X. Sun, X.-M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, and T. Chishima, “Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases,” Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).
    [Crossref]
  48. T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. Moossa, and R. M. Hoffman, “Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression,” Cancer Res. 57, 2042–2047 (1997).
  49. R. Weissleder, C.-H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
    [Crossref]
  50. P. Sonström and M. Bäumer, “Supported colloidal nanoparticles in heterogeneous gas phase catalysis: on the way to tailored catalysts,” Phys. Chem. Chem. Phys. 13, 19270–19284 (2011).
    [Crossref]
  51. B. Mishra, B. B. Patel, and S. Tiwari, “Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery,” Nanomed. Nanotechnol. Biol. Med. 6, 9–24 (2010).
    [Crossref]
  52. B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6, 662–668 (2006).
    [Crossref]
  53. H. Jin, D. A. Heller, R. Sharma, and M. S. Strano, “Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles,” ACS Nano 3, 149–158 (2009).
    [Crossref]
  54. E. Carbó-Argibay, B. Rodríguez-González, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Chemical sharpening of gold nanorods: the rod-to-octahedron transition,” Angew. Chem. Int. Ed. 46, 8983–8987 (2007).
  55. M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
    [Crossref]
  56. T.-H. Chung, S.-H. Wu, M. Yao, C.-W. Lu, Y.-S. Lin, Y. Hung, C.-Y. Mou, Y.-C. Chen, and D.-M. Huang, “The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells,” Biomaterials 28, 2959–2966 (2007).
    [Crossref]
  57. A. Asati, S. Santra, C. Kaittanis, and J. M. Perez, “Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles,” ACS Nano 4, 5321–5331 (2010).
    [Crossref]
  58. M. P. Monopoli, C. Aberg, A. Salvati, and K. A. Dawson, “Biomolecular coronas provide the biological identity of nanosized materials,” Nat. Nanotechnol. 7, 779–786 (2012).
    [Crossref]
  59. F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodriguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2, 495–498 (2010).
    [Crossref]
  60. Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3, 284–288 (2008).
    [Crossref]
  61. Y. Matsumura and H. N. Ananthaswamy, “Toxic effects of ultraviolet radiation on the skin,” Toxicol. Appl. Pharmacol. 195, 298–308 (2004).
    [Crossref]
  62. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
    [Crossref]
  63. H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” J. Control. Release 155, 344–357 (2011).
    [Crossref]
  64. M. Swierczewska, S. Lee, and X. Chen, “Inorganic nanoparticles for multimodal molecular imaging,” Mol. Imaging 10, 3–16 (2011).
  65. M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, and J. I. Zink, “Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery,” ACS Nano 2, 889–896 (2008).
    [Crossref]
  66. J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung, S. Jung, Y. Park, and S. Kim, “Surface engineering of inorganic nanoparticles for imaging and therapy,” Adv. Drug Delivery Rev. 65, 622–648 (2013).
    [Crossref]
  67. Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44, 1302–1317 (2015).
    [Crossref]
  68. P. D. Nguyen, S. J. Son, and J. Min, “Upconversion nanoparticles in bioassays, optical imaging and therapy,” J. Nanosci. Nanotechnol. 14, 157–174 (2014).
    [Crossref]
  69. F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen, and X. G. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
    [Crossref]
  70. L. Cheng, C. Wang, and Z. Liu, “Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy,” Nanoscale 5, 23–37 (2013).
    [Crossref]
  71. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38, 1759–1782 (2009).
    [Crossref]
  72. E. C. Dreaden, A. M. Alkilany, X. H. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41, 2740–2779 (2012).
    [Crossref]
  73. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
    [Crossref]
  74. P. F. Jiao, H. Y. Zhou, L. X. Chen, and B. Yan, “Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy,” Curr. Med. Chem. 18, 2086–2102 (2011).
    [Crossref]
  75. M. N. Rhyner, A. M. Smith, X. H. Gao, H. Mao, L. L. Yang, and S. M. Nie, “Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging,” Nanomedicine 1, 209–217 (2006).
    [Crossref]
  76. S. Jiang, M. K. Gnanasammandhan, and Y. Zhang, “Optical imaging-guided cancer therapy with fluorescent nanoparticles,” J. R. Soc. Interface 7, 3–18 (2010).
    [Crossref]
  77. A. M. Coto-Garcia, E. Sotelo-Gonzalez, M. Fernandez-Arguelles, R. Pereiro, J. M. Costa-Fernandez, and A. Sanz-Medel, “Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics,” Anal. Bioanal. Chem. 399, 29–42 (2011).
    [Crossref]
  78. A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B 54, 4843–4856 (1996).
    [Crossref]
  79. A. I. Ekimov, Al. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
    [Crossref]
  80. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
    [Crossref]
  81. A. M. Smith and S. Nie, “Chemical analysis and cellular imaging with quantum dots,” Analyst 129, 672–677 (2004).
    [Crossref]
  82. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
    [Crossref]
  83. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21, 47–51 (2003).
    [Crossref]
  84. W. C. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016–2018 (1998).
    [Crossref]
  85. M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302, 442–445 (2003).
    [Crossref]
  86. P. A. Frantsuzov and R. Marcus, “Explanation of quantum dot blinking without the long-lived trap hypothesis,” Phys. Rev. B 72, 155321 (2005).
    [Crossref]
  87. F. Pinaud, X. Michalet, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Iyer, and S. Weiss, “Advances in fluorescence imaging with quantum dot bio-probes,” Biomaterials 27, 1679–1687 (2006).
    [Crossref]
  88. F. Pinaud, D. King, H. P. Moore, and S. Weiss, “Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides,” J. Am. Chem. Soc. 126, 6115–6123 (2004).
    [Crossref]
  89. J. K. Jaiswal and S. M. Simon, “Potentials and pitfalls of fluorescent quantum dots for biological imaging,” Trends Cell Biol. 14, 497–504 (2004).
    [Crossref]
  90. G. Ruan, A. Agrawal, A. I. Marcus, and S. Nie, “Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding,” J. Am. Chem. Soc. 129, 14759–14766 (2007).
    [Crossref]
  91. H. Tada, H. Higuchi, T. M. Wanatabe, and N. Ohuchi, “In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice,” Cancer Res. 67, 1138–1144 (2007).
    [Crossref]
  92. A. M. Derfus, W. C. Chan, and S. N. Bhatia, “Intracellular delivery of quantum dots for live cell labeling and organelle tracking,” Adv. Mater. 16, 961–966 (2004).
    [Crossref]
  93. A. M. Smith, S. Dave, S. Nie, L. True, and X. Gao, “Multicolor quantum dots for molecular diagnostics of cancer,” Expert Rev. Mol. Diagn. 6, 231–244 (2006).
    [Crossref]
  94. Y. Masumoto and T. Takagahara, Semiconductor Quantum Dots: Physics, Spectroscopy and Applications (Springer, 2002).
  95. M. Nirmal, D. Norris, M. Kuno, M. Bawendi, A. L. Efros, and M. Rosen, “Observation of the ‘dark exciton’ in CdSe quantum dots,” Phys. Rev. Lett. 75, 3728–3731 (1995).
    [Crossref]
  96. D. Norris, A. L. Efros, M. Rosen, and M. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B 53, 16347–16354 (1996).
    [Crossref]
  97. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
    [Crossref]
  98. L. M. Maestro, C. Jacinto, U. Rocha, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, J. G. Solé, and D. Jaque, “Optimum quantum dot size for highly efficient fluorescence bioimaging,” J. Appl. Phys. 111, 023513 (2012).
    [Crossref]
  99. S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures,” J. Am. Chem. Soc. 125, 11466–11467 (2003).
    [Crossref]
  100. H. Yang and P. H. Holloway, “Enhanced photoluminescence from CdS: Mn/ZnS core/shell quantum dots,” Appl. Phys. Lett. 82, 1965–1967 (2003).
    [Crossref]
  101. B. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. Heine, H. Mattoussi, R. Ober, K. Jensen, and M. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
    [Crossref]
  102. Y. He, H.-T. Lu, L.-M. Sai, W.-Y. Lai, Q.-L. Fan, L.-H. Wang, and W. Huang, “Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence,” J. Phys. Chem. B 110, 13370–13374 (2006).
    [Crossref]
  103. O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, and R. K. Jain, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12, 445–451 (2013).
    [Crossref]
  104. E. A. Riley, C. Bingham, E. D. Bott, B. Kahr, and P. J. Reid, “Two mechanisms for fluorescence intermittency of single violamine R molecules,” Phys. Chem. Chem. Phys. 13, 1879–1887 (2011).
    [Crossref]
  105. P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519–522 (2008).
    [Crossref]
  106. D. A. V. Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules,” Science 277, 1074–1077 (1997).
    [Crossref]
  107. J. P. Hoogenboom, J. Hernando, E. M. van Dijk, N. F. van Hulst, and M. F. García-Parajó, “Power-law blinking in the fluorescence of single organic molecules,” Chem. Phys. Chem. 8, 823–833 (2007).
  108. C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479, 203–207 (2011).
    [Crossref]
  109. C. Liu, Y. K. Kwon, and J. Heo, “Temperature-dependent brightening and darkening of photoluminescence from PbS quantum dots in glasses,” Appl. Phys. Lett. 90, 241111 (2007).
    [Crossref]
  110. R. E. Smalley, “Discovering the fullerenes (Nobel lecture),” Angew. Chem. Int. Ed. Engl. 36, 1594–1601 (1997).
  111. K. S. Novoselov, “Graphene: materials in the flatland (Nobel lecture),” Angew. Chem. Int. Ed. 50, 6986–7002 (2011).
  112. S. K. Bhunia, A. Saha, A. R. Maity, S. C. Ray, and N. R. Jana, “Carbon nanoparticle-based fluorescent bioimaging probes,” Sci. Rep. 3, 1473 (2013).
    [Crossref]
  113. O. S. Wolfbeis, “An overview of nanoparticles commonly used in fluorescent bioimaging,” Chem. Soc. Rev. 44, 4743–4768 (2015).
    [Crossref]
  114. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
    [Crossref]
  115. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties Of Carbon Nanotubes (World Scientific, 1998).
  116. K. Welsher, Z. Liu, D. Daranciang, and H. Dai, “Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules,” Nano Lett. 8, 586–590 (2008).
    [Crossref]
  117. A. P. Demchenko and M. O. Dekaliuk, “Novel fluorescent carbonic nanomaterials for sensing and imaging,” Methods Appl. Fluoresc. 1, 042001 (2013).
    [Crossref]
  118. J.-E. Lee, I. In, H. Lee, K. D. Lee, J. H. Jeong, and S. Y. Park, “Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots,” Mol. Pharm. 10, 3736–3744 (2013).
    [Crossref]
  119. S.-L. Hu, K.-Y. Niu, J. Sun, J. Yang, N.-Q. Zhao, and X.-W. Du, “One-step synthesis of fluorescent carbon nanoparticles by laser irradiation,” J. Mater. Chem. 19, 484–488 (2009).
    [Crossref]
  120. Q. Zhang, W. Li, L. P. Wen, J. Chen, and Y. Xia, “Facile synthesis of Ag nanocubes of 30 to 70  nm in edge length with CF(3)COOAg as a precursor,” Chemistry 16, 10234–10239 (2010).
    [Crossref]
  121. T. Gokus, R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. Novoselov, A. Geim, A. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3, 3963–3968 (2009).
    [Crossref]
  122. Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, and L. Qu, “Nitrogen-doped graphene quantum dots with oxygen-rich functional groups,” J. Am. Chem. Soc. 134, 15–18 (2011).
    [Crossref]
  123. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7, 11–23 (2012).
    [Crossref]
  124. C. Y. Fang, V. Vaijayanthimala, C. A. Cheng, S. H. Yeh, C. F. Chang, C. L. Li, and H. C. Chang, “The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker,” Small 7, 3363–3370 (2011).
    [Crossref]
  125. S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005).
    [Crossref]
  126. G. Kucsko, P. Maurer, N. Y. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
    [Crossref]
  127. D. Jaque, B. del Rosal, E. M. Rodríguez, L. M. Maestro, P. Haro-González, and J. G. Solé, “Fluorescent nanothermometers for intracellular thermal sensing,” Nanomedicine 9, 1047–1062 (2014).
    [Crossref]
  128. G. S. He, K.-T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15, 12818–12833 (2007).
    [Crossref]
  129. M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 401, 273–294 (1931).
    [Crossref]
  130. M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37, 326–333 (2004).
    [Crossref]
  131. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
    [Crossref]
  132. P. Haro-González, L. Martínez-Maestro, I. Martín, J. García-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
    [Crossref]
  133. P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9, 2162–2170 (2013).
    [Crossref]
  134. L. M. Maestro, P. Haro-González, M. C. Iglesias-de la Cruz, F. SanzRodríguez, Á. Juarranz, J. G. Solé, and D. Jaque, “Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia,” Nanomedicine 8, 379–388 (2013).
    [Crossref]
  135. L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging,” Small 7, 1774–1778 (2011).
    [Crossref]
  136. L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. I.-D. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10, 5109–5115 (2010).
    [Crossref]
  137. L. M. Maestro, Q. Zhang, X. Li, D. Jaque, and M. Gu, “Quantum-dot based nanothermometry in optical plasmonic recording media,” Appl. Phys. Lett. 105, 181110 (2014).
    [Crossref]
  138. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2003).
    [Crossref]
  139. M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. 50, 5808–5829 (2011).
    [Crossref]
  140. Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42, 6924–6958 (2013).
    [Crossref]
  141. J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals,” Angew. Chem. Int. Ed. 50, 10369–10372 (2011).
    [Crossref]
  142. W. Yang, X. Li, D. Chi, H. Zhang, and X. Liu, “Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis,” Nanotechnology 25, 482001 (2014).
    [Crossref]
  143. Y. Zhang, L. Zhang, R. Deng, J. Tian, Y. Zong, D. Jin, and X. Liu, “Multicolor barcoding in a single upconversion crystal,” J. Am. Chem. Soc. 136, 4893–4896 (2014).
    [Crossref]
  144. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114, 5161–5214 (2014).
    [Crossref]
  145. F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38, 976–989 (2009).
    [Crossref]
  146. F. Auzel, “Compteur quantique par transfert denergie entre deux ions de terres rares dans un tungstate mixte et dans un verre,” C. R. Hebd. Seances Acad. Sci. Ser. B 262, 1016 (1966).
  147. F. Wang, J. Wang, and X. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 49, 7456–7460 (2010).
  148. G. Chen, H. Liu, G. Somesfalean, H. Liang, and Z. Zhang, “Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions,” Nanotechnology 20, 385704 (2009).
    [Crossref]
  149. F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130, 5642–5643 (2008).
    [Crossref]
  150. J. Wang, F. Wang, J. Xu, Y. Wang, Y. Liu, X. Chen, H. Chen, and X. Liu, “Lanthanide-doped LiYF4 nanoparticles: synthesis and multicolor upconversion tuning,” C. R. Chim. 13, 731–736 (2010).
    [Crossref]
  151. M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J. Phys. Chem. C 113, 19021–19027 (2009).
    [Crossref]
  152. S. Han, R. Deng, X. Xie, and X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles,” Angew. Chem. Int. Ed. 53, 11702–11715 (2014).
    [Crossref]
  153. X. Liu, X. Kong, Y. Zhang, L. Tu, Y. Wang, Q. Zeng, C. Li, Z. Shi, and H. Zhang, “Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications,” Chem. Commun. 47, 11957–11959 (2011).
    [Crossref]
  154. H.-S. Qian and Y. Zhang, “Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence,” Langmuir 24, 12123–12125 (2008).
    [Crossref]
  155. Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C.-K. Chen, R.-S. Liu, X. Chen, F. Wang, and X. Liu, “The effect of surface coating on energy migration-mediated upconversion,” J. Am. Chem. Soc. 134, 20849–20857 (2012).
    [Crossref]
  156. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
    [Crossref]
  157. F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protocols 9, 1634–1644 (2014).
    [Crossref]
  158. Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8, 32–36 (2013).
    [Crossref]
  159. S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114, 2343–2389 (2013).
    [Crossref]
  160. Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19, 345606 (2008).
    [Crossref]
  161. H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128, 6426–6436 (2006).
    [Crossref]
  162. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
    [Crossref]
  163. X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437, 121–124 (2005).
    [Crossref]
  164. J.-C. Boyer, M.-P. Manseau, J. I. Murray, and F. C. J. M. van Veggel, “Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800  nm) biolabeling within the biological window,” Langmuir 26, 1157–1164 (2009).
    [Crossref]
  165. T. Cao, T. Yang, Y. Gao, Y. Yang, H. Hu, and F. Li, “Water-soluble NaYF4:Yb/Er upconversion nanophosphors: synthesis, characteristics and application in bioimaging,” Inorg. Chem. Commun. 13, 392–394 (2010).
    [Crossref]
  166. J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5, 7838–7847 (2011).
    [Crossref]
  167. Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi, and C. Huang, “Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels,” J. Am. Chem. Soc. 130, 3023–3029 (2008).
    [Crossref]
  168. N. J. J. Johnson, N. M. Sangeetha, J.-C. Boyer, and F. C. J. M. van Veggel, “Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles,” Nanoscale 2, 771–777 (2010).
    [Crossref]
  169. M. Liras, M. González-Béjar, E. Peinado, L. Francés-Soriano, J. Pérez-Prieto, I. Quijada-Garrido, and O. García, “Thin amphiphilic polymer-capped upconversion nanoparticles: enhanced emission and thermoresponsive properties,” Chem. Mater. 26, 4014–4022 (2014).
    [Crossref]
  170. T. Wu, S. Kaur, and N. R. Branda, “Energy transfer between amphiphilic porphyrin polymer shells and upconverting nanoparticle cores in water-dispersible nano-assemblies,” Org. Biomol. Chem. 13, 2317–2322 (2015).
  171. S. Yang, N. Li, Z. Liu, W. Sha, D. Chen, Q. Xu, and J. Lu, “Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment,” Nanoscale 6, 14903–14910 (2014).
    [Crossref]
  172. A. Sedlmeier and H. H. Gorris, “Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications,” Chem. Soc. Rev. 44, 1526–1560 (2015).
    [Crossref]
  173. R. Abdul Jalil and Y. Zhang, “Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals,” Biomaterials 29, 4122–4128 (2008).
    [Crossref]
  174. H. Hu, L. Xiong, J. Zhou, F. Li, T. Cao, and C. Huang, “Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells,” Chem. Eur. J. 15, 3577–3584 (2009).
    [Crossref]
  175. Q. Liu, W. Feng, T. Yang, T. Yi, and F. Li, “Upconversion luminescence imaging of cells and small animals,” Nat. Protocols 8, 2033–2044 (2013).
    [Crossref]
  176. J. Shan, J. Chen, J. Meng, J. Collins, W. Soboyejo, J. S. Friedberg, and Y. Ju, “Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors,” J. Appl. Phys. 104, 094308 (2008).
    [Crossref]
  177. L. Xiong, T. Yang, Y. Yang, C. Xu, and F. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31, 7078–7085 (2010).
    [Crossref]
  178. J.-C. Zhou, Z.-L. Yang, W. Dong, R.-J. Tang, L.-D. Sun, and C.-H. Yan, “Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb, Tm nanocrystals,” Biomaterials 32, 9059–9067 (2011).
    [Crossref]
  179. D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nano 9, 300–305 (2014).
    [Crossref]
  180. A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: merits and challenges,” Nano Today 7, 532–563 (2012).
    [Crossref]
  181. J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nano 8, 729–734 (2013).
    [Crossref]
  182. D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29, 937–943 (2008).
    [Crossref]
  183. S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci USA. 106, 10917–10921 (2009).
    [Crossref]
  184. A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10  nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6, 2686–2692 (2012).
    [Crossref]
  185. M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81, 930–935 (2009).
    [Crossref]
  186. L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.-T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. 50, 7385–7390 (2011).
    [Crossref]
  187. N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
    [Crossref]
  188. Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
    [Crossref]
  189. Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. 51, 3125–3129 (2012).
    [Crossref]
  190. M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-Excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles,” ACS Nano 3, 1580–1586 (2009).
    [Crossref]
  191. T. Zako, H. Nagata, N. Terada, A. Utsumi, M. Sakono, M. Yohda, H. Ueda, K. Soga, and M. Maeda, “Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging,” Biochem. Biophys. Res. Commun. 381, 54–58 (2009).
    [Crossref]
  192. J. Liu, Y. Liu, W. Bu, J. Bu, Y. Sun, J. Du, and J. Shi, “Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation,” J. Am. Chem. Soc. 136, 9701–9709 (2014).
    [Crossref]
  193. Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915  nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5, 3744–3757 (2011).
    [Crossref]
  194. J. Shen, G. Chen, A.-M. Vu, W. Fan, O. S. Bilsel, C.-C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800  nm,” Adv. Opt. Mater. 1, 644–650 (2013).
    [Crossref]
  195. Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7, 7200–7206 (2013).
    [Crossref]
  196. X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135, 12608–12611 (2013).
    [Crossref]
  197. J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, and Y. Xia, “Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications,” Adv. Funct. Mater. 20, 3684–3694 (2010).
    [Crossref]
  198. L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
    [Crossref]
  199. G. Zhang, Z. Yang, W. Lu, R. Zhang, Q. Huang, M. Tian, L. Li, D. Liang, and C. Li, “Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice,” Biomaterials 30, 1928–1936 (2009).
    [Crossref]
  200. S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209–217 (2006).
    [Crossref]
  201. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
    [Crossref]
  202. A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nano. Res. Lett. 1, 84–90 (2006).
    [Crossref]
  203. E. B. Dickerson, E. C. Dreaden, X. H. Huang, I. H. El-Sayed, H. H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269, 57–66 (2008).
    [Crossref]
  204. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
    [Crossref]
  205. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
    [Crossref]
  206. L. M. Maestro, P. Haro-González, A. Sánchez-Iglesias, L. M. Liz-Marzán, J. García Solé, and D. Jaque, “Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles,” Langmuir 30, 1650–1658 (2014).
    [Crossref]
  207. L. M. Maestro, P. Haro-González, J. G. Coello, and D. Jaque, “Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100, 201110 (2012).
    [Crossref]
  208. J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
    [Crossref]
  209. H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, and L. M. Liz-Marzan, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
    [Crossref]
  210. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22, 185–187 (1969).
    [Crossref]
  211. J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4, 4073–4083 (2012).
    [Crossref]
  212. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).
    [Crossref]
  213. K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126, 12730–12731 (2004).
    [Crossref]
  214. D.-S. Wang, F.-Y. Hsu, and C.-W. Lin, “Surface plasmon effects on two photon luminescence of gold nanorods,” Opt. Express 17, 11350–11359 (2009).
    [Crossref]
  215. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
    [Crossref]
  216. G. Boyd, Z. Yu, and Y. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
    [Crossref]
  217. J. Wilcoxon, J. Martin, F. Parsapour, B. Wiedenman, and D. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108, 9137–9143 (1998).
    [Crossref]
  218. D. A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids (Springer, 1986).
  219. L. M. Maestro, E. M. Rodriguez, F. Vetrone, R. Naccache, H. L. Ramirez, D. Jaque, J. A. Capobianco, and J. G. Solé, “Nanoparticles for highly efficient multiphoton fluorescence bioimaging,” Opt. Express 18, 23544–23553 (2010).
    [Crossref]
  220. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
    [Crossref]
  221. T. Wang, D. Halaney, D. Ho, M. D. Feldman, and T. E. Milner, “Two-photon luminescence properties of gold nanorods,” Biomed. Opt. Express 4, 584–595 (2013).
    [Crossref]
  222. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
    [Crossref]
  223. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941–945 (2007).
    [Crossref]
  224. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5, 585–589 (2005).
    [Crossref]
  225. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
    [Crossref]
  226. N.-T. Chen, S.-H. Cheng, C.-P. Liu, J. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling,” Int. J. Mol. Sci. 13, 16598–16623 (2012).
    [Crossref]
  227. M. Xue, X. Wang, L. Duan, W. Gao, L. Ji, and B. Tang, “A new nanoprobe based on FRET between functional quantum dots and gold nanoparticles for fluoride anion and its applications for biological imaging,” Biosens. Bioelectron. 36, 168–173 (2012).
    [Crossref]
  228. N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies,” Chem. Soc. Rev. 40, 1647–1671 (2011).
    [Crossref]
  229. Y.-S. Chen, Y.-C. Hung, I. Liau, and G. S. Huang, “Assessment of the in vivo toxicity of gold nanoparticles,” Nano. Res. Lett. 4, 858–864 (2009).
    [Crossref]
  230. T. S. Hauck, A. A. Ghazani, and W. C. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small 4, 153–159 (2008).
    [Crossref]
  231. X.-D. Zhang, D. Wu, X. Shen, P.-X. Liu, N. Yang, B. Zhao, H. Zhang, Y.-M. Sun, L.-A. Zhang, and F.-Y. Fan, “Size-dependent in vivo toxicity of PEG-coated gold nanoparticles,” Int. J. Nanomed. 6, 2071 (2011).
    [Crossref]
  232. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
    [Crossref]
  233. X.-Y. Wan, L.-L. Zheng, P.-F. Gao, X.-X. Yang, C.-M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4, 4529 (2014).
  234. V. V. Tuchin and V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2007).
  235. A. M. Smith, M. C. Mancini, and S. Nie, “Second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
    [Crossref]
  236. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298, 1759–1762 (2002).
    [Crossref]
  237. M. E. Åkerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, “Nanocrystal targeting in vivo,” Proc. Natl. Acad. Sci. USA. 99, 12617–12621 (2002).
    [Crossref]
  238. J. M. Ness, R. S. Akhtar, C. B. Latham, and K. A. Roth, “Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection,” J. Histochem. Cytochem. 51, 981–987 (2003).
    [Crossref]
  239. N. Schülke, O. A. Varlamova, G. P. Donovan, D. Ma, J. P. Gardner, D. M. Morrissey, R. R. Arrigale, C. Zhan, A. J. Chodera, K. G. Surowitz, P. J. Maddon, W. D. W. Heston, and W. C. Olson, “The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy,” Proc. Natl. Acad. Sci. USA 100, 12590–12595 (2003).
    [Crossref]
  240. N. H. Bander, E. J. Trabulsi, L. Kostakoglu, D. Yao, S. Vallabhajosula, P. Smith-Jones, M. A. Joyce, M. Milowsky, D. M. Nanus, and S. J. Goldsmith, “Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen,” J. Urol. 170, 1717–1721 (2003).
    [Crossref]
  241. A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4, 11–18 (2004).
    [Crossref]
  242. F. Osaki, T. Kanamori, S. Sando, T. Sera, and Y. Aoyama, “A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region,” J. Am. Chem. Soc. 126, 6520–6521 (2004).
    [Crossref]
  243. D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials 3, 2260–2345 (2010).
    [Crossref]
  244. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
    [Crossref]
  245. M. K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, “Self-illuminating quantum dot conjugates for in vivo imaging,” Nat. Biotechnol. 24, 339–343 (2006).
    [Crossref]
  246. T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models,” Mol. Imaging 3, 9–23 (2004).
    [Crossref]
  247. W. W. Ward and M. J. Cormier, “Energy-transfer via protein-protein interaction in Renilla bioluminescence,” Photochem. Photobiol. 27, 389–396 (1978).
    [Crossref]
  248. J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am. 41, 302 (1951).
    [Crossref]
  249. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8, 3834–3838 (2008).
    [Crossref]
  250. J. G. Solé, L. E. Bausá, and D. Jaque, “Front matter,” in An Introduction to the Optical Spectroscopy of Inorganic Solids (Wiley, 2005), pp. i–xx.
  251. G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6, 8280–8287 (2012).
    [Crossref]
  252. J. Zhou, Y. Sun, X. X. Du, L. Q. Xiong, H. Hu, and F. Y. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31, 3287–3295 (2010).
    [Crossref]
  253. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012).
    [Crossref]
  254. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
    [Crossref]
  255. H. I. Bicher, F. W. Hetzel, T. S. Sandhu, S. Frinak, P. Vaupel, M. O’Hara, and T. O’Brien, “Effects of hyperthermia on normal and tumor microenvironment,” Radiology 137, 523–530 (1980).
    [Crossref]
  256. D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6, 9494–9530 (2014).
    [Crossref]
  257. K. Soga, “Application of ceramic nanophosphors for biomedical photonics,” in Transworld Research Network (2009), pp 223–241.
  258. R. C. Powell, Physics of Solid-State Laser Materials (Springer, 1998).
  259. K. Soga, W. Wang, R. E. Riman, J. B. Brown, and K. R. Mikeska, “Luminescent properties of nanostructured Dy3+-and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide,” J. Appl. Phys. 93, 2946–2951 (2003).
    [Crossref]
  260. R. Reisfeld and C. K. Jørgensen, Lasers and Excited States of Rare Earths (Springer-Verlag, 1977).
  261. R. Reisfeld and C. K. Jørgensen, “Excited state phenomena in vitreous materials,” in Handbook on the Physics and Chemistry of Rare Earths (1987), Vol. 9, pp. 1–90.
    [Crossref]
  262. K. Soga, M. Tsuda, S. Sakuragi, H. Inoue, S. Inoue, and A. Makishima, “Effects of chloride introduction on the optical properties and the upconversion emission with 980-nm excitation of Er3+ in ZBLAN fluoride glasses,” J. Non-Cryst. Solids 222, 272–281 (1997).
    [Crossref]
  263. T. Kushida, “Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation,” J. Phys. Soc. Jpn. 34, 1318–1326 (1973).
    [Crossref]
  264. K. Soga, “Development of NIR fluorescence bioimaging system through polyscale technology,” Bunseki Kagaku 58, 461–471 (2009).
    [Crossref]
  265. N. Venkatachalam, Y. Okumura, K. Soga, R. Fukuda, and T. Tsuji, “Bioimaging of M1 cells using ceramic nanophosphors: synthesis and toxicity assay of Y2O3 nanoparticles,” J. Phys. Conf. Ser. 101, 012002 (2009).
  266. Y. Kawasaki, Y. Gotoh, K. Tokuzen, M. Kamimura, T. Komeno, M. Tomatsu, R. Todoroki, Y. Nagasaki, K. Soga, and F. Tashiro, “Selective tumor imaging by a novel tumor specific aralin-infrared-to-visible phosphor conjugate,” J. Phys. Conf. Ser. 191, 012001 (2009).
  267. E. Hemmer, Y. Kohl, V. Colquhoun, H. Thielecke, K. Soga, and S. Mathur, “Probing cytotoxicity of gadolinium hydroxide nanostructures,” J. Phys. Chem. B 114, 4358–4365 (2010).
    [Crossref]
  268. H. Akiyama, K. Tokuzen, H. Otsuka, K. Soga, and F. Tashiro, “Application of liposome-encapsulated ceramic phosphors for cancer cell imaging under near infrared excitation,” J. Phys. Conf. Ser. 232, 012001 (2010).
  269. N. Venkatachalam, E. Hemmer, T. Yamano, H. Hyodo, H. Kishimoto, and K. Soga, “Synthesis and toxicity assay of ceramic nanophosphors for bioimaging with near-infrared excitation,” Prog. Cryst. Growth Charact. Mater. 58, 121–134 (2012).
    [Crossref]
  270. E. Hemmer, T. Yamano, H. Kishimoto, N. Venkatachalam, H. Hyodo, and K. Soga, “Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging,” Acta Biomater. 9, 4734–4743 (2013).
    [Crossref]
  271. K. Soga, K. Tokuzen, K. Tsuji, T. Yamano, H. Hyodo, and H. Kishimoto, “NIR bioimaging: development of liposome-encapsulated, rare-earth-doped Y2O3 nanoparticles as fluorescent probes,” Eur. J. Inorg. Chem. 2010, 2673–2677 (2010).
    [Crossref]
  272. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143, 2670–2673 (1996).
    [Crossref]
  273. H. F. Brito, J. Holsa, T. Laamanen, M. Lastusaari, M. Malkamaki, and L. C. V. Rodrigues, “Persistent luminescence mechanisms: human imagination at work,” Opt. Mater. Express 2, 371–381 (2012).
    [Crossref]
  274. http://nemoto.co.jp/en/products/index.html .
  275. http://www.glotechint.com/ .
  276. www.studioroosegaarde.net .
  277. D. Poelman and P. F. Smet, “Photometry in the dark: time dependent visibility of low intensity light sources,” Opt. Express 18, 26293–26299 (2010).
    [Crossref]
  278. L. Casillas-Trujillo, D. A. Andersson, B. Dorado, M. Nikl, K. E. Sickafus, K. J. McClellan, and C. R. Stanek, “Intrinsic defects, nonstoichiometry, and aliovalent doping of A2+B4+O3 perovskite scintillators,” Phys. Status Solidi B 251, 2279–2286 (2014).
    [Crossref]
  279. J. Holsa, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloys Compd. 374, 56–59 (2004).
    [Crossref]
  280. A. Bessiere, A. Lecointre, R. A. Benhamou, E. Suard, G. Wallez, and B. Viana, “How to induce red persistent luminescence in biocompatible Ca3(PO4)2,” J. Mater. Chem. C 1, 1252–1259 (2013).
    [Crossref]
  281. A. J. J. Bos, P. Dorenbos, A. Bessiere, and B. Viana, “Lanthanide energy levels in YPO4,” Radiat. Meas. 43, 222–226 (2008).
    [Crossref]
  282. K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87, 045126 (2013).
    [Crossref]
  283. Y.-J. Chuang, Z. Zhen, F. Zhang, F. Liu, J. P. Mishra, W. Tang, H. Chen, X. Huang, L. Wang, X. Chen, J. Xie, and Z. Pan, “Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging,” Theranostics 4, 1112–1122 (2014).
    [Crossref]
  284. J. Botterman, K. Van den Eeckhout, I. De Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60, 5494–5500 (2012).
    [Crossref]
  285. http://en.wikipedia.org/wiki/Optical_window_in_biological_tissue .
  286. K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A review,” Materials 6, 2789–2818 (2013).
    [Crossref]
  287. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3, 2536–2566 (2010).
    [Crossref]
  288. Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36, 1907–1912 (2014).
    [Crossref]
  289. S. K. Singh, “Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications,” RSC Adv. 4, 58674–58698 (2014).
    [Crossref]
  290. P. F. Smet, J. Botterman, K. Van den Eeckhout, K. Korthout, and D. Poelman, “Persistent luminescence in nitride and oxynitride phosphors: a review,” Opt. Mater. 36, 1913–1919 (2014).
    [Crossref]
  291. X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80, 1–5 (2003).
    [Crossref]
  292. C. Rosticher, C. Chanéac, B. Viana, M. A. Fortin, J. Lagueux, and L. Faucher, “Red persistent luminescence and magnetic properties of nanomaterials for multimodal imaging,” Proc. SPIE 9364, 936419 (2015).
  293. X. Duan, S. Huang, F. You, and K. Kang, “Hydrothermal preparation and persistence characteristics of nanosized phosphor SrS: Eu2+, Dy3+,” J. Rare Earths 27, 43–46 (2009).
    [Crossref]
  294. D. Rodríguez Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. Capobianco, “Persistent and photostimulated red emission in CaS:Eu2+, Dy3+ nanophosphors,” Adv. Opt. Mater. 3, 551–557 (2015).
  295. C. Rosticher, B. Viana, T. Maldiney, C. Richard, and C. Chaneac, “Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging,” J. Lumin. 170, 460–466 (2016).
  296. X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin. 102, 34–37 (2003).
    [Crossref]
  297. T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2, 261–268 (2012).
    [Crossref]
  298. M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
    [Crossref]
  299. Q. le Masne de Chermont, C. Chaneac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. USA 104, 9266–9271 (2007).
    [Crossref]
  300. T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5, 854–862 (2011).
    [Crossref]
  301. T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Yla-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjugate Chemistry 23, 472–478 (2012).
    [Crossref]
  302. T. Maldiney, A. Lecointre, B. Viana, A. Bessiere, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133, 11810–11815 (2011).
    [Crossref]
  303. Y. Li, Y.-Y. Li, K. Sharafudeen, G.-P. Dong, S.-F. Zhou, Z.-J. Ma, M.-Y. Peng, and J.-R. Qiu, “A strategy for developing near infrared long-persistent phosphors: taking MAlO3:Mn4+, Ge4+ (M = La, Gd) as an example,” J. Mater. Chem C 2, 2019–2027 (2014).
    [Crossref]
  304. Y.-Y. Lu, F. Liu, Z. Gu, and Z. Pan, “Long-lasting near-infrared persistent luminescence from beta-Ga2O3:Cr3+ nanowire assemblies,” J. Lumin. 131, 2784–2787 (2011).
    [Crossref]
  305. T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
    [Crossref]
  306. S. K. Sharma, D. Gourier, B. Viana, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Persistent luminescence of AB(2)O(4):Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: new biomarkers for in vivo imaging,” Opt. Mater. 36, 1901–1906 (2014).
    [Crossref]
  307. T. Maldiney, B.-T. Doan, D. Alloyeau, M. Bessodes, D. Scherman, and C. Richard, “Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging,” Adv. Funct. Mater. 25, 331–338 (2015).
    [Crossref]
  308. T. Maldiney, B. Ballet, M. Bessodes, D. Scherman, and C. Richard, “Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery,” Nanoscale 6, 13970–13976 (2014).
    [Crossref]
  309. J. Shi, X. Sun, J. Li, H. Man, J. Shen, Y. Yu, and H. Zhang, “Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging,” Biomaterials 37, 260–270 (2015).
    [Crossref]
  310. Y. Li, S. Zhou, G. Dong, M. Peng, L. Wondraczek, and J. Qiu, “Anti-Stokes fluorescent probe with incoherent excitation,” Sci. Rep. 4, 4059 (2014).
  311. Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C 2, 2657–2663 (2014).
    [Crossref]
  312. A. Abdukayum, J.-T. Chen, Q. Zhao, and X.-P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135, 14125–14133 (2013).
    [Crossref]
  313. F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor,” Phys. Rev. Lett. 113, 177401 (2014).
  314. X. Fu, C. Liu, J. Shi, H. Man, J. Xu, and H. Zhang, “Long persistent near infrared luminescence nanoprobes LiGa5O8:Cr3+-PEG-OCH3 for in vivo imaging,” Opt. Mater. 36, 1792–1797 (2014).
    [Crossref]
  315. F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 31554 (2013).
  316. D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53, 8638–8645 (2014).
    [Crossref]
  317. S. Kamimura, C.-N. Xu, H. Yamada, N. Terasaki, and M. Fujihala, “Long-persistent luminescence in the near-infrared from Nd3+-doped Sr2SnO4 for in vivo optical imaging,” Jpn. J. Appl. Phys. 53, 092403 (2014).
    [Crossref]
  318. N. Li, Y. Li, Y. Han, W. Pan, T. Zhang, and B. Tang, “A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo,” Anal. Chem. 86, 3924–3930 (2014).
    [Crossref]
  319. N. Li, W. Diao, Y. Han, W. Pan, T. Zhang, and B. Tang, “MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo,” Chem. Eur. J. 20, 16488–16491 (2014).
    [Crossref]
  320. Z. Li, J. Shi, H. Zhang, and M. Sun, “Highly controllable synthesis of near-infrared persistent luminescence SiO2/CaMgSi2O6 composite nanospheres for imaging in vivo,” Opt. Express 22, 10509–10518 (2014).
    [Crossref]
  321. S. K. Sharma, A. Bessiere, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in vivo imaging,” J. Lumin. 155, 251–256 (2014).
    [Crossref]
  322. K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu, Dy powders: evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
    [Crossref]
  323. J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110, 053102 (2011).
  324. A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115, 4217–4227 (2011).
    [Crossref]
  325. C. R. Stanek, C. Jiang, S. K. Yadav, K. J. McClellan, B. P. Uberuaga, D. A. Andersson, and M. Nikl, “The effect of Ga-doping on the defect chemistry of RE3Al5O12 garnets,” Phys. Status Solidi B 250, 244–248 (2013).
    [Crossref]
  326. S. Blahuta, A. Bessiere, B. Viana, V. Ouspenski, E. Mattmann, J. Lejay, and D. Gourier, “Defects identification and effects of annealing on Lu2(1−x)Y2xSiO5 (LYSO) single crystals for scintillation application,” Materials 4, 1224–1237 (2011).
    [Crossref]
  327. A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26, 1365–1373 (2014).
    [Crossref]
  328. J. Ueda, K. Kuroishi, and S. Tanabe, “Development of blue excitable persistent phosphor of Ce3+-doped garnet ceramics by bandgap engineering and metal sensitization,” Proc. SPIE 8987, 89870L (2014).
  329. P. Dorenbos, “Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds,” J. Lumin. 136, 122–129 (2013).
    [Crossref]
  330. P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1−xGax)5O12 (RE = Gd, Y, Lu) garnet compounds,” J. Lumin. 134, 310–318 (2013).
    [Crossref]
  331. Y. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem. C 2, 5502–5509 (2014).
    [Crossref]
  332. Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1−xAlx)2O4:Cr, Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C 1, 7849–7855 (2013).
    [Crossref]
  333. A. Bessiere, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19, 10131–10137 (2011).
    [Crossref]
  334. P. Leblans, D. Vandenbroucke, and P. Willems, “Storage phosphors for medical imaging,” Materials 4, 1034–1086 (2011).
    [Crossref]
  335. C. D. Walkey and W. C. W. Chan, “Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment,” Chem. Soc. Rev. 41, 2780–2799 (2012).
    [Crossref]
  336. C. Allen, N. Dos Santos, R. Gallagher, G. N. C. Chiu, Y. Shu, W. M. Li, S. A. Johnstone, A. S. Janoff, L. D. Mayer, M. S. Webb, and M. B. Bally, “Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol),” Biosci. Rep. 22, 225–250 (2002).
    [Crossref]
  337. T. Asahara and A. Kawamoto, “Endothelial progenitor cells for postnatal vasculogenesis,” Am. J. Physiol. Cell Physiol. 287, C572–C579 (2004).
    [Crossref]
  338. C. Villa, S. Erratico, P. Razini, F. Fiori, F. Rustichelli, Y. Torrente, and M. Belicchi, “Stem cell tracking by nanotechnologies,” Int. J. Mol. Sci. 11, 1070–1081 (2010).
    [Crossref]
  339. C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6, 4788–4795 (2012).
    [Crossref]
  340. S. S. Kelkar and T. M. Reineke, “Theranostics: combining imaging and therapy,” Bioconjug. Chem. 22, 1879–1903 (2011).
    [Crossref]
  341. M. Vallet-Regi, F. Balas, and D. Arcos, “Mesoporous materials for drug delivery,” Angew. Chem. Int. Ed. 46, 7548–7558 (2007).
    [Crossref]
  342. J. Kim, Y. Piao, and T. Hyeon, “Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy,” Chem. Soc. Rev. 38, 372–390 (2009).
    [Crossref]
  343. A. Abdukayum, C.-X. Yang, Q. Zhao, J.-T. Chen, L.-X. Dong, and X.-P. Yan, “Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo,” Anal. Chem. 86, 4096–4101 (2014).
    [Crossref]
  344. E. Teston, Y. Lalatonne, D. Elgrabli, G. Autret, L. Motte, F. Gazeau, D. Scherman, O. Clément, C. Richard, and T. Maldiney, “Design, properties and in-vivo behavior of super-paramagnetic persistent luminescence nanohybrids,” Small 11, 2696–2704 (2015).
    [Crossref]
  345. L. M. Maestro, P. Haro-Gonzalez, B. del Rosal, J. Ramiro, A. J. Caamano, E. Carrasco, A. Juarranz, F. Sanz-Rodriguez, J. G. Sole, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5, 7882–7889 (2013).
  346. K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. USA 108, 8943–8948 (2011).
    [Crossref]
  347. W. Feng, X. Zhu, and F. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications,” NPG Asia Mater. 5, e75 (2013).
    [Crossref]
  348. V. Muhr, S. Wilhelm, T. Hirsch, and O. S. Wolfbeis, “Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces,” Acc. Chem. Res. 47, 3481–3493 (2014).
    [Crossref]
  349. C. Liu, Y. Hou, and M. Gao, “Are rare-earth nanoparticles suitable for in vivo applications?” Adv. Mater. 26, 6922–6932 (2014).
    [Crossref]
  350. A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44, 1561–1584 (2015).
  351. Y. Sun, W. Feng, P. Yang, C. Huang, and F. Li, “The biosafety of lanthanide upconversion nanomaterials,” Chem. Soc. Rev. 44, 1509–1525 (2015).
  352. G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/Shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6, 2969–2977 (2012).
    [Crossref]
  353. X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800  nm,” Sci. Rep. 3, 3536 (2013).
  354. K. Soga, K. Tokuzen, K. Tsuji, T. Yamano, N. Venkatachalam, H. Hyodo, and H. Kishimoto, “Application of ceramic phosphors for near infrared biomedical imaging technologies,” Proc. SPIE 7598, 759807 (2010).
  355. M. Kamimura, N. Kanayama, K. Tokuzen, K. Soga, and Y. Nagasaki, “Near-infrared (1550  nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly (4-vinylbenzylphosphonate),” Nanoscale 3, 3705–3713 (2011).
    [Crossref]
  356. K. Soga, K. Tokuzen, K. Fukuda, H. Hyodo, E. Hemmer, N. Venkatachalm, and H. Kishimoto, “Application of ceramic/polymer conjugate materials for near infrared biophotonics,” J. Photopolym. Sci. Technol. 25, 57–62 (2012).
    [Crossref]
  357. E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In vitro and in vivo investigations of upconversion and NIR emitting Gd2O3: Er3+, Yb3+ nanostructures for biomedical applications,” J. Mater. Sci. 23, 2399–2412 (2012).
  358. N. Venkatachalam, T. Yamano, E. Hemmer, H. Hyodo, H. Kishimoto, and K. Soga, “Er3+ -Doped Y2O3 nanophosphors for near-infrared fluorescence bioimaging applications,” J. Am. Ceram. Soc. 96, 2759–2765 (2013).
    [Crossref]
  359. D. Naczynski, M. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. Roth, R. Riman, and P. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
    [Crossref]
  360. R. Wang, X. Li, L. Zhou, and F. Zhang, “Epitaxial seeded growth of rare-earth nanocrystals with efficient 800  nm near-infrared to 1525  nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging,” Angew. Chem. 126, 12282–12286 (2014).
    [Crossref]
  361. R. Wang and F. Zhang, “NIR luminescent nanomaterials for biomedical imaging,” J. Mater. Chem. B 2, 2422–2443 (2014).
    [Crossref]
  362. D. J. Naczynski, M. C. Tan, R. E. Riman, and P. V. Moghe, “Rare earth nanoprobes for functional biomolecular imaging and theranostics,” J. Mater. Chem. B 2, 2958–2973 (2014).
    [Crossref]
  363. I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, and D. García, “1.3  μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window,” Nano Res. 8,649–665 (2015).
  364. T. Zako, M. Yoshimoto, H. Hyodo, H. Kishimoto, M. Ito, K. Kaneko, K. Soga, and M. Maeda, “Cancer-targeted near infrared imaging using rare earth ion-doped ceramic nanoparticles,” Biomater. Sci. 3, 59–64 (2015).
    [Crossref]
  365. G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. 51, 9818–9821 (2012).
    [Crossref]
  366. Y. Zhang, Y. Liu, C. Li, X. Chen, and Q. Wang, “Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton Bohr radius,” J. Phys. Chem. C 118, 4918–4923 (2014).
    [Crossref]
  367. C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35, 393–400 (2014).
    [Crossref]
  368. W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. A. M. Sips, and R. E. Geertsma, “Particle size-dependent organ distribution of gold nanoparticles after intravenous administration,” Biomaterials 29, 1912–1919 (2008).
    [Crossref]
  369. G. Sonavane, K. Tomoda, and K. Makino, “Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size,” Colloids Surf. B 66, 274–280 (2008).
    [Crossref]
  370. U. Rocha, C. Jacinto, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, M. A. Elias, E. Bovero, F. van Veggel, J. A. G. Sole, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
    [Crossref]
  371. U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10, 1141–1154 (2013).
  372. U. Rocha, K. Upendra Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. García Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104, 053703 (2014).
    [Crossref]
  373. E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25, 615–626 (2015).
    [Crossref]
  374. S. S. Lucky, K. C. Soo, and Y. Zhang, “Nanoparticles in photodynamic therapy,” Chem. Rev. 115, 1990–2042 (2015).
    [Crossref]
  375. L. Cheng, C. Wang, L. Feng, K. Yang, and Z. Liu, “Functional nanomaterials for phototherapies of cancer,” Chem. Rev. 114, 10869–10939 (2014).
    [Crossref]
  376. A.-L. Bulin, C. Truillett, R. Chouikrat, F. Lux, C. Frochot, D. Amans, G. Ledoux, O. Tillement, P. Perriat, M. Barberi-Heyob, and C. Dujardin, “X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins,” J. Phys. Chem. C 117, 21583–21589 (2013).
    [Crossref]
  377. B. E. Schaafsma, J. S. D. Mieog, M. Hutteman, J. R. Van der Vorst, P. J. K. Kuppen, C. W. G. M. Lowik, J. V. Frangioni, C. J. H. Van de Velde, and A. L. Vahrmeijer, “The clinical use of Indocyanine Green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104, 323–332 (2011).
    [Crossref]
  378. D. P. Clark and C. T. Badea, “Spectral diffusion: an algorithm for robust material decomposition of spectral CT data,” Phys. Med. Biol. 59, 6445–6466 (2014).
    [Crossref]
  379. S. A. Love, M. A. Maurer-Jones, J. W. Thompson, Y.-S. Lin, and C. L. Haynes, “Assessing nanoparticle toxicity,” Ann. Rev. Anal. Chem. 5, 181–205 (2012).
    [Crossref]

2016 (1)

C. Rosticher, B. Viana, T. Maldiney, C. Richard, and C. Chaneac, “Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging,” J. Lumin. 170, 460–466 (2016).

2015 (15)

J. Shi, X. Sun, J. Li, H. Man, J. Shen, Y. Yu, and H. Zhang, “Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging,” Biomaterials 37, 260–270 (2015).
[Crossref]

C. Rosticher, C. Chanéac, B. Viana, M. A. Fortin, J. Lagueux, and L. Faucher, “Red persistent luminescence and magnetic properties of nanomaterials for multimodal imaging,” Proc. SPIE 9364, 936419 (2015).

D. Rodríguez Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. Capobianco, “Persistent and photostimulated red emission in CaS:Eu2+, Dy3+ nanophosphors,” Adv. Opt. Mater. 3, 551–557 (2015).

T. Wu, S. Kaur, and N. R. Branda, “Energy transfer between amphiphilic porphyrin polymer shells and upconverting nanoparticle cores in water-dispersible nano-assemblies,” Org. Biomol. Chem. 13, 2317–2322 (2015).

A. Sedlmeier and H. H. Gorris, “Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications,” Chem. Soc. Rev. 44, 1526–1560 (2015).
[Crossref]

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44, 1302–1317 (2015).
[Crossref]

O. S. Wolfbeis, “An overview of nanoparticles commonly used in fluorescent bioimaging,” Chem. Soc. Rev. 44, 4743–4768 (2015).
[Crossref]

T. Maldiney, B.-T. Doan, D. Alloyeau, M. Bessodes, D. Scherman, and C. Richard, “Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging,” Adv. Funct. Mater. 25, 331–338 (2015).
[Crossref]

E. Teston, Y. Lalatonne, D. Elgrabli, G. Autret, L. Motte, F. Gazeau, D. Scherman, O. Clément, C. Richard, and T. Maldiney, “Design, properties and in-vivo behavior of super-paramagnetic persistent luminescence nanohybrids,” Small 11, 2696–2704 (2015).
[Crossref]

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44, 1561–1584 (2015).

Y. Sun, W. Feng, P. Yang, C. Huang, and F. Li, “The biosafety of lanthanide upconversion nanomaterials,” Chem. Soc. Rev. 44, 1509–1525 (2015).

I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, and D. García, “1.3  μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window,” Nano Res. 8,649–665 (2015).

T. Zako, M. Yoshimoto, H. Hyodo, H. Kishimoto, M. Ito, K. Kaneko, K. Soga, and M. Maeda, “Cancer-targeted near infrared imaging using rare earth ion-doped ceramic nanoparticles,” Biomater. Sci. 3, 59–64 (2015).
[Crossref]

E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25, 615–626 (2015).
[Crossref]

S. S. Lucky, K. C. Soo, and Y. Zhang, “Nanoparticles in photodynamic therapy,” Chem. Rev. 115, 1990–2042 (2015).
[Crossref]

2014 (50)

L. Cheng, C. Wang, L. Feng, K. Yang, and Z. Liu, “Functional nanomaterials for phototherapies of cancer,” Chem. Rev. 114, 10869–10939 (2014).
[Crossref]

Y. Zhang, Y. Liu, C. Li, X. Chen, and Q. Wang, “Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton Bohr radius,” J. Phys. Chem. C 118, 4918–4923 (2014).
[Crossref]

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35, 393–400 (2014).
[Crossref]

D. P. Clark and C. T. Badea, “Spectral diffusion: an algorithm for robust material decomposition of spectral CT data,” Phys. Med. Biol. 59, 6445–6466 (2014).
[Crossref]

U. Rocha, K. Upendra Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. García Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104, 053703 (2014).
[Crossref]

R. Wang, X. Li, L. Zhou, and F. Zhang, “Epitaxial seeded growth of rare-earth nanocrystals with efficient 800  nm near-infrared to 1525  nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging,” Angew. Chem. 126, 12282–12286 (2014).
[Crossref]

R. Wang and F. Zhang, “NIR luminescent nanomaterials for biomedical imaging,” J. Mater. Chem. B 2, 2422–2443 (2014).
[Crossref]

D. J. Naczynski, M. C. Tan, R. E. Riman, and P. V. Moghe, “Rare earth nanoprobes for functional biomolecular imaging and theranostics,” J. Mater. Chem. B 2, 2958–2973 (2014).
[Crossref]

V. Muhr, S. Wilhelm, T. Hirsch, and O. S. Wolfbeis, “Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces,” Acc. Chem. Res. 47, 3481–3493 (2014).
[Crossref]

C. Liu, Y. Hou, and M. Gao, “Are rare-earth nanoparticles suitable for in vivo applications?” Adv. Mater. 26, 6922–6932 (2014).
[Crossref]

A. Abdukayum, C.-X. Yang, Q. Zhao, J.-T. Chen, L.-X. Dong, and X.-P. Yan, “Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo,” Anal. Chem. 86, 4096–4101 (2014).
[Crossref]

Y. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem. C 2, 5502–5509 (2014).
[Crossref]

T. Maldiney, B. Ballet, M. Bessodes, D. Scherman, and C. Richard, “Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery,” Nanoscale 6, 13970–13976 (2014).
[Crossref]

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor,” Phys. Rev. Lett. 113, 177401 (2014).

X. Fu, C. Liu, J. Shi, H. Man, J. Xu, and H. Zhang, “Long persistent near infrared luminescence nanoprobes LiGa5O8:Cr3+-PEG-OCH3 for in vivo imaging,” Opt. Mater. 36, 1792–1797 (2014).
[Crossref]

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26, 1365–1373 (2014).
[Crossref]

J. Ueda, K. Kuroishi, and S. Tanabe, “Development of blue excitable persistent phosphor of Ce3+-doped garnet ceramics by bandgap engineering and metal sensitization,” Proc. SPIE 8987, 89870L (2014).

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53, 8638–8645 (2014).
[Crossref]

S. Kamimura, C.-N. Xu, H. Yamada, N. Terasaki, and M. Fujihala, “Long-persistent luminescence in the near-infrared from Nd3+-doped Sr2SnO4 for in vivo optical imaging,” Jpn. J. Appl. Phys. 53, 092403 (2014).
[Crossref]

N. Li, Y. Li, Y. Han, W. Pan, T. Zhang, and B. Tang, “A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo,” Anal. Chem. 86, 3924–3930 (2014).
[Crossref]

N. Li, W. Diao, Y. Han, W. Pan, T. Zhang, and B. Tang, “MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo,” Chem. Eur. J. 20, 16488–16491 (2014).
[Crossref]

Z. Li, J. Shi, H. Zhang, and M. Sun, “Highly controllable synthesis of near-infrared persistent luminescence SiO2/CaMgSi2O6 composite nanospheres for imaging in vivo,” Opt. Express 22, 10509–10518 (2014).
[Crossref]

S. K. Sharma, A. Bessiere, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

D. Jaque, B. del Rosal, E. M. Rodríguez, L. M. Maestro, P. Haro-González, and J. G. Solé, “Fluorescent nanothermometers for intracellular thermal sensing,” Nanomedicine 9, 1047–1062 (2014).
[Crossref]

L. M. Maestro, Q. Zhang, X. Li, D. Jaque, and M. Gu, “Quantum-dot based nanothermometry in optical plasmonic recording media,” Appl. Phys. Lett. 105, 181110 (2014).
[Crossref]

W. Yang, X. Li, D. Chi, H. Zhang, and X. Liu, “Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis,” Nanotechnology 25, 482001 (2014).
[Crossref]

Y. Zhang, L. Zhang, R. Deng, J. Tian, Y. Zong, D. Jin, and X. Liu, “Multicolor barcoding in a single upconversion crystal,” J. Am. Chem. Soc. 136, 4893–4896 (2014).
[Crossref]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref]

S. Han, R. Deng, X. Xie, and X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles,” Angew. Chem. Int. Ed. 53, 11702–11715 (2014).
[Crossref]

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protocols 9, 1634–1644 (2014).
[Crossref]

P. D. Nguyen, S. J. Son, and J. Min, “Upconversion nanoparticles in bioassays, optical imaging and therapy,” J. Nanosci. Nanotechnol. 14, 157–174 (2014).
[Crossref]

J. S. Sparks, R. C. Schelly, W. L. Smith, M. P. Davis, D. Tchernov, V. A. Pieribone, and D. F. Gruber, “The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon,” PLoS ONE 9, e83259 (2014).
[Crossref]

S. Yang, N. Li, Z. Liu, W. Sha, D. Chen, Q. Xu, and J. Lu, “Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment,” Nanoscale 6, 14903–14910 (2014).
[Crossref]

M. Liras, M. González-Béjar, E. Peinado, L. Francés-Soriano, J. Pérez-Prieto, I. Quijada-Garrido, and O. García, “Thin amphiphilic polymer-capped upconversion nanoparticles: enhanced emission and thermoresponsive properties,” Chem. Mater. 26, 4014–4022 (2014).
[Crossref]

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nano 9, 300–305 (2014).
[Crossref]

J. Liu, Y. Liu, W. Bu, J. Bu, Y. Sun, J. Du, and J. Shi, “Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation,” J. Am. Chem. Soc. 136, 9701–9709 (2014).
[Crossref]

L. M. Maestro, P. Haro-González, A. Sánchez-Iglesias, L. M. Liz-Marzán, J. García Solé, and D. Jaque, “Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles,” Langmuir 30, 1650–1658 (2014).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36, 1907–1912 (2014).
[Crossref]

S. K. Singh, “Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications,” RSC Adv. 4, 58674–58698 (2014).
[Crossref]

P. F. Smet, J. Botterman, K. Van den Eeckhout, K. Korthout, and D. Poelman, “Persistent luminescence in nitride and oxynitride phosphors: a review,” Opt. Mater. 36, 1913–1919 (2014).
[Crossref]

L. Casillas-Trujillo, D. A. Andersson, B. Dorado, M. Nikl, K. E. Sickafus, K. J. McClellan, and C. R. Stanek, “Intrinsic defects, nonstoichiometry, and aliovalent doping of A2+B4+O3 perovskite scintillators,” Phys. Status Solidi B 251, 2279–2286 (2014).
[Crossref]

Y.-J. Chuang, Z. Zhen, F. Zhang, F. Liu, J. P. Mishra, W. Tang, H. Chen, X. Huang, L. Wang, X. Chen, J. Xie, and Z. Pan, “Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging,” Theranostics 4, 1112–1122 (2014).
[Crossref]

Y. Li, S. Zhou, G. Dong, M. Peng, L. Wondraczek, and J. Qiu, “Anti-Stokes fluorescent probe with incoherent excitation,” Sci. Rep. 4, 4059 (2014).

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C 2, 2657–2663 (2014).
[Crossref]

Y. Li, Y.-Y. Li, K. Sharafudeen, G.-P. Dong, S.-F. Zhou, Z.-J. Ma, M.-Y. Peng, and J.-R. Qiu, “A strategy for developing near infrared long-persistent phosphors: taking MAlO3:Mn4+, Ge4+ (M = La, Gd) as an example,” J. Mater. Chem C 2, 2019–2027 (2014).
[Crossref]

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref]

S. K. Sharma, D. Gourier, B. Viana, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Persistent luminescence of AB(2)O(4):Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: new biomarkers for in vivo imaging,” Opt. Mater. 36, 1901–1906 (2014).
[Crossref]

M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
[Crossref]

X.-Y. Wan, L.-L. Zheng, P.-F. Gao, X.-X. Yang, C.-M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4, 4529 (2014).

D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6, 9494–9530 (2014).
[Crossref]

2013 (39)

E. Hemmer, T. Yamano, H. Kishimoto, N. Venkatachalam, H. Hyodo, and K. Soga, “Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging,” Acta Biomater. 9, 4734–4743 (2013).
[Crossref]

A. Abdukayum, J.-T. Chen, Q. Zhao, and X.-P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135, 14125–14133 (2013).
[Crossref]

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A review,” Materials 6, 2789–2818 (2013).
[Crossref]

A. Bessiere, A. Lecointre, R. A. Benhamou, E. Suard, G. Wallez, and B. Viana, “How to induce red persistent luminescence in biocompatible Ca3(PO4)2,” J. Mater. Chem. C 1, 1252–1259 (2013).
[Crossref]

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87, 045126 (2013).
[Crossref]

T. Wang, D. Halaney, D. Ho, M. D. Feldman, and T. E. Milner, “Two-photon luminescence properties of gold nanorods,” Biomed. Opt. Express 4, 584–595 (2013).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nano 8, 729–734 (2013).
[Crossref]

J. Shen, G. Chen, A.-M. Vu, W. Fan, O. S. Bilsel, C.-C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800  nm,” Adv. Opt. Mater. 1, 644–650 (2013).
[Crossref]

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7, 7200–7206 (2013).
[Crossref]

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135, 12608–12611 (2013).
[Crossref]

Q. Liu, W. Feng, T. Yang, T. Yi, and F. Li, “Upconversion luminescence imaging of cells and small animals,” Nat. Protocols 8, 2033–2044 (2013).
[Crossref]

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5, 11339–11361 (2013).
[Crossref]

J. S. Donner, S. A. Thompson, C. Alonso-Ortega, J. Morales, L. G. Rico, S. I. C. O. Santos, and R. Quidant, “Imaging of plasmonic heating in a living organism,” ACS Nano 7, 8666–8672 (2013).
[Crossref]

L. J. Steven, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37 (2013).
[Crossref]

L. Cheng, C. Wang, and Z. Liu, “Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy,” Nanoscale 5, 23–37 (2013).
[Crossref]

J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung, S. Jung, Y. Park, and S. Kim, “Surface engineering of inorganic nanoparticles for imaging and therapy,” Adv. Drug Delivery Rev. 65, 622–648 (2013).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8, 32–36 (2013).
[Crossref]

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114, 2343–2389 (2013).
[Crossref]

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42, 6924–6958 (2013).
[Crossref]

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9, 2162–2170 (2013).
[Crossref]

L. M. Maestro, P. Haro-González, M. C. Iglesias-de la Cruz, F. SanzRodríguez, Á. Juarranz, J. G. Solé, and D. Jaque, “Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia,” Nanomedicine 8, 379–388 (2013).
[Crossref]

G. Kucsko, P. Maurer, N. Y. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

A. P. Demchenko and M. O. Dekaliuk, “Novel fluorescent carbonic nanomaterials for sensing and imaging,” Methods Appl. Fluoresc. 1, 042001 (2013).
[Crossref]

J.-E. Lee, I. In, H. Lee, K. D. Lee, J. H. Jeong, and S. Y. Park, “Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots,” Mol. Pharm. 10, 3736–3744 (2013).
[Crossref]

S. K. Bhunia, A. Saha, A. R. Maity, S. C. Ray, and N. R. Jana, “Carbon nanoparticle-based fluorescent bioimaging probes,” Sci. Rep. 3, 1473 (2013).
[Crossref]

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, and R. K. Jain, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12, 445–451 (2013).
[Crossref]

P. Dorenbos, “Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds,” J. Lumin. 136, 122–129 (2013).
[Crossref]

P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1−xGax)5O12 (RE = Gd, Y, Lu) garnet compounds,” J. Lumin. 134, 310–318 (2013).
[Crossref]

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 31554 (2013).

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1−xAlx)2O4:Cr, Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C 1, 7849–7855 (2013).
[Crossref]

C. R. Stanek, C. Jiang, S. K. Yadav, K. J. McClellan, B. P. Uberuaga, D. A. Andersson, and M. Nikl, “The effect of Ga-doping on the defect chemistry of RE3Al5O12 garnets,” Phys. Status Solidi B 250, 244–248 (2013).
[Crossref]

L. M. Maestro, P. Haro-Gonzalez, B. del Rosal, J. Ramiro, A. J. Caamano, E. Carrasco, A. Juarranz, F. Sanz-Rodriguez, J. G. Sole, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5, 7882–7889 (2013).

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800  nm,” Sci. Rep. 3, 3536 (2013).

W. Feng, X. Zhu, and F. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications,” NPG Asia Mater. 5, e75 (2013).
[Crossref]

N. Venkatachalam, T. Yamano, E. Hemmer, H. Hyodo, H. Kishimoto, and K. Soga, “Er3+ -Doped Y2O3 nanophosphors for near-infrared fluorescence bioimaging applications,” J. Am. Ceram. Soc. 96, 2759–2765 (2013).
[Crossref]

D. Naczynski, M. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. Roth, R. Riman, and P. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref]

U. Rocha, C. Jacinto, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, M. A. Elias, E. Bovero, F. van Veggel, J. A. G. Sole, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10, 1141–1154 (2013).

A.-L. Bulin, C. Truillett, R. Chouikrat, F. Lux, C. Frochot, D. Amans, G. Ledoux, O. Tillement, P. Perriat, M. Barberi-Heyob, and C. Dujardin, “X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins,” J. Phys. Chem. C 117, 21583–21589 (2013).
[Crossref]

2012 (29)

S. A. Love, M. A. Maurer-Jones, J. W. Thompson, Y.-S. Lin, and C. L. Haynes, “Assessing nanoparticle toxicity,” Ann. Rev. Anal. Chem. 5, 181–205 (2012).
[Crossref]

K. Soga, K. Tokuzen, K. Fukuda, H. Hyodo, E. Hemmer, N. Venkatachalm, and H. Kishimoto, “Application of ceramic/polymer conjugate materials for near infrared biophotonics,” J. Photopolym. Sci. Technol. 25, 57–62 (2012).
[Crossref]

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In vitro and in vivo investigations of upconversion and NIR emitting Gd2O3: Er3+, Yb3+ nanostructures for biomedical applications,” J. Mater. Sci. 23, 2399–2412 (2012).

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. 51, 9818–9821 (2012).
[Crossref]

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/Shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6, 2969–2977 (2012).
[Crossref]

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6, 4788–4795 (2012).
[Crossref]

C. D. Walkey and W. C. W. Chan, “Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment,” Chem. Soc. Rev. 41, 2780–2799 (2012).
[Crossref]

L. M. Maestro, C. Jacinto, U. Rocha, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, J. G. Solé, and D. Jaque, “Optimum quantum dot size for highly efficient fluorescence bioimaging,” J. Appl. Phys. 111, 023513 (2012).
[Crossref]

P. Haro-González, L. Martínez-Maestro, I. Martín, J. García-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
[Crossref]

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7, 11–23 (2012).
[Crossref]

Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C.-K. Chen, R.-S. Liu, X. Chen, F. Wang, and X. Liu, “The effect of surface coating on energy migration-mediated upconversion,” J. Am. Chem. Soc. 134, 20849–20857 (2012).
[Crossref]

E. C. Dreaden, A. M. Alkilany, X. H. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41, 2740–2779 (2012).
[Crossref]

M. P. Monopoli, C. Aberg, A. Salvati, and K. A. Dawson, “Biomolecular coronas provide the biological identity of nanosized materials,” Nat. Nanotechnol. 7, 779–786 (2012).
[Crossref]

D. M. Shcherbakova, O. M. Subach, and V. V. Verkhusha, “Red fluorescent proteins: advanced imaging applications and future design,” Angew. Chem. Int. Ed. 51, 10724–10738 (2012).
[Crossref]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10  nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6, 2686–2692 (2012).
[Crossref]

A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: merits and challenges,” Nano Today 7, 532–563 (2012).
[Crossref]

N.-T. Chen, S.-H. Cheng, C.-P. Liu, J. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling,” Int. J. Mol. Sci. 13, 16598–16623 (2012).
[Crossref]

M. Xue, X. Wang, L. Duan, W. Gao, L. Ji, and B. Tang, “A new nanoprobe based on FRET between functional quantum dots and gold nanoparticles for fluoride anion and its applications for biological imaging,” Biosens. Bioelectron. 36, 168–173 (2012).
[Crossref]

L. M. Maestro, P. Haro-González, J. G. Coello, and D. Jaque, “Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100, 201110 (2012).
[Crossref]

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4, 4073–4083 (2012).
[Crossref]

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. 51, 3125–3129 (2012).
[Crossref]

J. Botterman, K. Van den Eeckhout, I. De Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60, 5494–5500 (2012).
[Crossref]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2, 261–268 (2012).
[Crossref]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Yla-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjugate Chemistry 23, 472–478 (2012).
[Crossref]

H. F. Brito, J. Holsa, T. Laamanen, M. Lastusaari, M. Malkamaki, and L. C. V. Rodrigues, “Persistent luminescence mechanisms: human imagination at work,” Opt. Mater. Express 2, 371–381 (2012).
[Crossref]

N. Venkatachalam, E. Hemmer, T. Yamano, H. Hyodo, H. Kishimoto, and K. Soga, “Synthesis and toxicity assay of ceramic nanophosphors for bioimaging with near-infrared excitation,” Prog. Cryst. Growth Charact. Mater. 58, 121–134 (2012).
[Crossref]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012).
[Crossref]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6, 8280–8287 (2012).
[Crossref]

2011 (35)

T. Maldiney, A. Lecointre, B. Viana, A. Bessiere, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133, 11810–11815 (2011).
[Crossref]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5, 854–862 (2011).
[Crossref]

Y.-Y. Lu, F. Liu, Z. Gu, and Z. Pan, “Long-lasting near-infrared persistent luminescence from beta-Ga2O3:Cr3+ nanowire assemblies,” J. Lumin. 131, 2784–2787 (2011).
[Crossref]

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.-T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. 50, 7385–7390 (2011).
[Crossref]

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915  nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5, 3744–3757 (2011).
[Crossref]

N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies,” Chem. Soc. Rev. 40, 1647–1671 (2011).
[Crossref]

X.-D. Zhang, D. Wu, X. Shen, P.-X. Liu, N. Yang, B. Zhao, H. Zhang, Y.-M. Sun, L.-A. Zhang, and F.-Y. Fan, “Size-dependent in vivo toxicity of PEG-coated gold nanoparticles,” Int. J. Nanomed. 6, 2071 (2011).
[Crossref]

J.-C. Zhou, Z.-L. Yang, W. Dong, R.-J. Tang, L.-D. Sun, and C.-H. Yan, “Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb, Tm nanocrystals,” Biomaterials 32, 9059–9067 (2011).
[Crossref]

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. 50, 5808–5829 (2011).
[Crossref]

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5, 7838–7847 (2011).
[Crossref]

H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” J. Control. Release 155, 344–357 (2011).
[Crossref]

M. Swierczewska, S. Lee, and X. Chen, “Inorganic nanoparticles for multimodal molecular imaging,” Mol. Imaging 10, 3–16 (2011).

P. Sonström and M. Bäumer, “Supported colloidal nanoparticles in heterogeneous gas phase catalysis: on the way to tailored catalysts,” Phys. Chem. Chem. Phys. 13, 19270–19284 (2011).
[Crossref]

P. F. Jiao, H. Y. Zhou, L. X. Chen, and B. Yan, “Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy,” Curr. Med. Chem. 18, 2086–2102 (2011).
[Crossref]

A. M. Coto-Garcia, E. Sotelo-Gonzalez, M. Fernandez-Arguelles, R. Pereiro, J. M. Costa-Fernandez, and A. Sanz-Medel, “Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics,” Anal. Bioanal. Chem. 399, 29–42 (2011).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

X. Liu, X. Kong, Y. Zhang, L. Tu, Y. Wang, Q. Zeng, C. Li, Z. Shi, and H. Zhang, “Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications,” Chem. Commun. 47, 11957–11959 (2011).
[Crossref]

C. Y. Fang, V. Vaijayanthimala, C. A. Cheng, S. H. Yeh, C. F. Chang, C. L. Li, and H. C. Chang, “The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker,” Small 7, 3363–3370 (2011).
[Crossref]

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging,” Small 7, 1774–1778 (2011).
[Crossref]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals,” Angew. Chem. Int. Ed. 50, 10369–10372 (2011).
[Crossref]

E. A. Riley, C. Bingham, E. D. Bott, B. Kahr, and P. J. Reid, “Two mechanisms for fluorescence intermittency of single violamine R molecules,” Phys. Chem. Chem. Phys. 13, 1879–1887 (2011).
[Crossref]

K. S. Novoselov, “Graphene: materials in the flatland (Nobel lecture),” Angew. Chem. Int. Ed. 50, 6986–7002 (2011).

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479, 203–207 (2011).
[Crossref]

Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, and L. Qu, “Nitrogen-doped graphene quantum dots with oxygen-rich functional groups,” J. Am. Chem. Soc. 134, 15–18 (2011).
[Crossref]

S. Blahuta, A. Bessiere, B. Viana, V. Ouspenski, E. Mattmann, J. Lejay, and D. Gourier, “Defects identification and effects of annealing on Lu2(1−x)Y2xSiO5 (LYSO) single crystals for scintillation application,” Materials 4, 1224–1237 (2011).
[Crossref]

A. Bessiere, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19, 10131–10137 (2011).
[Crossref]

P. Leblans, D. Vandenbroucke, and P. Willems, “Storage phosphors for medical imaging,” Materials 4, 1034–1086 (2011).
[Crossref]

S. S. Kelkar and T. M. Reineke, “Theranostics: combining imaging and therapy,” Bioconjug. Chem. 22, 1879–1903 (2011).
[Crossref]

K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. USA 108, 8943–8948 (2011).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu, Dy powders: evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
[Crossref]

J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110, 053102 (2011).

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115, 4217–4227 (2011).
[Crossref]

M. Kamimura, N. Kanayama, K. Tokuzen, K. Soga, and Y. Nagasaki, “Near-infrared (1550  nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly (4-vinylbenzylphosphonate),” Nanoscale 3, 3705–3713 (2011).
[Crossref]

B. E. Schaafsma, J. S. D. Mieog, M. Hutteman, J. R. Van der Vorst, P. J. K. Kuppen, C. W. G. M. Lowik, J. V. Frangioni, C. J. H. Van de Velde, and A. L. Vahrmeijer, “The clinical use of Indocyanine Green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104, 323–332 (2011).
[Crossref]

2010 (26)

K. Soga, K. Tokuzen, K. Tsuji, T. Yamano, N. Venkatachalam, H. Hyodo, and H. Kishimoto, “Application of ceramic phosphors for near infrared biomedical imaging technologies,” Proc. SPIE 7598, 759807 (2010).

C. Villa, S. Erratico, P. Razini, F. Fiori, F. Rustichelli, Y. Torrente, and M. Belicchi, “Stem cell tracking by nanotechnologies,” Int. J. Mol. Sci. 11, 1070–1081 (2010).
[Crossref]

Q. Zhang, W. Li, L. P. Wen, J. Chen, and Y. Xia, “Facile synthesis of Ag nanocubes of 30 to 70  nm in edge length with CF(3)COOAg as a precursor,” Chemistry 16, 10234–10239 (2010).
[Crossref]

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. I.-D. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10, 5109–5115 (2010).
[Crossref]

F. Wang, J. Wang, and X. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 49, 7456–7460 (2010).

J. Wang, F. Wang, J. Xu, Y. Wang, Y. Liu, X. Chen, H. Chen, and X. Liu, “Lanthanide-doped LiYF4 nanoparticles: synthesis and multicolor upconversion tuning,” C. R. Chim. 13, 731–736 (2010).
[Crossref]

S. Jiang, M. K. Gnanasammandhan, and Y. Zhang, “Optical imaging-guided cancer therapy with fluorescent nanoparticles,” J. R. Soc. Interface 7, 3–18 (2010).
[Crossref]

F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen, and X. G. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
[Crossref]

B. Mishra, B. B. Patel, and S. Tiwari, “Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery,” Nanomed. Nanotechnol. Biol. Med. 6, 9–24 (2010).
[Crossref]

A. Asati, S. Santra, C. Kaittanis, and J. M. Perez, “Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles,” ACS Nano 4, 5321–5331 (2010).
[Crossref]

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodriguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2, 495–498 (2010).
[Crossref]

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells,” PLoS ONE 5, e9344 (2010).
[Crossref]

J. R. Casey, S. Grinstein, and J. Orlowski, “Sensors and regulators of intracellular pH,” Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).
[Crossref]

T. Cao, T. Yang, Y. Gao, Y. Yang, H. Hu, and F. Li, “Water-soluble NaYF4:Yb/Er upconversion nanophosphors: synthesis, characteristics and application in bioimaging,” Inorg. Chem. Commun. 13, 392–394 (2010).
[Crossref]

N. J. J. Johnson, N. M. Sangeetha, J.-C. Boyer, and F. C. J. M. van Veggel, “Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles,” Nanoscale 2, 771–777 (2010).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref]

L. Xiong, T. Yang, Y. Yang, C. Xu, and F. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31, 7078–7085 (2010).
[Crossref]

J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, and Y. Xia, “Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications,” Adv. Funct. Mater. 20, 3684–3694 (2010).
[Crossref]

L. M. Maestro, E. M. Rodriguez, F. Vetrone, R. Naccache, H. L. Ramirez, D. Jaque, J. A. Capobianco, and J. G. Solé, “Nanoparticles for highly efficient multiphoton fluorescence bioimaging,” Opt. Express 18, 23544–23553 (2010).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3, 2536–2566 (2010).
[Crossref]

J. Zhou, Y. Sun, X. X. Du, L. Q. Xiong, H. Hu, and F. Y. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31, 3287–3295 (2010).
[Crossref]

D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials 3, 2260–2345 (2010).
[Crossref]

E. Hemmer, Y. Kohl, V. Colquhoun, H. Thielecke, K. Soga, and S. Mathur, “Probing cytotoxicity of gadolinium hydroxide nanostructures,” J. Phys. Chem. B 114, 4358–4365 (2010).
[Crossref]

H. Akiyama, K. Tokuzen, H. Otsuka, K. Soga, and F. Tashiro, “Application of liposome-encapsulated ceramic phosphors for cancer cell imaging under near infrared excitation,” J. Phys. Conf. Ser. 232, 012001 (2010).

D. Poelman and P. F. Smet, “Photometry in the dark: time dependent visibility of low intensity light sources,” Opt. Express 18, 26293–26299 (2010).
[Crossref]

K. Soga, K. Tokuzen, K. Tsuji, T. Yamano, H. Hyodo, and H. Kishimoto, “NIR bioimaging: development of liposome-encapsulated, rare-earth-doped Y2O3 nanoparticles as fluorescent probes,” Eur. J. Inorg. Chem. 2010, 2673–2677 (2010).
[Crossref]

2009 (25)

K. Soga, “Development of NIR fluorescence bioimaging system through polyscale technology,” Bunseki Kagaku 58, 461–471 (2009).
[Crossref]

N. Venkatachalam, Y. Okumura, K. Soga, R. Fukuda, and T. Tsuji, “Bioimaging of M1 cells using ceramic nanophosphors: synthesis and toxicity assay of Y2O3 nanoparticles,” J. Phys. Conf. Ser. 101, 012002 (2009).

Y. Kawasaki, Y. Gotoh, K. Tokuzen, M. Kamimura, T. Komeno, M. Tomatsu, R. Todoroki, Y. Nagasaki, K. Soga, and F. Tashiro, “Selective tumor imaging by a novel tumor specific aralin-infrared-to-visible phosphor conjugate,” J. Phys. Conf. Ser. 191, 012001 (2009).

A. M. Smith, M. C. Mancini, and S. Nie, “Second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref]

X. Duan, S. Huang, F. You, and K. Kang, “Hydrothermal preparation and persistence characteristics of nanosized phosphor SrS: Eu2+, Dy3+,” J. Rare Earths 27, 43–46 (2009).
[Crossref]

D.-S. Wang, F.-Y. Hsu, and C.-W. Lin, “Surface plasmon effects on two photon luminescence of gold nanorods,” Opt. Express 17, 11350–11359 (2009).
[Crossref]

Y.-S. Chen, Y.-C. Hung, I. Liau, and G. S. Huang, “Assessment of the in vivo toxicity of gold nanoparticles,” Nano. Res. Lett. 4, 858–864 (2009).
[Crossref]

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-Excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles,” ACS Nano 3, 1580–1586 (2009).
[Crossref]

T. Zako, H. Nagata, N. Terada, A. Utsumi, M. Sakono, M. Yohda, H. Ueda, K. Soga, and M. Maeda, “Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging,” Biochem. Biophys. Res. Commun. 381, 54–58 (2009).
[Crossref]

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci USA. 106, 10917–10921 (2009).
[Crossref]

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[Crossref]

G. Zhang, Z. Yang, W. Lu, R. Zhang, Q. Huang, M. Tian, L. Li, D. Liang, and C. Li, “Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice,” Biomaterials 30, 1928–1936 (2009).
[Crossref]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81, 930–935 (2009).
[Crossref]

J.-C. Boyer, M.-P. Manseau, J. I. Murray, and F. C. J. M. van Veggel, “Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800  nm) biolabeling within the biological window,” Langmuir 26, 1157–1164 (2009).
[Crossref]

H. Hu, L. Xiong, J. Zhou, F. Li, T. Cao, and C. Huang, “Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells,” Chem. Eur. J. 15, 3577–3584 (2009).
[Crossref]

C. Balas, “Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis,” Meas. Sci. Technol. 20, 104020 (2009).
[Crossref]

H. Jin, D. A. Heller, R. Sharma, and M. S. Strano, “Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles,” ACS Nano 3, 149–158 (2009).
[Crossref]

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38, 1759–1782 (2009).
[Crossref]

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J. Phys. Chem. C 113, 19021–19027 (2009).
[Crossref]

G. Chen, H. Liu, G. Somesfalean, H. Liang, and Z. Zhang, “Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions,” Nanotechnology 20, 385704 (2009).
[Crossref]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38, 976–989 (2009).
[Crossref]

T. Gokus, R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. Novoselov, A. Geim, A. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3, 3963–3968 (2009).
[Crossref]

S.-L. Hu, K.-Y. Niu, J. Sun, J. Yang, N.-Q. Zhao, and X.-W. Du, “One-step synthesis of fluorescent carbon nanoparticles by laser irradiation,” J. Mater. Chem. 19, 484–488 (2009).
[Crossref]

J. Kim, Y. Piao, and T. Hyeon, “Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy,” Chem. Soc. Rev. 38, 372–390 (2009).
[Crossref]

2008 (22)

W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. A. M. Sips, and R. E. Geertsma, “Particle size-dependent organ distribution of gold nanoparticles after intravenous administration,” Biomaterials 29, 1912–1919 (2008).
[Crossref]

G. Sonavane, K. Tomoda, and K. Makino, “Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size,” Colloids Surf. B 66, 274–280 (2008).
[Crossref]

K. Welsher, Z. Liu, D. Daranciang, and H. Dai, “Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules,” Nano Lett. 8, 586–590 (2008).
[Crossref]

P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519–522 (2008).
[Crossref]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130, 5642–5643 (2008).
[Crossref]

H.-S. Qian and Y. Zhang, “Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence,” Langmuir 24, 12123–12125 (2008).
[Crossref]

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19, 345606 (2008).
[Crossref]

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[Crossref]

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[Crossref]

Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3, 284–288 (2008).
[Crossref]

M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, and J. I. Zink, “Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery,” ACS Nano 2, 889–896 (2008).
[Crossref]

B. Schuler and W. A. Eaton, “Protein folding studied by single-molecule FRET,” Curr. Opin. Struct. Biol. 18, 16–26 (2008).
[Crossref]

J. Shan, J. Chen, J. Meng, J. Collins, W. Soboyejo, J. S. Friedberg, and Y. Ju, “Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors,” J. Appl. Phys. 104, 094308 (2008).
[Crossref]

R. Abdul Jalil and Y. Zhang, “Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals,” Biomaterials 29, 4122–4128 (2008).
[Crossref]

Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi, and C. Huang, “Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels,” J. Am. Chem. Soc. 130, 3023–3029 (2008).
[Crossref]

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29, 937–943 (2008).
[Crossref]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[Crossref]

E. B. Dickerson, E. C. Dreaden, X. H. Huang, I. H. El-Sayed, H. H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269, 57–66 (2008).
[Crossref]

T. S. Hauck, A. A. Ghazani, and W. C. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small 4, 153–159 (2008).
[Crossref]

A. J. J. Bos, P. Dorenbos, A. Bessiere, and B. Viana, “Lanthanide energy levels in YPO4,” Radiat. Meas. 43, 222–226 (2008).
[Crossref]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8, 3834–3838 (2008).
[Crossref]

2007 (10)

Q. le Masne de Chermont, C. Chaneac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. USA 104, 9266–9271 (2007).
[Crossref]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941–945 (2007).
[Crossref]

T.-H. Chung, S.-H. Wu, M. Yao, C.-W. Lu, Y.-S. Lin, Y. Hung, C.-Y. Mou, Y.-C. Chen, and D.-M. Huang, “The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells,” Biomaterials 28, 2959–2966 (2007).
[Crossref]

E. Carbó-Argibay, B. Rodríguez-González, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Chemical sharpening of gold nanorods: the rod-to-octahedron transition,” Angew. Chem. Int. Ed. 46, 8983–8987 (2007).

G. S. He, K.-T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15, 12818–12833 (2007).
[Crossref]

G. Ruan, A. Agrawal, A. I. Marcus, and S. Nie, “Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding,” J. Am. Chem. Soc. 129, 14759–14766 (2007).
[Crossref]

H. Tada, H. Higuchi, T. M. Wanatabe, and N. Ohuchi, “In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice,” Cancer Res. 67, 1138–1144 (2007).
[Crossref]

C. Liu, Y. K. Kwon, and J. Heo, “Temperature-dependent brightening and darkening of photoluminescence from PbS quantum dots in glasses,” Appl. Phys. Lett. 90, 241111 (2007).
[Crossref]

J. P. Hoogenboom, J. Hernando, E. M. van Dijk, N. F. van Hulst, and M. F. García-Parajó, “Power-law blinking in the fluorescence of single organic molecules,” Chem. Phys. Chem. 8, 823–833 (2007).

M. Vallet-Regi, F. Balas, and D. Arcos, “Mesoporous materials for drug delivery,” Angew. Chem. Int. Ed. 46, 7548–7558 (2007).
[Crossref]

2006 (12)

Y. He, H.-T. Lu, L.-M. Sai, W.-Y. Lai, Q.-L. Fan, L.-H. Wang, and W. Huang, “Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence,” J. Phys. Chem. B 110, 13370–13374 (2006).
[Crossref]

A. M. Smith, S. Dave, S. Nie, L. True, and X. Gao, “Multicolor quantum dots for molecular diagnostics of cancer,” Expert Rev. Mol. Diagn. 6, 231–244 (2006).
[Crossref]

F. Pinaud, X. Michalet, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Iyer, and S. Weiss, “Advances in fluorescence imaging with quantum dot bio-probes,” Biomaterials 27, 1679–1687 (2006).
[Crossref]

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128, 6426–6436 (2006).
[Crossref]

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6, 662–668 (2006).
[Crossref]

M. N. Rhyner, A. M. Smith, X. H. Gao, H. Mao, L. L. Yang, and S. M. Nie, “Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging,” Nanomedicine 1, 209–217 (2006).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, and L. M. Liz-Marzan, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref]

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209–217 (2006).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref]

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nano. Res. Lett. 1, 84–90 (2006).
[Crossref]

M. K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, “Self-illuminating quantum dot conjugates for in vivo imaging,” Nat. Biotechnol. 24, 339–343 (2006).
[Crossref]

2005 (12)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[Crossref]

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437, 121–124 (2005).
[Crossref]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5, 585–589 (2005).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[Crossref]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[Crossref]

L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng, and Y. Li, “Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles,” Angew. Chem. Int. Ed. 44, 6054–6057 (2005).

A. De and S. S. Gambhir, “Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer,” FASEB J. 19, 2017–2019 (2005).

S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005).
[Crossref]

P. A. Frantsuzov and R. Marcus, “Explanation of quantum dot blinking without the long-lived trap hypothesis,” Phys. Rev. B 72, 155321 (2005).
[Crossref]

2004 (16)

F. Pinaud, D. King, H. P. Moore, and S. Weiss, “Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides,” J. Am. Chem. Soc. 126, 6115–6123 (2004).
[Crossref]

J. K. Jaiswal and S. M. Simon, “Potentials and pitfalls of fluorescent quantum dots for biological imaging,” Trends Cell Biol. 14, 497–504 (2004).
[Crossref]

A. M. Derfus, W. C. Chan, and S. N. Bhatia, “Intracellular delivery of quantum dots for live cell labeling and organelle tracking,” Adv. Mater. 16, 961–966 (2004).
[Crossref]

M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37, 326–333 (2004).
[Crossref]

S. M. Dunham, H. E. Pudavar, P. N. Prasad, and M. K. Stachowiak, “Cellular signaling and protein–protein interactions studied using fluorescence recovery after photobleaching,” J. Phys. Chem. B 108, 10540–10546 (2004).
[Crossref]

S. H. Yun, G. J. Teamey, and B. E. Bouma, “Biomedical imaging using optical technologies,” Proc. SPIE 5502, 17–24 (2004).

M. A. Rizzo, G. H. Springer, B. Granada, and D. W. Piston, “An improved cyan fluorescent protein variant useful for FRET,” Nat. Biotechnol. 22, 445–449 (2004).
[Crossref]

A. M. Smith and S. Nie, “Chemical analysis and cellular imaging with quantum dots,” Analyst 129, 672–677 (2004).
[Crossref]

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
[Crossref]

Y. Matsumura and H. N. Ananthaswamy, “Toxic effects of ultraviolet radiation on the skin,” Toxicol. Appl. Pharmacol. 195, 298–308 (2004).
[Crossref]

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126, 12730–12731 (2004).
[Crossref]

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models,” Mol. Imaging 3, 9–23 (2004).
[Crossref]

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4, 11–18 (2004).
[Crossref]

F. Osaki, T. Kanamori, S. Sando, T. Sera, and Y. Aoyama, “A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region,” J. Am. Chem. Soc. 126, 6520–6521 (2004).
[Crossref]

J. Holsa, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloys Compd. 374, 56–59 (2004).
[Crossref]

T. Asahara and A. Kawamoto, “Endothelial progenitor cells for postnatal vasculogenesis,” Am. J. Physiol. Cell Physiol. 287, C572–C579 (2004).
[Crossref]

2003 (16)

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80, 1–5 (2003).
[Crossref]

X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin. 102, 34–37 (2003).
[Crossref]

J. M. Ness, R. S. Akhtar, C. B. Latham, and K. A. Roth, “Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection,” J. Histochem. Cytochem. 51, 981–987 (2003).
[Crossref]

N. Schülke, O. A. Varlamova, G. P. Donovan, D. Ma, J. P. Gardner, D. M. Morrissey, R. R. Arrigale, C. Zhan, A. J. Chodera, K. G. Surowitz, P. J. Maddon, W. D. W. Heston, and W. C. Olson, “The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy,” Proc. Natl. Acad. Sci. USA 100, 12590–12595 (2003).
[Crossref]

N. H. Bander, E. J. Trabulsi, L. Kostakoglu, D. Yao, S. Vallabhajosula, P. Smith-Jones, M. A. Joyce, M. Milowsky, D. M. Nanus, and S. J. Goldsmith, “Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen,” J. Urol. 170, 1717–1721 (2003).
[Crossref]

K. Soga, W. Wang, R. E. Riman, J. B. Brown, and K. R. Mikeska, “Luminescent properties of nanostructured Dy3+-and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide,” J. Appl. Phys. 93, 2946–2951 (2003).
[Crossref]

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21, 47–51 (2003).
[Crossref]

R. B. Sekar and A. Periasamy, “Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations,” J. Cell Biol. 160, 629–633 (2003).
[Crossref]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref]

K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8, 432–439 (2003).
[Crossref]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2, 124–129 (2003).
[Crossref]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[Crossref]

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2003).
[Crossref]

M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302, 442–445 (2003).
[Crossref]

S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures,” J. Am. Chem. Soc. 125, 11466–11467 (2003).
[Crossref]

H. Yang and P. H. Holloway, “Enhanced photoluminescence from CdS: Mn/ZnS core/shell quantum dots,” Appl. Phys. Lett. 82, 1965–1967 (2003).
[Crossref]

2002 (5)

P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. M. Schlag, “Hyperthermia in combined treatment of cancer,” Lancet Oncol. 3, 487–497 (2002).
[Crossref]

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298, 1759–1762 (2002).
[Crossref]

M. E. Åkerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, “Nanocrystal targeting in vivo,” Proc. Natl. Acad. Sci. USA. 99, 12617–12621 (2002).
[Crossref]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[Crossref]

C. Allen, N. Dos Santos, R. Gallagher, G. N. C. Chiu, Y. Shu, W. M. Li, S. A. Johnstone, A. S. Janoff, L. D. Mayer, M. S. Webb, and M. B. Bally, “Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol),” Biosci. Rep. 22, 225–250 (2002).
[Crossref]

2001 (1)

K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001).
[Crossref]

2000 (3)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
[Crossref]

M. Yang, E. Baranov, P. Jiang, F.-X. Sun, X.-M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, and T. Chishima, “Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases,” Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).
[Crossref]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).
[Crossref]

1999 (5)

R. Weissleder, C.-H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[Crossref]

M. Yang, P. Jiang, F.-X. Sun, S. Hasegawa, E. Baranov, T. Chishima, H. Shimada, A. Moossa, and R. M. Hoffman, “A fluorescent orthotopic bone metastasis model of human prostate cancer,” Cancer Res. 59, 781–786 (1999).

H. J. M. A. A. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala, and H. J. Tanke, “Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology,” Anal. Biochem. 267, 30–36 (1999).
[Crossref]

C. Betz, M. Mehlmann, K. Rick, H. Stepp, G. Grevers, R. Baumgartner, and A. Leunig, “Autofluorescence imaging and spectroscopy of normal and malignant mucosa in patients with head and neck cancer,” Lasers Surg. Med. 25, 323–334 (1999).
[Crossref]

J. White and E. Stelzer, “Photobleaching GFP reveals protein dynamics inside live cells,” Trends Cell Biol. 9, 61–65 (1999).
[Crossref]

1998 (4)

T. Wilson and J. W. Hastings, “Bioluminescence,” Annu. Rev. Cell Dev. Biol. 14, 197–230 (1998).
[Crossref]

W. C. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016–2018 (1998).
[Crossref]

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[Crossref]

J. Wilcoxon, J. Martin, F. Parsapour, B. Wiedenman, and D. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108, 9137–9143 (1998).
[Crossref]

1997 (5)

K. Soga, M. Tsuda, S. Sakuragi, H. Inoue, S. Inoue, and A. Makishima, “Effects of chloride introduction on the optical properties and the upconversion emission with 980-nm excitation of Er3+ in ZBLAN fluoride glasses,” J. Non-Cryst. Solids 222, 272–281 (1997).
[Crossref]

R. E. Smalley, “Discovering the fullerenes (Nobel lecture),” Angew. Chem. Int. Ed. Engl. 36, 1594–1601 (1997).

B. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. Heine, H. Mattoussi, R. Ober, K. Jensen, and M. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

D. A. V. Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules,” Science 277, 1074–1077 (1997).
[Crossref]

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. Moossa, and R. M. Hoffman, “Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression,” Cancer Res. 57, 2042–2047 (1997).

1996 (3)

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B 54, 4843–4856 (1996).
[Crossref]

D. Norris, A. L. Efros, M. Rosen, and M. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B 53, 16347–16354 (1996).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143, 2670–2673 (1996).
[Crossref]

1995 (2)

M. Nirmal, D. Norris, M. Kuno, M. Bawendi, A. L. Efros, and M. Rosen, “Observation of the ‘dark exciton’ in CdSe quantum dots,” Phys. Rev. Lett. 75, 3728–3731 (1995).
[Crossref]

D. C. Prasher, “Using GFP to see the light,” Trends Genet. 11, 320–323 (1995).
[Crossref]

1994 (2)

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[Crossref]

P. Wu and L. Brand, “Resonance energy transfer: methods and applications,” Anal. Biochem. 218, 1–13 (1994).
[Crossref]

1992 (1)

D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast, and M. J. Cormier, “Primary structure of the Aequorea victoria green-fluorescent protein,” Gene 111, 229–233 (1992).
[Crossref]

1991 (2)

O. Seksek, N. Henry-Toulmé, F. Sureau, and J. Bolard, “SNARF-1 as an intracellular pH indicator in laser microspectrofluorometry: a critical assessment,” Anal. Biochem. 193, 49–54 (1991).
[Crossref]

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[Crossref]

1990 (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref]

S. Bassnett, L. Reinisch, and D. C. Beebe, “Intracellular pH measurement using single excitation-dual emission fluorescence ratios,” Am. J. Physiol. Cell Physiol. 258, C171–C178 (1990).

1986 (1)

G. Boyd, Z. Yu, and Y. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[Crossref]

1985 (1)

A. I. Ekimov, Al. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[Crossref]

1981 (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[Crossref]

1980 (1)

H. I. Bicher, F. W. Hetzel, T. S. Sandhu, S. Frinak, P. Vaupel, M. O’Hara, and T. O’Brien, “Effects of hyperthermia on normal and tumor microenvironment,” Radiology 137, 523–530 (1980).
[Crossref]

1979 (1)

O. Shimomura, “Structure of the chromophore of Aequorea green fluorescent protein,” FEBS Lett. 104, 220–222 (1979).
[Crossref]

1978 (2)

M. E. Dockter, A. Steinemann, and G. Schatz, “Mapping of yeast cytochrome c oxidase by fluorescence resonance energy transfer. Distances between subunit II, heme a, and cytochrome c bound to subunit III,” J. Biol. Chem. 253, 311–317 (1978).

W. W. Ward and M. J. Cormier, “Energy-transfer via protein-protein interaction in Renilla bioluminescence,” Photochem. Photobiol. 27, 389–396 (1978).
[Crossref]

1974 (1)

M.-M. Poo and R. A. Cone, “Lateral diffusion of rhodopsin in the photoreceptor membrane,” Nature 247, 438–441 (1974).
[Crossref]

1973 (1)

T. Kushida, “Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation,” J. Phys. Soc. Jpn. 34, 1318–1326 (1973).
[Crossref]

1969 (1)

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22, 185–187 (1969).
[Crossref]

1966 (1)

F. Auzel, “Compteur quantique par transfert denergie entre deux ions de terres rares dans un tungstate mixte et dans un verre,” C. R. Hebd. Seances Acad. Sci. Ser. B 262, 1016 (1966).

1964 (1)

D. Wittekind, “Fluorescence microscopy and the living cell,” J. R. Microsc. Soc. 83, 83–94 (1964).
[Crossref]

1962 (1)

O. Shimomura, F. H. Johnson, and Y. Saiga, “Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea,” J. Cell. Comp. Physiol. 59, 223–239 (1962).
[Crossref]

1951 (1)

1940 (1)

P. Ellinger, “Fluorescence microscopy in biology,” Biol. Rev. 15, 323–347 (1940).
[Crossref]

1931 (1)

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 401, 273–294 (1931).
[Crossref]

Abdukayum, A.

A. Abdukayum, C.-X. Yang, Q. Zhao, J.-T. Chen, L.-X. Dong, and X.-P. Yan, “Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo,” Anal. Chem. 86, 4096–4101 (2014).
[Crossref]

A. Abdukayum, J.-T. Chen, Q. Zhao, and X.-P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135, 14125–14133 (2013).
[Crossref]

Abdul Jalil, R.

R. Abdul Jalil and Y. Zhang, “Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals,” Biomaterials 29, 4122–4128 (2008).
[Crossref]

Aberg, C.

M. P. Monopoli, C. Aberg, A. Salvati, and K. A. Dawson, “Biomolecular coronas provide the biological identity of nanosized materials,” Nat. Nanotechnol. 7, 779–786 (2012).
[Crossref]

Agrawal, A.

G. Ruan, A. Agrawal, A. I. Marcus, and S. Nie, “Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding,” J. Am. Chem. Soc. 129, 14759–14766 (2007).
[Crossref]

Ågren, H.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/Shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6, 2969–2977 (2012).
[Crossref]

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6, 8280–8287 (2012).
[Crossref]

Airenne, K. J.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Yla-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjugate Chemistry 23, 472–478 (2012).
[Crossref]

Aitasalo, T.

J. Holsa, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloys Compd. 374, 56–59 (2004).
[Crossref]

Åkerman, M. E.

M. E. Åkerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, “Nanocrystal targeting in vivo,” Proc. Natl. Acad. Sci. USA. 99, 12617–12621 (2002).
[Crossref]

Akhtar, R. S.

J. M. Ness, R. S. Akhtar, C. B. Latham, and K. A. Roth, “Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection,” J. Histochem. Cytochem. 51, 981–987 (2003).
[Crossref]

Akiyama, H.

H. Akiyama, K. Tokuzen, H. Otsuka, K. Soga, and F. Tashiro, “Application of liposome-encapsulated ceramic phosphors for cancer cell imaging under near infrared excitation,” J. Phys. Conf. Ser. 232, 012001 (2010).

Alivisatos, A. P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[Crossref]

Alkilany, A. M.

E. C. Dreaden, A. M. Alkilany, X. H. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41, 2740–2779 (2012).
[Crossref]

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

Allen, C.

C. Allen, N. Dos Santos, R. Gallagher, G. N. C. Chiu, Y. Shu, W. M. Li, S. A. Johnstone, A. S. Janoff, L. D. Mayer, M. S. Webb, and M. B. Bally, “Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol),” Biosci. Rep. 22, 225–250 (2002).
[Crossref]

Alloyeau, D.

T. Maldiney, B.-T. Doan, D. Alloyeau, M. Bessodes, D. Scherman, and C. Richard, “Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging,” Adv. Funct. Mater. 25, 331–338 (2015).
[Crossref]

Aloni, S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nano 9, 300–305 (2014).
[Crossref]

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci USA. 106, 10917–10921 (2009).
[Crossref]

Alonso-Ortega, C.

J. S. Donner, S. A. Thompson, C. Alonso-Ortega, J. Morales, L. G. Rico, S. I. C. O. Santos, and R. Quidant, “Imaging of plasmonic heating in a living organism,” ACS Nano 7, 8666–8672 (2013).
[Crossref]

Altoe, M. V. P.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nano 9, 300–305 (2014).
[Crossref]

Altoe, V.

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci USA. 106, 10917–10921 (2009).
[Crossref]

Al-Tuwaijri, M.

M. Yang, E. Baranov, P. Jiang, F.-X. Sun, X.-M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, and T. Chishima, “Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases,” Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).
[Crossref]

Amans, D.

A.-L. Bulin, C. Truillett, R. Chouikrat, F. Lux, C. Frochot, D. Amans, G. Ledoux, O. Tillement, P. Perriat, M. Barberi-Heyob, and C. Dujardin, “X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins,” J. Phys. Chem. C 117, 21583–21589 (2013).
[Crossref]

Amaral, V. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

Ananthaswamy, H. N.

Y. Matsumura and H. N. Ananthaswamy, “Toxic effects of ultraviolet radiation on the skin,” Toxicol. Appl. Pharmacol. 195, 298–308 (2004).
[Crossref]

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[Crossref]

Andersson, D. A.

L. Casillas-Trujillo, D. A. Andersson, B. Dorado, M. Nikl, K. E. Sickafus, K. J. McClellan, and C. R. Stanek, “Intrinsic defects, nonstoichiometry, and aliovalent doping of A2+B4+O3 perovskite scintillators,” Phys. Status Solidi B 251, 2279–2286 (2014).
[Crossref]

C. R. Stanek, C. Jiang, S. K. Yadav, K. J. McClellan, B. P. Uberuaga, D. A. Andersson, and M. Nikl, “The effect of Ga-doping on the defect chemistry of RE3Al5O12 garnets,” Phys. Status Solidi B 250, 244–248 (2013).
[Crossref]

Andersson-Engels, S.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6, 4788–4795 (2012).
[Crossref]

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915  nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5, 3744–3757 (2011).
[Crossref]

Antaris, A. L.

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. 51, 9818–9821 (2012).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143, 2670–2673 (1996).
[Crossref]

Aoyama, Y.

F. Osaki, T. Kanamori, S. Sando, T. Sera, and Y. Aoyama, “A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region,” J. Am. Chem. Soc. 126, 6520–6521 (2004).
[Crossref]

Arcos, D.

M. Vallet-Regi, F. Balas, and D. Arcos, “Mesoporous materials for drug delivery,” Angew. Chem. Int. Ed. 46, 7548–7558 (2007).
[Crossref]

Arrigale, R. R.

N. Schülke, O. A. Varlamova, G. P. Donovan, D. Ma, J. P. Gardner, D. M. Morrissey, R. R. Arrigale, C. Zhan, A. J. Chodera, K. G. Surowitz, P. J. Maddon, W. D. W. Heston, and W. C. Olson, “The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy,” Proc. Natl. Acad. Sci. USA 100, 12590–12595 (2003).
[Crossref]

Asahara, T.

T. Asahara and A. Kawamoto, “Endothelial progenitor cells for postnatal vasculogenesis,” Am. J. Physiol. Cell Physiol. 287, C572–C579 (2004).
[Crossref]

Asati, A.

A. Asati, S. Santra, C. Kaittanis, and J. M. Perez, “Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles,” ACS Nano 4, 5321–5331 (2010).
[Crossref]

Astruc, D.

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38, 1759–1782 (2009).
[Crossref]

Autret, G.

E. Teston, Y. Lalatonne, D. Elgrabli, G. Autret, L. Motte, F. Gazeau, D. Scherman, O. Clément, C. Richard, and T. Maldiney, “Design, properties and in-vivo behavior of super-paramagnetic persistent luminescence nanohybrids,” Small 11, 2696–2704 (2015).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2003).
[Crossref]

F. Auzel, “Compteur quantique par transfert denergie entre deux ions de terres rares dans un tungstate mixte et dans un verre,” C. R. Hebd. Seances Acad. Sci. Ser. B 262, 1016 (1966).

Bachelot, R.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Badea, C. T.

D. P. Clark and C. T. Badea, “Spectral diffusion: an algorithm for robust material decomposition of spectral CT data,” Phys. Med. Biol. 59, 6445–6466 (2014).
[Crossref]

Baev, A.

Baik, S.-I.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

Balas, C.

C. Balas, “Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis,” Meas. Sci. Technol. 20, 104020 (2009).
[Crossref]

Balas, F.

M. Vallet-Regi, F. Balas, and D. Arcos, “Mesoporous materials for drug delivery,” Angew. Chem. Int. Ed. 46, 7548–7558 (2007).
[Crossref]

Ballestrem, C.

A. Carisey, M. Stroud, R. Tsang, and C. Ballestrem, “Fluorescence recovery after photobleaching,” in Cell Migration (Springer, 2011), pp. 387–402.

Ballet, B.

T. Maldiney, B. Ballet, M. Bessodes, D. Scherman, and C. Richard, “Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery,” Nanoscale 6, 13970–13976 (2014).
[Crossref]

Bally, M. B.

C. Allen, N. Dos Santos, R. Gallagher, G. N. C. Chiu, Y. Shu, W. M. Li, S. A. Johnstone, A. S. Janoff, L. D. Mayer, M. S. Webb, and M. B. Bally, “Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol),” Biosci. Rep. 22, 225–250 (2002).
[Crossref]

Bander, N. H.

N. H. Bander, E. J. Trabulsi, L. Kostakoglu, D. Yao, S. Vallabhajosula, P. Smith-Jones, M. A. Joyce, M. Milowsky, D. M. Nanus, and S. J. Goldsmith, “Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen,” J. Urol. 170, 1717–1721 (2003).
[Crossref]

Banerjee, D.

F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen, and X. G. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
[Crossref]

Bang, J.

J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung, S. Jung, Y. Park, and S. Kim, “Surface engineering of inorganic nanoparticles for imaging and therapy,” Adv. Drug Delivery Rev. 65, 622–648 (2013).
[Crossref]

Bankman, I. N.

I. N. Bankman, Handbook of Medical Image Processing and Analysis (Academic, 2009).

Banning, C.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells,” PLoS ONE 5, e9344 (2010).
[Crossref]

Bao, J.

L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng, and Y. Li, “Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles,” Angew. Chem. Int. Ed. 44, 6054–6057 (2005).

Baranov, E.

M. Yang, E. Baranov, P. Jiang, F.-X. Sun, X.-M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, and T. Chishima, “Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases,” Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).
[Crossref]

M. Yang, P. Jiang, F.-X. Sun, S. Hasegawa, E. Baranov, T. Chishima, H. Shimada, A. Moossa, and R. M. Hoffman, “A fluorescent orthotopic bone metastasis model of human prostate cancer,” Cancer Res. 59, 781–786 (1999).

Barbara, P. F.

D. A. V. Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules,” Science 277, 1074–1077 (1997).
[Crossref]

Barberi-Heyob, M.

A.-L. Bulin, C. Truillett, R. Chouikrat, F. Lux, C. Frochot, D. Amans, G. Ledoux, O. Tillement, P. Perriat, M. Barberi-Heyob, and C. Dujardin, “X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins,” J. Phys. Chem. C 117, 21583–21589 (2013).
[Crossref]

Barnard, E. S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nano 9, 300–305 (2014).
[Crossref]

Barua, S.

H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” J. Control. Release 155, 344–357 (2011).
[Crossref]

Basavaraju, N.

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26, 1365–1373 (2014).
[Crossref]

S. K. Sharma, A. Bessiere, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

Bassnett, S.

S. Bassnett, L. Reinisch, and D. C. Beebe, “Intracellular pH measurement using single excitation-dual emission fluorescence ratios,” Am. J. Physiol. Cell Physiol. 258, C171–C178 (1990).

Bäumer, M.

P. Sonström and M. Bäumer, “Supported colloidal nanoparticles in heterogeneous gas phase catalysis: on the way to tailored catalysts,” Phys. Chem. Chem. Phys. 13, 19270–19284 (2011).
[Crossref]

Baumgartner, R.

C. Betz, M. Mehlmann, K. Rick, H. Stepp, G. Grevers, R. Baumgartner, and A. Leunig, “Autofluorescence imaging and spectroscopy of normal and malignant mucosa in patients with head and neck cancer,” Lasers Surg. Med. 25, 323–334 (1999).
[Crossref]

Bausá, L. E.

J. G. Solé, L. E. Bausá, and D. Jaque, “Front matter,” in An Introduction to the Optical Spectroscopy of Inorganic Solids (Wiley, 2005), pp. i–xx.

Bawendi, M.

S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures,” J. Am. Chem. Soc. 125, 11466–11467 (2003).
[Crossref]

B. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. Heine, H. Mattoussi, R. Ober, K. Jensen, and M. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

D. Norris, A. L. Efros, M. Rosen, and M. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B 53, 16347–16354 (1996).
[Crossref]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B 54, 4843–4856 (1996).
[Crossref]

M. Nirmal, D. Norris, M. Kuno, M. Bawendi, A. L. Efros, and M. Rosen, “Observation of the ‘dark exciton’ in CdSe quantum dots,” Phys. Rev. Lett. 75, 3728–3731 (1995).
[Crossref]

Baxter, S. C.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

Bednarkiewicz, A.

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44, 1561–1584 (2015).

A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: merits and challenges,” Nano Today 7, 532–563 (2012).
[Crossref]

Beebe, D. C.

S. Bassnett, L. Reinisch, and D. C. Beebe, “Intracellular pH measurement using single excitation-dual emission fluorescence ratios,” Am. J. Physiol. Cell Physiol. 258, C171–C178 (1990).

Belicchi, M.

C. Villa, S. Erratico, P. Razini, F. Fiori, F. Rustichelli, Y. Torrente, and M. Belicchi, “Stem cell tracking by nanotechnologies,” Int. J. Mol. Sci. 11, 1070–1081 (2010).
[Crossref]

Benayas, A.

D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6, 9494–9530 (2014).
[Crossref]

U. Rocha, C. Jacinto, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, M. A. Elias, E. Bovero, F. van Veggel, J. A. G. Sole, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

Benhamou, R. A.

A. Bessiere, A. Lecointre, R. A. Benhamou, E. Suard, G. Wallez, and B. Viana, “How to induce red persistent luminescence in biocompatible Ca3(PO4)2,” J. Mater. Chem. C 1, 1252–1259 (2013).
[Crossref]

Bentolila, L. A.

F. Pinaud, X. Michalet, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Iyer, and S. Weiss, “Advances in fluorescence imaging with quantum dot bio-probes,” Biomaterials 27, 1679–1687 (2006).
[Crossref]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[Crossref]

Ben-Yakar, A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941–945 (2007).
[Crossref]

Bera, D.

D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials 3, 2260–2345 (2010).
[Crossref]

Berberan-Santos, M. N.

B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications (Wiley, 2012).

Bergey, E. J.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8, 3834–3838 (2008).
[Crossref]

Bessiere, A.

S. K. Sharma, A. Bessiere, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26, 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref]

A. Bessiere, A. Lecointre, R. A. Benhamou, E. Suard, G. Wallez, and B. Viana, “How to induce red persistent luminescence in biocompatible Ca3(PO4)2,” J. Mater. Chem. C 1, 1252–1259 (2013).
[Crossref]

T. Maldiney, A. Lecointre, B. Viana, A. Bessiere, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133, 11810–11815 (2011).
[Crossref]

S. Blahuta, A. Bessiere, B. Viana, V. Ouspenski, E. Mattmann, J. Lejay, and D. Gourier, “Defects identification and effects of annealing on Lu2(1−x)Y2xSiO5 (LYSO) single crystals for scintillation application,” Materials 4, 1224–1237 (2011).
[Crossref]

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115, 4217–4227 (2011).
[Crossref]

A. Bessiere, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19, 10131–10137 (2011).
[Crossref]

A. J. J. Bos, P. Dorenbos, A. Bessiere, and B. Viana, “Lanthanide energy levels in YPO4,” Radiat. Meas. 43, 222–226 (2008).
[Crossref]

Bessodes, M.

T. Maldiney, B.-T. Doan, D. Alloyeau, M. Bessodes, D. Scherman, and C. Richard, “Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging,” Adv. Funct. Mater. 25, 331–338 (2015).
[Crossref]

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref]

T. Maldiney, B. Ballet, M. Bessodes, D. Scherman, and C. Richard, “Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery,” Nanoscale 6, 13970–13976 (2014).
[Crossref]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Yla-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjugate Chemistry 23, 472–478 (2012).
[Crossref]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2, 261–268 (2012).
[Crossref]

T. Maldiney, A. Lecointre, B. Viana, A. Bessiere, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133, 11810–11815 (2011).
[Crossref]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5, 854–862 (2011).
[Crossref]

Q. le Masne de Chermont, C. Chaneac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. USA 104, 9266–9271 (2007).
[Crossref]

Bettinelli, M.

I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, and D. García, “1.3  μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window,” Nano Res. 8,649–665 (2015).

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9, 2162–2170 (2013).
[Crossref]

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Betz, C.

C. Betz, M. Mehlmann, K. Rick, H. Stepp, G. Grevers, R. Baumgartner, and A. Leunig, “Autofluorescence imaging and spectroscopy of normal and malignant mucosa in patients with head and neck cancer,” Lasers Surg. Med. 25, 323–334 (1999).
[Crossref]

Bhatia, S. N.

A. M. Derfus, W. C. Chan, and S. N. Bhatia, “Intracellular delivery of quantum dots for live cell labeling and organelle tracking,” Adv. Mater. 16, 961–966 (2004).
[Crossref]

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4, 11–18 (2004).
[Crossref]

M. E. Åkerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, “Nanocrystal targeting in vivo,” Proc. Natl. Acad. Sci. USA. 99, 12617–12621 (2002).
[Crossref]

Bhunia, S. K.

S. K. Bhunia, A. Saha, A. R. Maity, S. C. Ray, and N. R. Jana, “Carbon nanoparticle-based fluorescent bioimaging probes,” Sci. Rep. 3, 1473 (2013).
[Crossref]

Bicher, H. I.

H. I. Bicher, F. W. Hetzel, T. S. Sandhu, S. Frinak, P. Vaupel, M. O’Hara, and T. O’Brien, “Effects of hyperthermia on normal and tumor microenvironment,” Radiology 137, 523–530 (1980).
[Crossref]

Bilsel, O. S.

J. Shen, G. Chen, A.-M. Vu, W. Fan, O. S. Bilsel, C.-C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800  nm,” Adv. Opt. Mater. 1, 644–650 (2013).
[Crossref]

Binet, L.

S. K. Sharma, A. Bessiere, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26, 1365–1373 (2014).
[Crossref]

Bingham, C.

E. A. Riley, C. Bingham, E. D. Bott, B. Kahr, and P. J. Reid, “Two mechanisms for fluorescence intermittency of single violamine R molecules,” Phys. Chem. Chem. Phys. 13, 1879–1887 (2011).
[Crossref]

Blahuta, S.

S. Blahuta, A. Bessiere, B. Viana, V. Ouspenski, E. Mattmann, J. Lejay, and D. Gourier, “Defects identification and effects of annealing on Lu2(1−x)Y2xSiO5 (LYSO) single crystals for scintillation application,” Materials 4, 1224–1237 (2011).
[Crossref]

Blazquez-Castro, A.

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodriguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2, 495–498 (2010).
[Crossref]

Bogdanov, A.

R. Weissleder, C.-H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[Crossref]

Bohmler, M.

T. Gokus, R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. Novoselov, A. Geim, A. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3, 3963–3968 (2009).
[Crossref]

Boisselier, E.

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38, 1759–1782 (2009).
[Crossref]

Bolard, J.

O. Seksek, N. Henry-Toulmé, F. Sureau, and J. Bolard, “SNARF-1 as an intracellular pH indicator in laser microspectrofluorometry: a critical assessment,” Anal. Biochem. 193, 49–54 (1991).
[Crossref]

Bonetti, A.

T. Gokus, R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. Novoselov, A. Geim, A. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3, 3963–3968 (2009).
[Crossref]

Bonnet, J.

H. J. M. A. A. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala, and H. J. Tanke, “Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology,” Anal. Biochem. 267, 30–36 (1999).
[Crossref]

Bos, A. J. J.

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref]

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26, 1365–1373 (2014).
[Crossref]

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87, 045126 (2013).
[Crossref]

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115, 4217–4227 (2011).
[Crossref]

A. J. J. Bos, P. Dorenbos, A. Bessiere, and B. Viana, “Lanthanide energy levels in YPO4,” Radiat. Meas. 43, 222–226 (2008).
[Crossref]

Bott, E. D.

E. A. Riley, C. Bingham, E. D. Bott, B. Kahr, and P. J. Reid, “Two mechanisms for fluorescence intermittency of single violamine R molecules,” Phys. Chem. Chem. Phys. 13, 1879–1887 (2011).
[Crossref]

Botterman, J.

P. F. Smet, J. Botterman, K. Van den Eeckhout, K. Korthout, and D. Poelman, “Persistent luminescence in nitride and oxynitride phosphors: a review,” Opt. Mater. 36, 1913–1919 (2014).
[Crossref]

J. Botterman, K. Van den Eeckhout, I. De Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60, 5494–5500 (2012).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu, Dy powders: evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
[Crossref]

Bouhelier, A.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Bouma, B. E.

S. H. Yun, G. J. Teamey, and B. E. Bouma, “Biomedical imaging using optical technologies,” Proc. SPIE 5502, 17–24 (2004).

Bout, D. A. V.

D. A. V. Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules,” Science 277, 1074–1077 (1997).
[Crossref]

Bouvet, M.

M. Yang, E. Baranov, P. Jiang, F.-X. Sun, X.-M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, and T. Chishima, “Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases,” Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).
[Crossref]

Bovero, E.

U. Rocha, C. Jacinto, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, M. A. Elias, E. Bovero, F. van Veggel, J. A. G. Sole, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10, 1141–1154 (2013).

Boyd, G.

G. Boyd, Z. Yu, and Y. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923–7936 (1986).
[Crossref]

Boyer, J.-C.

N. J. J. Johnson, N. M. Sangeetha, J.-C. Boyer, and F. C. J. M. van Veggel, “Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles,” Nanoscale 2, 771–777 (2010).
[Crossref]

J.-C. Boyer, M.-P. Manseau, J. I. Murray, and F. C. J. M. van Veggel, “Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800  nm) biolabeling within the biological window,” Langmuir 26, 1157–1164 (2009).
[Crossref]

Brand, L.

P. Wu and L. Brand, “Resonance energy transfer: methods and applications,” Anal. Biochem. 218, 1–13 (1994).
[Crossref]

Branda, N. R.

T. Wu, S. Kaur, and N. R. Branda, “Energy transfer between amphiphilic porphyrin polymer shells and upconverting nanoparticle cores in water-dispersible nano-assemblies,” Org. Biomol. Chem. 13, 2317–2322 (2015).

Brites, C. D. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

Brito, H. F.

Brivanlou, A. H.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298, 1759–1762 (2002).
[Crossref]

Brown, J. B.

K. Soga, W. Wang, R. E. Riman, J. B. Brown, and K. R. Mikeska, “Luminescent properties of nanostructured Dy3+-and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide,” J. Appl. Phys. 93, 2946–2951 (2003).
[Crossref]

Bruchez, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[Crossref]

Bruchez, M. P.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[Crossref]

Bu, J.

J. Liu, Y. Liu, W. Bu, J. Bu, Y. Sun, J. Du, and J. Shi, “Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation,” J. Am. Chem. Soc. 136, 9701–9709 (2014).
[Crossref]

Bu, W.

J. Liu, Y. Liu, W. Bu, J. Bu, Y. Sun, J. Du, and J. Shi, “Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation,” J. Am. Chem. Soc. 136, 9701–9709 (2014).
[Crossref]

Bulin, A.-L.

A.-L. Bulin, C. Truillett, R. Chouikrat, F. Lux, C. Frochot, D. Amans, G. Ledoux, O. Tillement, P. Perriat, M. Barberi-Heyob, and C. Dujardin, “X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins,” J. Phys. Chem. C 117, 21583–21589 (2013).
[Crossref]

Burger, M. C.

W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. A. M. Sips, and R. E. Geertsma, “Particle size-dependent organ distribution of gold nanoparticles after intravenous administration,” Biomaterials 29, 1912–1919 (2008).
[Crossref]

Burton, J.

H. J. M. A. A. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala, and H. J. Tanke, “Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology,” Anal. Biochem. 267, 30–36 (1999).
[Crossref]

Butterfield, F. L.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[Crossref]

Caamano, A. J.

L. M. Maestro, P. Haro-Gonzalez, B. del Rosal, J. Ramiro, A. J. Caamano, E. Carrasco, A. Juarranz, F. Sanz-Rodriguez, J. G. Sole, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5, 7882–7889 (2013).

Caamaño, A. J.

U. Rocha, K. Upendra Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. García Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104, 053703 (2014).
[Crossref]

Cantarelli, I.

I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, and D. García, “1.3  μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window,” Nano Res. 8,649–665 (2015).

Cao, T.

T. Cao, T. Yang, Y. Gao, Y. Yang, H. Hu, and F. Li, “Water-soluble NaYF4:Yb/Er upconversion nanophosphors: synthesis, characteristics and application in bioimaging,” Inorg. Chem. Commun. 13, 392–394 (2010).
[Crossref]

H. Hu, L. Xiong, J. Zhou, F. Li, T. Cao, and C. Huang, “Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells,” Chem. Eur. J. 15, 3577–3584 (2009).
[Crossref]

Capobianco, J.

D. Rodríguez Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. Capobianco, “Persistent and photostimulated red emission in CaS:Eu2+, Dy3+ nanophosphors,” Adv. Opt. Mater. 3, 551–557 (2015).

Capobianco, J. A.

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44, 1561–1584 (2015).

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging,” Small 7, 1774–1778 (2011).
[Crossref]

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

L. M. Maestro, E. M. Rodriguez, F. Vetrone, R. Naccache, H. L. Ramirez, D. Jaque, J. A. Capobianco, and J. G. Solé, “Nanoparticles for highly efficient multiphoton fluorescence bioimaging,” Opt. Express 18, 23544–23553 (2010).
[Crossref]

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. I.-D. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10, 5109–5115 (2010).
[Crossref]

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodriguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2, 495–498 (2010).
[Crossref]

Carbó-Argibay, E.

E. Carbó-Argibay, B. Rodríguez-González, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Chemical sharpening of gold nanorods: the rod-to-octahedron transition,” Angew. Chem. Int. Ed. 46, 8983–8987 (2007).

Carisey, A.

A. Carisey, M. Stroud, R. Tsang, and C. Ballestrem, “Fluorescence recovery after photobleaching,” in Cell Migration (Springer, 2011), pp. 387–402.

Carlos, L. D.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

Carrasco, E.

I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, and D. García, “1.3  μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window,” Nano Res. 8,649–665 (2015).

E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25, 615–626 (2015).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10, 1141–1154 (2013).

L. M. Maestro, P. Haro-Gonzalez, B. del Rosal, J. Ramiro, A. J. Caamano, E. Carrasco, A. Juarranz, F. Sanz-Rodriguez, J. G. Sole, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5, 7882–7889 (2013).

Casey, J. R.

J. R. Casey, S. Grinstein, and J. Orlowski, “Sensors and regulators of intracellular pH,” Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).
[Crossref]

Casillas-Trujillo, L.

L. Casillas-Trujillo, D. A. Andersson, B. Dorado, M. Nikl, K. E. Sickafus, K. J. McClellan, and C. R. Stanek, “Intrinsic defects, nonstoichiometry, and aliovalent doping of A2+B4+O3 perovskite scintillators,” Phys. Status Solidi B 251, 2279–2286 (2014).
[Crossref]

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[Crossref]

Chalfie, M.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[Crossref]

Chan, E. M.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nano 9, 300–305 (2014).
[Crossref]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10  nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6, 2686–2692 (2012).
[Crossref]

Chan, W. C.

T. S. Hauck, A. A. Ghazani, and W. C. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small 4, 153–159 (2008).
[Crossref]

A. M. Derfus, W. C. Chan, and S. N. Bhatia, “Intracellular delivery of quantum dots for live cell labeling and organelle tracking,” Adv. Mater. 16, 961–966 (2004).
[Crossref]

W. C. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016–2018 (1998).
[Crossref]

Chan, W. C. W.

C. D. Walkey and W. C. W. Chan, “Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment,” Chem. Soc. Rev. 41, 2780–2799 (2012).
[Crossref]

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6, 662–668 (2006).
[Crossref]

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4, 11–18 (2004).
[Crossref]

M. E. Åkerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, “Nanocrystal targeting in vivo,” Proc. Natl. Acad. Sci. USA. 99, 12617–12621 (2002).
[Crossref]

Chaneac, C.

C. Rosticher, B. Viana, T. Maldiney, C. Richard, and C. Chaneac, “Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging,” J. Lumin. 170, 460–466 (2016).

Q. le Masne de Chermont, C. Chaneac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. USA 104, 9266–9271 (2007).
[Crossref]

Chanéac, C.

C. Rosticher, C. Chanéac, B. Viana, M. A. Fortin, J. Lagueux, and L. Faucher, “Red persistent luminescence and magnetic properties of nanomaterials for multimodal imaging,” Proc. SPIE 9364, 936419 (2015).

Chang, C. F.

C. Y. Fang, V. Vaijayanthimala, C. A. Cheng, S. H. Yeh, C. F. Chang, C. L. Li, and H. C. Chang, “The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker,” Small 7, 3363–3370 (2011).
[Crossref]

Chang, C.-C.

J. Shen, G. Chen, A.-M. Vu, W. Fan, O. S. Bilsel, C.-C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800  nm,” Adv. Opt. Mater. 1, 644–650 (2013).
[Crossref]

Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3, 284–288 (2008).
[Crossref]

Chang, H. C.

C. Y. Fang, V. Vaijayanthimala, C. A. Cheng, S. H. Yeh, C. F. Chang, C. L. Li, and H. C. Chang, “The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker,” Small 7, 3363–3370 (2011).
[Crossref]

S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005).
[Crossref]

Chang, H.-C.

Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3, 284–288 (2008).
[Crossref]

Chang, Y.-R.

Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3, 284–288 (2008).
[Crossref]

Chatterjee, D. K.

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29, 937–943 (2008).
[Crossref]

Chauhan, V. P.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, and R. K. Jain, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12, 445–451 (2013).
[Crossref]

Chen, C.-K.

Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C.-K. Chen, R.-S. Liu, X. Chen, F. Wang, and X. Liu, “The effect of surface coating on energy migration-mediated upconversion,” J. Am. Chem. Soc. 134, 20849–20857 (2012).
[Crossref]

Chen, C.-T.

N.-T. Chen, S.-H. Cheng, C.-P. Liu, J. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling,” Int. J. Mol. Sci. 13, 16598–16623 (2012).
[Crossref]

Chen, D.

S. Yang, N. Li, Z. Liu, W. Sha, D. Chen, Q. Xu, and J. Lu, “Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment,” Nanoscale 6, 14903–14910 (2014).
[Crossref]

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53, 8638–8645 (2014).
[Crossref]

Chen, F.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Chen, G.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref]

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35, 393–400 (2014).
[Crossref]

J. Shen, G. Chen, A.-M. Vu, W. Fan, O. S. Bilsel, C.-C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800  nm,” Adv. Opt. Mater. 1, 644–650 (2013).
[Crossref]

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/Shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6, 2969–2977 (2012).
[Crossref]

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6, 8280–8287 (2012).
[Crossref]

G. Chen, H. Liu, G. Somesfalean, H. Liang, and Z. Zhang, “Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions,” Nanotechnology 20, 385704 (2009).
[Crossref]

Chen, H.

Y.-J. Chuang, Z. Zhen, F. Zhang, F. Liu, J. P. Mishra, W. Tang, H. Chen, X. Huang, L. Wang, X. Chen, J. Xie, and Z. Pan, “Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging,” Theranostics 4, 1112–1122 (2014).
[Crossref]

Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C.-K. Chen, R.-S. Liu, X. Chen, F. Wang, and X. Liu, “The effect of surface coating on energy migration-mediated upconversion,” J. Am. Chem. Soc. 134, 20849–20857 (2012).
[Crossref]

J. Wang, F. Wang, J. Xu, Y. Wang, Y. Liu, X. Chen, H. Chen, and X. Liu, “Lanthanide-doped LiYF4 nanoparticles: synthesis and multicolor upconversion tuning,” C. R. Chim. 13, 731–736 (2010).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref]

Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi, and C. Huang, “Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels,” J. Am. Chem. Soc. 130, 3023–3029 (2008).
[Crossref]

Chen, J.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.-T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. 50, 7385–7390 (2011).
[Crossref]

J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, and Y. Xia, “Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications,” Adv. Funct. Mater. 20, 3684–3694 (2010).
[Crossref]

Q. Zhang, W. Li, L. P. Wen, J. Chen, and Y. Xia, “Facile synthesis of Ag nanocubes of 30 to 70  nm in edge length with CF(3)COOAg as a precursor,” Chemistry 16, 10234–10239 (2010).
[Crossref]

J. Shan, J. Chen, J. Meng, J. Collins, W. Soboyejo, J. S. Friedberg, and Y. Ju, “Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors,” J. Appl. Phys. 104, 094308 (2008).
[Crossref]

Chen, J.-T.

A. Abdukayum, C.-X. Yang, Q. Zhao, J.-T. Chen, L.-X. Dong, and X.-P. Yan, “Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo,” Anal. Chem. 86, 4096–4101 (2014).
[Crossref]

A. Abdukayum, J.-T. Chen, Q. Zhao, and X.-P. Yan, “Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging,” J. Am. Chem. Soc. 135, 14125–14133 (2013).
[Crossref]

Chen, K.

Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3, 284–288 (2008).
[Crossref]

Chen, K. M.

S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005).
[Crossref]

Chen, L. X.

P. F. Jiao, H. Y. Zhou, L. X. Chen, and B. Yan, “Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy,” Curr. Med. Chem. 18, 2086–2102 (2011).
[Crossref]

Chen, N.-T.

N.-T. Chen, S.-H. Cheng, C.-P. Liu, J. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling,” Int. J. Mol. Sci. 13, 16598–16623 (2012).
[Crossref]

Chen, O.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, and R. K. Jain, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12, 445–451 (2013).
[Crossref]

Chen, S.

D. Naczynski, M. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. Roth, R. Riman, and P. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref]

Chen, V. W.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[Crossref]

Chen, X.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114, 5161–5214 (2014).
[Crossref]

Y. Zhang, Y. Liu, C. Li, X. Chen, and Q. Wang, “Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton Bohr radius,” J. Phys. Chem. C 118, 4918–4923 (2014).
[Crossref]

Y.-J. Chuang, Z. Zhen, F. Zhang, F. Liu, J. P. Mishra, W. Tang, H. Chen, X. Huang, L. Wang, X. Chen, J. Xie, and Z. Pan, “Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging,” Theranostics 4, 1112–1122 (2014).
[Crossref]

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42, 6924–6958 (2013).
[Crossref]

Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C.-K. Chen, R.-S. Liu, X. Chen, F. Wang, and X. Liu, “The effect of surface coating on energy migration-mediated upconversion,” J. Am. Chem. Soc. 134, 20849–20857 (2012).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

M. Swierczewska, S. Lee, and X. Chen, “Inorganic nanoparticles for multimodal molecular imaging,” Mol. Imaging 10, 3–16 (2011).

J. Wang, F. Wang, J. Xu, Y. Wang, Y. Liu, X. Chen, H. Chen, and X. Liu, “Lanthanide-doped LiYF4 nanoparticles: synthesis and multicolor upconversion tuning,” C. R. Chim. 13, 731–736 (2010).
[Crossref]

Chen, X. Y.

F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen, and X. G. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
[Crossref]

Chen, Y.

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53, 8638–8645 (2014).
[Crossref]

Chen, Y.-C.

T.-H. Chung, S.-H. Wu, M. Yao, C.-W. Lu, Y.-S. Lin, Y. Hung, C.-Y. Mou, Y.-C. Chen, and D.-M. Huang, “The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells,” Biomaterials 28, 2959–2966 (2007).
[Crossref]

Chen, Y.-S.

Y.-S. Chen, Y.-C. Hung, I. Liau, and G. S. Huang, “Assessment of the in vivo toxicity of gold nanoparticles,” Nano. Res. Lett. 4, 858–864 (2009).
[Crossref]

Chen, Z.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81, 930–935 (2009).
[Crossref]

Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi, and C. Huang, “Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels,” J. Am. Chem. Soc. 130, 3023–3029 (2008).
[Crossref]

Cheng, C. A.

C. Y. Fang, V. Vaijayanthimala, C. A. Cheng, S. H. Yeh, C. F. Chang, C. L. Li, and H. C. Chang, “The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker,” Small 7, 3363–3370 (2011).
[Crossref]

Cheng, H.

Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, and L. Qu, “Nitrogen-doped graphene quantum dots with oxygen-rich functional groups,” J. Am. Chem. Soc. 134, 15–18 (2011).
[Crossref]

Cheng, J.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5, 7838–7847 (2011).
[Crossref]

Cheng, J. X.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[Crossref]

Cheng, J.-X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[Crossref]

Cheng, K.

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. 51, 3125–3129 (2012).
[Crossref]

Cheng, L.

L. Cheng, C. Wang, L. Feng, K. Yang, and Z. Liu, “Functional nanomaterials for phototherapies of cancer,” Chem. Rev. 114, 10869–10939 (2014).
[Crossref]

L. Cheng, C. Wang, and Z. Liu, “Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy,” Nanoscale 5, 23–37 (2013).
[Crossref]

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.-T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. 50, 7385–7390 (2011).
[Crossref]

Cheng, S. H.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5, 7838–7847 (2011).
[Crossref]

Cheng, S.-H.

N.-T. Chen, S.-H. Cheng, C.-P. Liu, J. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling,” Int. J. Mol. Sci. 13, 16598–16623 (2012).
[Crossref]

Cheng, Z.

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. 51, 3125–3129 (2012).
[Crossref]

Chi, D.

W. Yang, X. Li, D. Chi, H. Zhang, and X. Liu, “Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis,” Nanotechnology 25, 482001 (2014).
[Crossref]

Chishima, T.

M. Yang, E. Baranov, P. Jiang, F.-X. Sun, X.-M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, and T. Chishima, “Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases,” Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).
[Crossref]

M. Yang, P. Jiang, F.-X. Sun, S. Hasegawa, E. Baranov, T. Chishima, H. Shimada, A. Moossa, and R. M. Hoffman, “A fluorescent orthotopic bone metastasis model of human prostate cancer,” Cancer Res. 59, 781–786 (1999).

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. Moossa, and R. M. Hoffman, “Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression,” Cancer Res. 57, 2042–2047 (1997).

Chithrani, B. D.

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6, 662–668 (2006).
[Crossref]

Chiu, G. N. C.

C. Allen, N. Dos Santos, R. Gallagher, G. N. C. Chiu, Y. Shu, W. M. Li, S. A. Johnstone, A. S. Janoff, L. D. Mayer, M. S. Webb, and M. B. Bally, “Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol),” Biosci. Rep. 22, 225–250 (2002).
[Crossref]

Cho, E. C.

J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, and Y. Xia, “Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications,” Adv. Funct. Mater. 20, 3684–3694 (2010).
[Crossref]

Chodera, A. J.

N. Schülke, O. A. Varlamova, G. P. Donovan, D. Ma, J. P. Gardner, D. M. Morrissey, R. R. Arrigale, C. Zhan, A. J. Chodera, K. G. Surowitz, P. J. Maddon, W. D. W. Heston, and W. C. Olson, “The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy,” Proc. Natl. Acad. Sci. USA 100, 12590–12595 (2003).
[Crossref]

Choi, S. H.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

Chooi, J. Y.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9, 2162–2170 (2013).
[Crossref]

Choudhury, D.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9, 2162–2170 (2013).
[Crossref]

Chouikrat, R.

A.-L. Bulin, C. Truillett, R. Chouikrat, F. Lux, C. Frochot, D. Amans, G. Ledoux, O. Tillement, P. Perriat, M. Barberi-Heyob, and C. Dujardin, “X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins,” J. Phys. Chem. C 117, 21583–21589 (2013).
[Crossref]

Chu, H. H.

E. B. Dickerson, E. C. Dreaden, X. H. Huang, I. H. El-Sayed, H. H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269, 57–66 (2008).
[Crossref]

Chuang, Y.-J.

Y.-J. Chuang, Z. Zhen, F. Zhang, F. Liu, J. P. Mishra, W. Tang, H. Chen, X. Huang, L. Wang, X. Chen, J. Xie, and Z. Pan, “Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging,” Theranostics 4, 1112–1122 (2014).
[Crossref]

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 31554 (2013).

Chung, L. W. K.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
[Crossref]

Chung, T.-H.

T.-H. Chung, S.-H. Wu, M. Yao, C.-W. Lu, Y.-S. Lin, Y. Hung, C.-Y. Mou, Y.-C. Chen, and D.-M. Huang, “The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells,” Biomaterials 28, 2959–2966 (2007).
[Crossref]

Clark, D. P.

D. P. Clark and C. T. Badea, “Spectral diffusion: an algorithm for robust material decomposition of spectral CT data,” Phys. Med. Biol. 59, 6445–6466 (2014).
[Crossref]

Clark, S. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[Crossref]

Clément, O.

E. Teston, Y. Lalatonne, D. Elgrabli, G. Autret, L. Motte, F. Gazeau, D. Scherman, O. Clément, C. Richard, and T. Maldiney, “Design, properties and in-vivo behavior of super-paramagnetic persistent luminescence nanohybrids,” Small 11, 2696–2704 (2015).
[Crossref]

Cobley, C. M.

J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, and Y. Xia, “Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications,” Adv. Funct. Mater. 20, 3684–3694 (2010).
[Crossref]

Coello, J. G.

L. M. Maestro, P. Haro-González, J. G. Coello, and D. Jaque, “Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100, 201110 (2012).
[Crossref]

Cohen, B. E.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nano 9, 300–305 (2014).
[Crossref]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10  nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6, 2686–2692 (2012).
[Crossref]

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci USA. 106, 10917–10921 (2009).
[Crossref]

Collins, J.

J. Shan, J. Chen, J. Meng, J. Collins, W. Soboyejo, J. S. Friedberg, and Y. Ju, “Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors,” J. Appl. Phys. 104, 094308 (2008).
[Crossref]

Colquhoun, V.

E. Hemmer, Y. Kohl, V. Colquhoun, H. Thielecke, K. Soga, and S. Mathur, “Probing cytotoxicity of gadolinium hydroxide nanostructures,” J. Phys. Chem. B 114, 4358–4365 (2010).
[Crossref]

Comelli, D.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2, 124–129 (2003).
[Crossref]

Cone, R. A.

M.-M. Poo and R. A. Cone, “Lateral diffusion of rhodopsin in the photoreceptor membrane,” Nature 247, 438–441 (1974).
[Crossref]

Conti, G.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Cormier, M. J.

D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast, and M. J. Cormier, “Primary structure of the Aequorea victoria green-fluorescent protein,” Gene 111, 229–233 (1992).
[Crossref]

W. W. Ward and M. J. Cormier, “Energy-transfer via protein-protein interaction in Renilla bioluminescence,” Photochem. Photobiol. 27, 389–396 (1978).
[Crossref]

Costa-Fernandez, J. M.

A. M. Coto-Garcia, E. Sotelo-Gonzalez, M. Fernandez-Arguelles, R. Pereiro, J. M. Costa-Fernandez, and A. Sanz-Medel, “Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics,” Anal. Bioanal. Chem. 399, 29–42 (2011).
[Crossref]

Coto-Garcia, A. M.

A. M. Coto-Garcia, E. Sotelo-Gonzalez, M. Fernandez-Arguelles, R. Pereiro, J. M. Costa-Fernandez, and A. Sanz-Medel, “Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics,” Anal. Bioanal. Chem. 399, 29–42 (2011).
[Crossref]

Cubeddu, R.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2, 124–129 (2003).
[Crossref]

Cui, J.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, and R. K. Jain, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12, 445–451 (2013).
[Crossref]

Cui, Y. Y.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
[Crossref]

Curcio, J. A.

Dabbousi, B.

B. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. Heine, H. Mattoussi, R. Ober, K. Jensen, and M. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

Dahan, M.

M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302, 442–445 (2003).
[Crossref]

Dai, H.

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. 51, 9818–9821 (2012).
[Crossref]

K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. USA 108, 8943–8948 (2011).
[Crossref]

K. Welsher, Z. Liu, D. Daranciang, and H. Dai, “Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules,” Nano Lett. 8, 586–590 (2008).
[Crossref]

Dai, L.

Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, and L. Qu, “Nitrogen-doped graphene quantum dots with oxygen-rich functional groups,” J. Am. Chem. Soc. 134, 15–18 (2011).
[Crossref]

Daranciang, D.

K. Welsher, Z. Liu, D. Daranciang, and H. Dai, “Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules,” Nano Lett. 8, 586–590 (2008).
[Crossref]

Dave, S.

A. M. Smith, S. Dave, S. Nie, L. True, and X. Gao, “Multicolor quantum dots for molecular diagnostics of cancer,” Expert Rev. Mol. Diagn. 6, 231–244 (2006).
[Crossref]

Davis, M. P.

J. S. Sparks, R. C. Schelly, W. L. Smith, M. P. Davis, D. Tchernov, V. A. Pieribone, and D. F. Gruber, “The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon,” PLoS ONE 9, e83259 (2014).
[Crossref]

Dawes, J. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nano 8, 729–734 (2013).
[Crossref]

Dawson, K. A.

M. P. Monopoli, C. Aberg, A. Salvati, and K. A. Dawson, “Biomolecular coronas provide the biological identity of nanosized materials,” Nat. Nanotechnol. 7, 779–786 (2012).
[Crossref]

De, A.

A. De and S. S. Gambhir, “Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer,” FASEB J. 19, 2017–2019 (2005).

De Baere, I.

J. Botterman, K. Van den Eeckhout, I. De Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60, 5494–5500 (2012).
[Crossref]

De Jong, W. H.

W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. A. M. Sips, and R. E. Geertsma, “Particle size-dependent organ distribution of gold nanoparticles after intravenous administration,” Biomaterials 29, 1912–1919 (2008).
[Crossref]

de la Fuente, Á. J.

E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25, 615–626 (2015).
[Crossref]

Dekaliuk, M. O.

A. P. Demchenko and M. O. Dekaliuk, “Novel fluorescent carbonic nanomaterials for sensing and imaging,” Methods Appl. Fluoresc. 1, 042001 (2013).
[Crossref]

del Carmen Iglesias de la Cruz, M.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10, 1141–1154 (2013).

del Carmen Iglesias-de la Cruz, M.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9, 2162–2170 (2013).
[Crossref]

del Rosal, B.

E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25, 615–626 (2015).
[Crossref]

I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, and D. García, “1.3  μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window,” Nano Res. 8,649–665 (2015).

D. Jaque, B. del Rosal, E. M. Rodríguez, L. M. Maestro, P. Haro-González, and J. G. Solé, “Fluorescent nanothermometers for intracellular thermal sensing,” Nanomedicine 9, 1047–1062 (2014).
[Crossref]

D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6, 9494–9530 (2014).
[Crossref]

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9, 2162–2170 (2013).
[Crossref]

L. M. Maestro, P. Haro-Gonzalez, B. del Rosal, J. Ramiro, A. J. Caamano, E. Carrasco, A. Juarranz, F. Sanz-Rodriguez, J. G. Sole, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5, 7882–7889 (2013).

Delage, B.

J. Délèze, B. Delage, O. Hentati-Ksibi, F. Verrecchia, and J.-C. Hervé, “Fluorescence recovery after photobleaching,” in Connexin Methods and Protocols (Springer, 2001), pp. 313–327.

Délèze, J.

J. Délèze, B. Delage, O. Hentati-Ksibi, F. Verrecchia, and J.-C. Hervé, “Fluorescence recovery after photobleaching,” in Connexin Methods and Protocols (Springer, 2001), pp. 313–327.

Demchenko, A. P.

A. P. Demchenko and M. O. Dekaliuk, “Novel fluorescent carbonic nanomaterials for sensing and imaging,” Methods Appl. Fluoresc. 1, 042001 (2013).
[Crossref]

Deng, R.

Y. Zhang, L. Zhang, R. Deng, J. Tian, Y. Zong, D. Jin, and X. Liu, “Multicolor barcoding in a single upconversion crystal,” J. Am. Chem. Soc. 136, 4893–4896 (2014).
[Crossref]

S. Han, R. Deng, X. Xie, and X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles,” Angew. Chem. Int. Ed. 53, 11702–11715 (2014).
[Crossref]

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protocols 9, 1634–1644 (2014).
[Crossref]

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135, 12608–12611 (2013).
[Crossref]

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. 51, 3125–3129 (2012).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref]

Derfus, A. M.

A. M. Derfus, W. C. Chan, and S. N. Bhatia, “Intracellular delivery of quantum dots for live cell labeling and organelle tracking,” Adv. Mater. 16, 961–966 (2004).
[Crossref]

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4, 11–18 (2004).
[Crossref]

Dey, S. K.

H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” J. Control. Release 155, 344–357 (2011).
[Crossref]

Diao, S.

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. 51, 9818–9821 (2012).
[Crossref]

Diao, W.

N. Li, W. Diao, Y. Han, W. Pan, T. Zhang, and B. Tang, “MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo,” Chem. Eur. J. 20, 16488–16491 (2014).
[Crossref]

Dickerson, E. B.

E. B. Dickerson, E. C. Dreaden, X. H. Huang, I. H. El-Sayed, H. H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269, 57–66 (2008).
[Crossref]

Doan, B.-T.

T. Maldiney, B.-T. Doan, D. Alloyeau, M. Bessodes, D. Scherman, and C. Richard, “Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging,” Adv. Funct. Mater. 25, 331–338 (2015).
[Crossref]

Dockter, M. E.

M. E. Dockter, A. Steinemann, and G. Schatz, “Mapping of yeast cytochrome c oxidase by fluorescence resonance energy transfer. Distances between subunit II, heme a, and cytochrome c bound to subunit III,” J. Biol. Chem. 253, 311–317 (1978).

Dong, G.

Y. Li, S. Zhou, G. Dong, M. Peng, L. Wondraczek, and J. Qiu, “Anti-Stokes fluorescent probe with incoherent excitation,” Sci. Rep. 4, 4059 (2014).

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C 2, 2657–2663 (2014).
[Crossref]

Dong, G.-P.

Y. Li, Y.-Y. Li, K. Sharafudeen, G.-P. Dong, S.-F. Zhou, Z.-J. Ma, M.-Y. Peng, and J.-R. Qiu, “A strategy for developing near infrared long-persistent phosphors: taking MAlO3:Mn4+, Ge4+ (M = La, Gd) as an example,” J. Mater. Chem C 2, 2019–2027 (2014).
[Crossref]

Dong, L.-X.

A. Abdukayum, C.-X. Yang, Q. Zhao, J.-T. Chen, L.-X. Dong, and X.-P. Yan, “Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo,” Anal. Chem. 86, 4096–4101 (2014).
[Crossref]

Dong, N.-N.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Dong, W.

J.-C. Zhou, Z.-L. Yang, W. Dong, R.-J. Tang, L.-D. Sun, and C.-H. Yan, “Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb, Tm nanocrystals,” Biomaterials 32, 9059–9067 (2011).
[Crossref]

Donner, J. S.

J. S. Donner, S. A. Thompson, C. Alonso-Ortega, J. Morales, L. G. Rico, S. I. C. O. Santos, and R. Quidant, “Imaging of plasmonic heating in a living organism,” ACS Nano 7, 8666–8672 (2013).
[Crossref]

Donovan, G. P.

N. Schülke, O. A. Varlamova, G. P. Donovan, D. Ma, J. P. Gardner, D. M. Morrissey, R. R. Arrigale, C. Zhan, A. J. Chodera, K. G. Surowitz, P. J. Maddon, W. D. W. Heston, and W. C. Olson, “The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy,” Proc. Natl. Acad. Sci. USA 100, 12590–12595 (2003).
[Crossref]

Doose, S.

F. Pinaud, X. Michalet, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Iyer, and S. Weiss, “Advances in fluorescence imaging with quantum dot bio-probes,” Biomaterials 27, 1679–1687 (2006).
[Crossref]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[Crossref]

Dorado, B.

L. Casillas-Trujillo, D. A. Andersson, B. Dorado, M. Nikl, K. E. Sickafus, K. J. McClellan, and C. R. Stanek, “Intrinsic defects, nonstoichiometry, and aliovalent doping of A2+B4+O3 perovskite scintillators,” Phys. Status Solidi B 251, 2279–2286 (2014).
[Crossref]

Dorenbos, P.

D. Rodríguez Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. Capobianco, “Persistent and photostimulated red emission in CaS:Eu2+, Dy3+ nanophosphors,” Adv. Opt. Mater. 3, 551–557 (2015).

Y. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem. C 2, 5502–5509 (2014).
[Crossref]

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref]

P. Dorenbos, “Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds,” J. Lumin. 136, 122–129 (2013).
[Crossref]

P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1−xGax)5O12 (RE = Gd, Y, Lu) garnet compounds,” J. Lumin. 134, 310–318 (2013).
[Crossref]

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115, 4217–4227 (2011).
[Crossref]

A. J. J. Bos, P. Dorenbos, A. Bessiere, and B. Viana, “Lanthanide energy levels in YPO4,” Radiat. Meas. 43, 222–226 (2008).
[Crossref]

Dos Santos, N.

C. Allen, N. Dos Santos, R. Gallagher, G. N. C. Chiu, Y. Shu, W. M. Li, S. A. Johnstone, A. S. Janoff, L. D. Mayer, M. S. Webb, and M. B. Bally, “Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol),” Biosci. Rep. 22, 225–250 (2002).
[Crossref]

Dreaden, E. C.

E. C. Dreaden, A. M. Alkilany, X. H. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41, 2740–2779 (2012).
[Crossref]

E. B. Dickerson, E. C. Dreaden, X. H. Huang, I. H. El-Sayed, H. H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269, 57–66 (2008).
[Crossref]

Dresselhaus, G.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties Of Carbon Nanotubes (World Scientific, 1998).

Dresselhaus, M. S.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties Of Carbon Nanotubes (World Scientific, 1998).

Du, J.

J. Liu, Y. Liu, W. Bu, J. Bu, Y. Sun, J. Du, and J. Shi, “Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation,” J. Am. Chem. Soc. 136, 9701–9709 (2014).
[Crossref]

Du, X. X.

J. Zhou, Y. Sun, X. X. Du, L. Q. Xiong, H. Hu, and F. Y. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31, 3287–3295 (2010).
[Crossref]

Du, X.-W.

S.-L. Hu, K.-Y. Niu, J. Sun, J. Yang, N.-Q. Zhao, and X.-W. Du, “One-step synthesis of fluorescent carbon nanoparticles by laser irradiation,” J. Mater. Chem. 19, 484–488 (2009).
[Crossref]

Duan, L.

M. Xue, X. Wang, L. Duan, W. Gao, L. Ji, and B. Tang, “A new nanoprobe based on FRET between functional quantum dots and gold nanoparticles for fluoride anion and its applications for biological imaging,” Biosens. Bioelectron. 36, 168–173 (2012).
[Crossref]

Duan, X.

X. Duan, S. Huang, F. You, and K. Kang, “Hydrothermal preparation and persistence characteristics of nanosized phosphor SrS: Eu2+, Dy3+,” J. Rare Earths 27, 43–46 (2009).
[Crossref]

Dubertret, B.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298, 1759–1762 (2002).
[Crossref]

Dujardin, C.

A.-L. Bulin, C. Truillett, R. Chouikrat, F. Lux, C. Frochot, D. Amans, G. Ledoux, O. Tillement, P. Perriat, M. Barberi-Heyob, and C. Dujardin, “X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins,” J. Phys. Chem. C 117, 21583–21589 (2013).
[Crossref]

Dulkeith, E.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5, 585–589 (2005).
[Crossref]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[Crossref]

Dunham, S. M.

S. M. Dunham, H. E. Pudavar, P. N. Prasad, and M. K. Stachowiak, “Cellular signaling and protein–protein interactions studied using fluorescence recovery after photobleaching,” J. Phys. Chem. B 108, 10540–10546 (2004).
[Crossref]

Durr, N. J.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941–945 (2007).
[Crossref]

Dykman, L.

N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies,” Chem. Soc. Rev. 40, 1647–1671 (2011).
[Crossref]

Eaton, W. A.

B. Schuler and W. A. Eaton, “Protein folding studied by single-molecule FRET,” Curr. Opin. Struct. Biol. 18, 16–26 (2008).
[Crossref]

Ebina, Y.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5, 11339–11361 (2013).
[Crossref]

Eckenrode, V. K.

D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast, and M. J. Cormier, “Primary structure of the Aequorea victoria green-fluorescent protein,” Gene 111, 229–233 (1992).
[Crossref]

Efros, A. L.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B 54, 4843–4856 (1996).
[Crossref]

D. Norris, A. L. Efros, M. Rosen, and M. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B 53, 16347–16354 (1996).
[Crossref]

M. Nirmal, D. Norris, M. Kuno, M. Bawendi, A. L. Efros, and M. Rosen, “Observation of the ‘dark exciton’ in CdSe quantum dots,” Phys. Rev. Lett. 75, 3728–3731 (1995).
[Crossref]

Efros, Al. L.

A. I. Ekimov, Al. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[Crossref]

Eisler, H.-J.

S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures,” J. Am. Chem. Soc. 125, 11466–11467 (2003).
[Crossref]

Ekimov, A. I.

A. I. Ekimov, Al. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[Crossref]

Elgrabli, D.

E. Teston, Y. Lalatonne, D. Elgrabli, G. Autret, L. Motte, F. Gazeau, D. Scherman, O. Clément, C. Richard, and T. Maldiney, “Design, properties and in-vivo behavior of super-paramagnetic persistent luminescence nanohybrids,” Small 11, 2696–2704 (2015).
[Crossref]

Elias, M. A.

U. Rocha, C. Jacinto, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, M. A. Elias, E. Bovero, F. van Veggel, J. A. G. Sole, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

Ellinger, P.

P. Ellinger, “Fluorescence microscopy in biology,” Biol. Rev. 15, 323–347 (1940).
[Crossref]

El-Sayed, I. H.

E. B. Dickerson, E. C. Dreaden, X. H. Huang, I. H. El-Sayed, H. H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269, 57–66 (2008).
[Crossref]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[Crossref]

El-Sayed, M. A.

E. C. Dreaden, A. M. Alkilany, X. H. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41, 2740–2779 (2012).
[Crossref]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[Crossref]

E. B. Dickerson, E. C. Dreaden, X. H. Huang, I. H. El-Sayed, H. H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269, 57–66 (2008).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref]

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209–217 (2006).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[Crossref]

M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37, 326–333 (2004).
[Crossref]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).
[Crossref]

Erratico, S.

C. Villa, S. Erratico, P. Razini, F. Fiori, F. Rustichelli, Y. Torrente, and M. Belicchi, “Stem cell tracking by nanotechnologies,” Int. J. Mol. Sci. 11, 1070–1081 (2010).
[Crossref]

Euskirchen, G.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[Crossref]

Eustis, S.

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209–217 (2006).
[Crossref]

Fan, F.-Y.

X.-D. Zhang, D. Wu, X. Shen, P.-X. Liu, N. Yang, B. Zhao, H. Zhang, Y.-M. Sun, L.-A. Zhang, and F.-Y. Fan, “Size-dependent in vivo toxicity of PEG-coated gold nanoparticles,” Int. J. Nanomed. 6, 2071 (2011).
[Crossref]

Fan, Q.-L.

Y. He, H.-T. Lu, L.-M. Sai, W.-Y. Lai, Q.-L. Fan, L.-H. Wang, and W. Huang, “Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence,” J. Phys. Chem. B 110, 13370–13374 (2006).
[Crossref]

Fan, W.

J. Shen, G. Chen, A.-M. Vu, W. Fan, O. S. Bilsel, C.-C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800  nm,” Adv. Opt. Mater. 1, 644–650 (2013).
[Crossref]

Fang, C. Y.

C. Y. Fang, V. Vaijayanthimala, C. A. Cheng, S. H. Yeh, C. F. Chang, C. L. Li, and H. C. Chang, “The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker,” Small 7, 3363–3370 (2011).
[Crossref]

Fang, C.-Y.

Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3, 284–288 (2008).
[Crossref]

Fann, W.

Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3, 284–288 (2008).
[Crossref]

Farrer, R. A.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[Crossref]

Faucher, L.

C. Rosticher, C. Chanéac, B. Viana, M. A. Fortin, J. Lagueux, and L. Faucher, “Red persistent luminescence and magnetic properties of nanomaterials for multimodal imaging,” Proc. SPIE 9364, 936419 (2015).

Feldman, M. D.

Feldmann, J.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5, 585–589 (2005).
[Crossref]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[Crossref]

Felix, R.

P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. M. Schlag, “Hyperthermia in combined treatment of cancer,” Lancet Oncol. 3, 487–497 (2002).
[Crossref]

Feng, L.

L. Cheng, C. Wang, L. Feng, K. Yang, and Z. Liu, “Functional nanomaterials for phototherapies of cancer,” Chem. Rev. 114, 10869–10939 (2014).
[Crossref]

Feng, W.

Y. Sun, W. Feng, P. Yang, C. Huang, and F. Li, “The biosafety of lanthanide upconversion nanomaterials,” Chem. Soc. Rev. 44, 1509–1525 (2015).

Q. Liu, W. Feng, T. Yang, T. Yi, and F. Li, “Upconversion luminescence imaging of cells and small animals,” Nat. Protocols 8, 2033–2044 (2013).
[Crossref]

W. Feng, X. Zhu, and F. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications,” NPG Asia Mater. 5, e75 (2013).
[Crossref]

Fernandez-Arguelles, M.

A. M. Coto-Garcia, E. Sotelo-Gonzalez, M. Fernandez-Arguelles, R. Pereiro, J. M. Costa-Fernandez, and A. Sanz-Medel, “Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics,” Anal. Bioanal. Chem. 399, 29–42 (2011).
[Crossref]

Ferrari, A.

T. Gokus, R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. Novoselov, A. Geim, A. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3, 3963–3968 (2009).
[Crossref]

Fiori, F.

C. Villa, S. Erratico, P. Razini, F. Fiori, F. Rustichelli, Y. Torrente, and M. Belicchi, “Stem cell tracking by nanotechnologies,” Int. J. Mol. Sci. 11, 1070–1081 (2010).
[Crossref]

Fisher, B.

S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures,” J. Am. Chem. Soc. 125, 11466–11467 (2003).
[Crossref]

Fortin, M. A.

C. Rosticher, C. Chanéac, B. Viana, M. A. Fortin, J. Lagueux, and L. Faucher, “Red persistent luminescence and magnetic properties of nanomaterials for multimodal imaging,” Proc. SPIE 9364, 936419 (2015).

Fourkas, J. T.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[Crossref]

Francés-Soriano, L.

M. Liras, M. González-Béjar, E. Peinado, L. Francés-Soriano, J. Pérez-Prieto, I. Quijada-Garrido, and O. García, “Thin amphiphilic polymer-capped upconversion nanoparticles: enhanced emission and thermoresponsive properties,” Chem. Mater. 26, 4014–4022 (2014).
[Crossref]

Frangioni, J. V.

B. E. Schaafsma, J. S. D. Mieog, M. Hutteman, J. R. Van der Vorst, P. J. K. Kuppen, C. W. G. M. Lowik, J. V. Frangioni, C. J. H. Van de Velde, and A. L. Vahrmeijer, “The clinical use of Indocyanine Green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104, 323–332 (2011).
[Crossref]

Frantsuzov, P.

P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519–522 (2008).
[Crossref]

Frantsuzov, P. A.

P. A. Frantsuzov and R. Marcus, “Explanation of quantum dot blinking without the long-lived trap hypothesis,” Phys. Rev. B 72, 155321 (2005).
[Crossref]

Friedberg, J. S.

J. Shan, J. Chen, J. Meng, J. Collins, W. Soboyejo, J. S. Friedberg, and Y. Ju, “Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors,” J. Appl. Phys. 104, 094308 (2008).
[Crossref]

Frinak, S.

H. I. Bicher, F. W. Hetzel, T. S. Sandhu, S. Frinak, P. Vaupel, M. O’Hara, and T. O’Brien, “Effects of hyperthermia on normal and tumor microenvironment,” Radiology 137, 523–530 (1980).
[Crossref]

Frochot, C.

A.-L. Bulin, C. Truillett, R. Chouikrat, F. Lux, C. Frochot, D. Amans, G. Ledoux, O. Tillement, P. Perriat, M. Barberi-Heyob, and C. Dujardin, “X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins,” J. Phys. Chem. C 117, 21583–21589 (2013).
[Crossref]

Fu, C.-C.

Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3, 284–288 (2008).
[Crossref]

Fu, D.-K.

D. A. V. Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules,” Science 277, 1074–1077 (1997).
[Crossref]

Fu, H.-X.

M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
[Crossref]

Fu, X.

X. Fu, C. Liu, J. Shi, H. Man, J. Xu, and H. Zhang, “Long persistent near infrared luminescence nanoprobes LiGa5O8:Cr3+-PEG-OCH3 for in vivo imaging,” Opt. Mater. 36, 1792–1797 (2014).
[Crossref]

Fujihala, M.

S. Kamimura, C.-N. Xu, H. Yamada, N. Terasaki, and M. Fujihala, “Long-persistent luminescence in the near-infrared from Nd3+-doped Sr2SnO4 for in vivo optical imaging,” Jpn. J. Appl. Phys. 53, 092403 (2014).
[Crossref]

Fujiki, T.

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In vitro and in vivo investigations of upconversion and NIR emitting Gd2O3: Er3+, Yb3+ nanostructures for biomedical applications,” J. Mater. Sci. 23, 2399–2412 (2012).

Fukuda, K.

K. Soga, K. Tokuzen, K. Fukuda, H. Hyodo, E. Hemmer, N. Venkatachalm, and H. Kishimoto, “Application of ceramic/polymer conjugate materials for near infrared biophotonics,” J. Photopolym. Sci. Technol. 25, 57–62 (2012).
[Crossref]

Fukuda, R.

N. Venkatachalam, Y. Okumura, K. Soga, R. Fukuda, and T. Tsuji, “Bioimaging of M1 cells using ceramic nanophosphors: synthesis and toxicity assay of Y2O3 nanoparticles,” J. Phys. Conf. Ser. 101, 012002 (2009).

Fukumura, D.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, and R. K. Jain, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12, 445–451 (2013).
[Crossref]

Gai, S.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114, 2343–2389 (2013).
[Crossref]

Gallagher, R.

C. Allen, N. Dos Santos, R. Gallagher, G. N. C. Chiu, Y. Shu, W. M. Li, S. A. Johnstone, A. S. Janoff, L. D. Mayer, M. S. Webb, and M. B. Bally, “Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol),” Biosci. Rep. 22, 225–250 (2002).
[Crossref]

Galland, C.

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479, 203–207 (2011).
[Crossref]

Gambhir, S. S.

M. K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, “Self-illuminating quantum dot conjugates for in vivo imaging,” Nat. Biotechnol. 24, 339–343 (2006).
[Crossref]

A. De and S. S. Gambhir, “Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer,” FASEB J. 19, 2017–2019 (2005).

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[Crossref]

Gao, M.

C. Liu, Y. Hou, and M. Gao, “Are rare-earth nanoparticles suitable for in vivo applications?” Adv. Mater. 26, 6922–6932 (2014).
[Crossref]

Gao, N.

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135, 12608–12611 (2013).
[Crossref]

Gao, P.-F.

X.-Y. Wan, L.-L. Zheng, P.-F. Gao, X.-X. Yang, C.-M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4, 4529 (2014).

Gao, W.

M. Xue, X. Wang, L. Duan, W. Gao, L. Ji, and B. Tang, “A new nanoprobe based on FRET between functional quantum dots and gold nanoparticles for fluoride anion and its applications for biological imaging,” Biosens. Bioelectron. 36, 168–173 (2012).
[Crossref]

Gao, X.

A. M. Smith, S. Dave, S. Nie, L. True, and X. Gao, “Multicolor quantum dots for molecular diagnostics of cancer,” Expert Rev. Mol. Diagn. 6, 231–244 (2006).
[Crossref]

Gao, X. H.

M. N. Rhyner, A. M. Smith, X. H. Gao, H. Mao, L. L. Yang, and S. M. Nie, “Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging,” Nanomedicine 1, 209–217 (2006).
[Crossref]

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
[Crossref]

Gao, Y.

T. Cao, T. Yang, Y. Gao, Y. Yang, H. Hu, and F. Li, “Water-soluble NaYF4:Yb/Er upconversion nanophosphors: synthesis, characteristics and application in bioimaging,” Inorg. Chem. Commun. 13, 392–394 (2010).
[Crossref]

García, D.

I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, and D. García, “1.3  μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window,” Nano Res. 8,649–665 (2015).

García, O.

M. Liras, M. González-Béjar, E. Peinado, L. Francés-Soriano, J. Pérez-Prieto, I. Quijada-Garrido, and O. García, “Thin amphiphilic polymer-capped upconversion nanoparticles: enhanced emission and thermoresponsive properties,” Chem. Mater. 26, 4014–4022 (2014).
[Crossref]

García Solé, J.

L. M. Maestro, P. Haro-González, A. Sánchez-Iglesias, L. M. Liz-Marzán, J. García Solé, and D. Jaque, “Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles,” Langmuir 30, 1650–1658 (2014).
[Crossref]

U. Rocha, K. Upendra Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. García Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104, 053703 (2014).
[Crossref]

D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6, 9494–9530 (2014).
[Crossref]

García-Parajó, M. F.

J. P. Hoogenboom, J. Hernando, E. M. van Dijk, N. F. van Hulst, and M. F. García-Parajó, “Power-law blinking in the fluorescence of single organic molecules,” Chem. Phys. Chem. 8, 823–833 (2007).

García-Solé, J.

P. Haro-González, L. Martínez-Maestro, I. Martín, J. García-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
[Crossref]

Gardner, J. P.

N. Schülke, O. A. Varlamova, G. P. Donovan, D. Ma, J. P. Gardner, D. M. Morrissey, R. R. Arrigale, C. Zhan, A. J. Chodera, K. G. Surowitz, P. J. Maddon, W. D. W. Heston, and W. C. Olson, “The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy,” Proc. Natl. Acad. Sci. USA 100, 12590–12595 (2003).
[Crossref]

Gargas, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nano 9, 300–305 (2014).
[Crossref]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10  nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6, 2686–2692 (2012).
[Crossref]

Gazeau, F.

E. Teston, Y. Lalatonne, D. Elgrabli, G. Autret, L. Motte, F. Gazeau, D. Scherman, O. Clément, C. Richard, and T. Maldiney, “Design, properties and in-vivo behavior of super-paramagnetic persistent luminescence nanohybrids,” Small 11, 2696–2704 (2015).
[Crossref]

Geertsma, R. E.

W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. A. M. Sips, and R. E. Geertsma, “Particle size-dependent organ distribution of gold nanoparticles after intravenous administration,” Biomaterials 29, 1912–1919 (2008).
[Crossref]

Geim, A.

T. Gokus, R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. Novoselov, A. Geim, A. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3, 3963–3968 (2009).
[Crossref]

Gellermann, J.

P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. M. Schlag, “Hyperthermia in combined treatment of cancer,” Lancet Oncol. 3, 487–497 (2002).
[Crossref]

Ghazani, A. A.

T. S. Hauck, A. A. Ghazani, and W. C. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small 4, 153–159 (2008).
[Crossref]

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6, 662–668 (2006).
[Crossref]

Ghosh, Y.

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479, 203–207 (2011).
[Crossref]

Gin, P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[Crossref]

Gittins, D. I.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[Crossref]

Glaus, C.

J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, and Y. Xia, “Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications,” Adv. Funct. Mater. 20, 3684–3694 (2010).
[Crossref]

Gnach, A.

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44, 1561–1584 (2015).

A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: merits and challenges,” Nano Today 7, 532–563 (2012).
[Crossref]

Gnanasammandhan, M. K.

S. Jiang, M. K. Gnanasammandhan, and Y. Zhang, “Optical imaging-guided cancer therapy with fluorescent nanoparticles,” J. R. Soc. Interface 7, 3–18 (2010).
[Crossref]

Gogotsi, Y.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7, 11–23 (2012).
[Crossref]

Gokus, T.

T. Gokus, R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. Novoselov, A. Geim, A. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3, 3963–3968 (2009).
[Crossref]

Goldman, R. D.

R. D. Goldman, D. L. Spector, and A. C. Swedlund, Live Cell Imaging: a Laboratory Manual (Cold Spring Harbor Laboratory, 2005).

Goldsmith, E. C.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

Goldsmith, S. J.

N. H. Bander, E. J. Trabulsi, L. Kostakoglu, D. Yao, S. Vallabhajosula, P. Smith-Jones, M. A. Joyce, M. Milowsky, D. M. Nanus, and S. J. Goldsmith, “Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen,” J. Urol. 170, 1717–1721 (2003).
[Crossref]

Goldys, E. M.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8, 32–36 (2013).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nano 8, 729–734 (2013).
[Crossref]

Gole, A. M.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

Gonzalez, P.

I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, and D. García, “1.3  μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window,” Nano Res. 8,649–665 (2015).

Gonzalez, P. H.

E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25, 615–626 (2015).
[Crossref]

González-Béjar, M.

M. Liras, M. González-Béjar, E. Peinado, L. Francés-Soriano, J. Pérez-Prieto, I. Quijada-Garrido, and O. García, “Thin amphiphilic polymer-capped upconversion nanoparticles: enhanced emission and thermoresponsive properties,” Chem. Mater. 26, 4014–4022 (2014).
[Crossref]

Göppert-Mayer, M.

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 401, 273–294 (1931).
[Crossref]

Gorris, H. H.

A. Sedlmeier and H. H. Gorris, “Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications,” Chem. Soc. Rev. 44, 1526–1560 (2015).
[Crossref]

Gotoh, Y.

Y. Kawasaki, Y. Gotoh, K. Tokuzen, M. Kamimura, T. Komeno, M. Tomatsu, R. Todoroki, Y. Nagasaki, K. Soga, and F. Tashiro, “Selective tumor imaging by a novel tumor specific aralin-infrared-to-visible phosphor conjugate,” J. Phys. Conf. Ser. 191, 012001 (2009).

Gourier, D.

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26, 1365–1373 (2014).
[Crossref]

S. K. Sharma, A. Bessiere, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, and D. Gourier, “Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in vivo imaging,” J. Lumin. 155, 251–256 (2014).
[Crossref]

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref]

S. K. Sharma, D. Gourier, B. Viana, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Persistent luminescence of AB(2)O(4):Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: new biomarkers for in vivo imaging,” Opt. Mater. 36, 1901–1906 (2014).
[Crossref]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2, 261–268 (2012).
[Crossref]

T. Maldiney, A. Lecointre, B. Viana, A. Bessiere, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133, 11810–11815 (2011).
[Crossref]

S. Blahuta, A. Bessiere, B. Viana, V. Ouspenski, E. Mattmann, J. Lejay, and D. Gourier, “Defects identification and effects of annealing on Lu2(1−x)Y2xSiO5 (LYSO) single crystals for scintillation application,” Materials 4, 1224–1237 (2011).
[Crossref]

A. Bessiere, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19, 10131–10137 (2011).
[Crossref]

Q. le Masne de Chermont, C. Chaneac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. USA 104, 9266–9271 (2007).
[Crossref]

Govorov, A. O.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nano. Res. Lett. 1, 84–90 (2006).
[Crossref]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[Crossref]

Granada, B.

M. A. Rizzo, G. H. Springer, B. Granada, and D. W. Piston, “An improved cyan fluorescent protein variant useful for FRET,” Nat. Biotechnol. 22, 445–449 (2004).
[Crossref]

Grevers, G.

C. Betz, M. Mehlmann, K. Rick, H. Stepp, G. Grevers, R. Baumgartner, and A. Leunig, “Autofluorescence imaging and spectroscopy of normal and malignant mucosa in patients with head and neck cancer,” Lasers Surg. Med. 25, 323–334 (1999).
[Crossref]

Grinstein, S.

J. R. Casey, S. Grinstein, and J. Orlowski, “Sensors and regulators of intracellular pH,” Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).
[Crossref]

Gruber, D. F.

J. S. Sparks, R. C. Schelly, W. L. Smith, M. P. Davis, D. Tchernov, V. A. Pieribone, and D. F. Gruber, “The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon,” PLoS ONE 9, e83259 (2014).
[Crossref]

Grzelczak, M.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[Crossref]

Gu, M.

L. M. Maestro, Q. Zhang, X. Li, D. Jaque, and M. Gu, “Quantum-dot based nanothermometry in optical plasmonic recording media,” Appl. Phys. Lett. 105, 181110 (2014).
[Crossref]

Gu, Y.-J.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5, 7838–7847 (2011).
[Crossref]

Gu, Z.

Y.-Y. Lu, F. Liu, Z. Gu, and Z. Pan, “Long-lasting near-infrared persistent luminescence from beta-Ga2O3:Cr3+ nanowire assemblies,” J. Lumin. 131, 2784–2787 (2011).
[Crossref]

Guedes, I.

U. Rocha, C. Jacinto, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, M. A. Elias, E. Bovero, F. van Veggel, J. A. G. Sole, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

Haase, M.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. 50, 5808–5829 (2011).
[Crossref]

Hagens, W. I.

W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. A. M. Sips, and R. E. Geertsma, “Particle size-dependent organ distribution of gold nanoparticles after intravenous administration,” Biomaterials 29, 1912–1919 (2008).
[Crossref]

Halaney, D.

Han, C.-C.

Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3, 284–288 (2008).
[Crossref]

Han, G.

J. Shen, G. Chen, A.-M. Vu, W. Fan, O. S. Bilsel, C.-C. Chang, and G. Han, “Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800  nm,” Adv. Opt. Mater. 1, 644–650 (2013).
[Crossref]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10  nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6, 2686–2692 (2012).
[Crossref]

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6, 8280–8287 (2012).
[Crossref]

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci USA. 106, 10917–10921 (2009).
[Crossref]

Han, H.-S.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, and R. K. Jain, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12, 445–451 (2013).
[Crossref]

Han, S.

S. Han, R. Deng, X. Xie, and X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles,” Angew. Chem. Int. Ed. 53, 11702–11715 (2014).
[Crossref]

Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C.-K. Chen, R.-S. Liu, X. Chen, F. Wang, and X. Liu, “The effect of surface coating on energy migration-mediated upconversion,” J. Am. Chem. Soc. 134, 20849–20857 (2012).
[Crossref]

Han, Y.

N. Li, W. Diao, Y. Han, W. Pan, T. Zhang, and B. Tang, “MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo,” Chem. Eur. J. 20, 16488–16491 (2014).
[Crossref]

N. Li, Y. Li, Y. Han, W. Pan, T. Zhang, and B. Tang, “A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo,” Anal. Chem. 86, 3924–3930 (2014).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref]

Haro-Gonzalez, P.

D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6, 9494–9530 (2014).
[Crossref]

L. M. Maestro, P. Haro-Gonzalez, B. del Rosal, J. Ramiro, A. J. Caamano, E. Carrasco, A. Juarranz, F. Sanz-Rodriguez, J. G. Sole, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5, 7882–7889 (2013).

Haro-González, P.

L. M. Maestro, P. Haro-González, A. Sánchez-Iglesias, L. M. Liz-Marzán, J. García Solé, and D. Jaque, “Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles,” Langmuir 30, 1650–1658 (2014).
[Crossref]

D. Jaque, B. del Rosal, E. M. Rodríguez, L. M. Maestro, P. Haro-González, and J. G. Solé, “Fluorescent nanothermometers for intracellular thermal sensing,” Nanomedicine 9, 1047–1062 (2014).
[Crossref]

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9, 2162–2170 (2013).
[Crossref]

L. M. Maestro, P. Haro-González, M. C. Iglesias-de la Cruz, F. SanzRodríguez, Á. Juarranz, J. G. Solé, and D. Jaque, “Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia,” Nanomedicine 8, 379–388 (2013).
[Crossref]

P. Haro-González, L. Martínez-Maestro, I. Martín, J. García-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
[Crossref]

L. M. Maestro, P. Haro-González, J. G. Coello, and D. Jaque, “Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100, 201110 (2012).
[Crossref]

Harris, D. K.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, and R. K. Jain, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12, 445–451 (2013).
[Crossref]

Hartland, G. V.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, and L. M. Liz-Marzan, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref]

Hartschuh, A.

T. Gokus, R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. Novoselov, A. Geim, A. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3, 3963–3968 (2009).
[Crossref]

Hasegawa, S.

M. Yang, E. Baranov, P. Jiang, F.-X. Sun, X.-M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, and T. Chishima, “Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases,” Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).
[Crossref]

M. Yang, P. Jiang, F.-X. Sun, S. Hasegawa, E. Baranov, T. Chishima, H. Shimada, A. Moossa, and R. M. Hoffman, “A fluorescent orthotopic bone metastasis model of human prostate cancer,” Cancer Res. 59, 781–786 (1999).

Hastings, J. W.

T. Wilson and J. W. Hastings, “Bioluminescence,” Annu. Rev. Cell Dev. Biol. 14, 197–230 (1998).
[Crossref]

Hattori, A.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5, 11339–11361 (2013).
[Crossref]

Hauber, J.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells,” PLoS ONE 5, e9344 (2010).
[Crossref]

Hauck, T. S.

T. S. Hauck, A. A. Ghazani, and W. C. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small 4, 153–159 (2008).
[Crossref]

Haynes, C. L.

S. A. Love, M. A. Maurer-Jones, J. W. Thompson, Y.-S. Lin, and C. L. Haynes, “Assessing nanoparticle toxicity,” Ann. Rev. Anal. Chem. 5, 181–205 (2012).
[Crossref]

He, G. S.

He, S.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915  nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5, 3744–3757 (2011).
[Crossref]

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[Crossref]

He, Y.

Y. He, H.-T. Lu, L.-M. Sai, W.-Y. Lai, Q.-L. Fan, L.-H. Wang, and W. Huang, “Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence,” J. Phys. Chem. B 110, 13370–13374 (2006).
[Crossref]

Heine, J.

B. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. Heine, H. Mattoussi, R. Ober, K. Jensen, and M. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

Heller, D. A.

H. Jin, D. A. Heller, R. Sharma, and M. S. Strano, “Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles,” ACS Nano 3, 149–158 (2009).
[Crossref]

Hemmer, E.

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5, 11339–11361 (2013).
[Crossref]

N. Venkatachalam, T. Yamano, E. Hemmer, H. Hyodo, H. Kishimoto, and K. Soga, “Er3+ -Doped Y2O3 nanophosphors for near-infrared fluorescence bioimaging applications,” J. Am. Ceram. Soc. 96, 2759–2765 (2013).
[Crossref]

E. Hemmer, T. Yamano, H. Kishimoto, N. Venkatachalam, H. Hyodo, and K. Soga, “Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging,” Acta Biomater. 9, 4734–4743 (2013).
[Crossref]

N. Venkatachalam, E. Hemmer, T. Yamano, H. Hyodo, H. Kishimoto, and K. Soga, “Synthesis and toxicity assay of ceramic nanophosphors for bioimaging with near-infrared excitation,” Prog. Cryst. Growth Charact. Mater. 58, 121–134 (2012).
[Crossref]

K. Soga, K. Tokuzen, K. Fukuda, H. Hyodo, E. Hemmer, N. Venkatachalm, and H. Kishimoto, “Application of ceramic/polymer conjugate materials for near infrared biophotonics,” J. Photopolym. Sci. Technol. 25, 57–62 (2012).
[Crossref]

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In vitro and in vivo investigations of upconversion and NIR emitting Gd2O3: Er3+, Yb3+ nanostructures for biomedical applications,” J. Mater. Sci. 23, 2399–2412 (2012).

E. Hemmer, Y. Kohl, V. Colquhoun, H. Thielecke, K. Soga, and S. Mathur, “Probing cytotoxicity of gadolinium hydroxide nanostructures,” J. Phys. Chem. B 114, 4358–4365 (2010).
[Crossref]

Henry-Toulmé, N.

O. Seksek, N. Henry-Toulmé, F. Sureau, and J. Bolard, “SNARF-1 as an intracellular pH indicator in laser microspectrofluorometry: a critical assessment,” Anal. Biochem. 193, 49–54 (1991).
[Crossref]

Hentati-Ksibi, O.

J. Délèze, B. Delage, O. Hentati-Ksibi, F. Verrecchia, and J.-C. Hervé, “Fluorescence recovery after photobleaching,” in Connexin Methods and Protocols (Springer, 2001), pp. 313–327.

Heo, J.

C. Liu, Y. K. Kwon, and J. Heo, “Temperature-dependent brightening and darkening of photoluminescence from PbS quantum dots in glasses,” Appl. Phys. Lett. 90, 241111 (2007).
[Crossref]

Herman, B.

B. Herman, Fluorescence Microscopy (BIOS Scientific, 1998).

Hernando, J.

J. P. Hoogenboom, J. Hernando, E. M. van Dijk, N. F. van Hulst, and M. F. García-Parajó, “Power-law blinking in the fluorescence of single organic molecules,” Chem. Phys. Chem. 8, 823–833 (2007).

Hervé, J.-C.

J. Délèze, B. Delage, O. Hentati-Ksibi, F. Verrecchia, and J.-C. Hervé, “Fluorescence recovery after photobleaching,” in Connexin Methods and Protocols (Springer, 2001), pp. 313–327.

Heston, W. D. W.

N. Schülke, O. A. Varlamova, G. P. Donovan, D. Ma, J. P. Gardner, D. M. Morrissey, R. R. Arrigale, C. Zhan, A. J. Chodera, K. G. Surowitz, P. J. Maddon, W. D. W. Heston, and W. C. Olson, “The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy,” Proc. Natl. Acad. Sci. USA 100, 12590–12595 (2003).
[Crossref]

Hetzel, F. W.

H. I. Bicher, F. W. Hetzel, T. S. Sandhu, S. Frinak, P. Vaupel, M. O’Hara, and T. O’Brien, “Effects of hyperthermia on normal and tumor microenvironment,” Radiology 137, 523–530 (1980).
[Crossref]

Higuchi, H.

H. Tada, H. Higuchi, T. M. Wanatabe, and N. Ohuchi, “In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice,” Cancer Res. 67, 1138–1144 (2007).
[Crossref]

Hildebrandt, B.

P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. M. Schlag, “Hyperthermia in combined treatment of cancer,” Lancet Oncol. 3, 487–497 (2002).
[Crossref]

Hirsch, T.

V. Muhr, S. Wilhelm, T. Hirsch, and O. S. Wolfbeis, “Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces,” Acc. Chem. Res. 47, 3481–3493 (2014).
[Crossref]

Ho, D.

T. Wang, D. Halaney, D. Ho, M. D. Feldman, and T. E. Milner, “Two-photon luminescence properties of gold nanorods,” Biomed. Opt. Express 4, 584–595 (2013).
[Crossref]

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7, 11–23 (2012).
[Crossref]

Hoffman, R. M.

M. Yang, P. Jiang, F.-X. Sun, S. Hasegawa, E. Baranov, T. Chishima, H. Shimada, A. Moossa, and R. M. Hoffman, “A fluorescent orthotopic bone metastasis model of human prostate cancer,” Cancer Res. 59, 781–786 (1999).

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. Moossa, and R. M. Hoffman, “Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression,” Cancer Res. 57, 2042–2047 (1997).

Hoffmann, D.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells,” PLoS ONE 5, e9344 (2010).
[Crossref]

Hollingsworth, J. A.

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479, 203–207 (2011).
[Crossref]

Holloway, P. H.

D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials 3, 2260–2345 (2010).
[Crossref]

H. Yang and P. H. Holloway, “Enhanced photoluminescence from CdS: Mn/ZnS core/shell quantum dots,” Appl. Phys. Lett. 82, 1965–1967 (2003).
[Crossref]

Holsa, J.

H. F. Brito, J. Holsa, T. Laamanen, M. Lastusaari, M. Malkamaki, and L. C. V. Rodrigues, “Persistent luminescence mechanisms: human imagination at work,” Opt. Mater. Express 2, 371–381 (2012).
[Crossref]

J. Holsa, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloys Compd. 374, 56–59 (2004).
[Crossref]

Hong, G.

G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, and H. Dai, “In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region,” Angew. Chem. Int. Ed. 51, 9818–9821 (2012).
[Crossref]

Hong, M.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref]

Hoogenboom, J. P.

J. P. Hoogenboom, J. Hernando, E. M. van Dijk, N. F. van Hulst, and M. F. García-Parajó, “Power-law blinking in the fluorescence of single organic molecules,” Chem. Phys. Chem. 8, 823–833 (2007).

Hou, Y.

C. Liu, Y. Hou, and M. Gao, “Are rare-earth nanoparticles suitable for in vivo applications?” Adv. Mater. 26, 6922–6932 (2014).
[Crossref]

Hsu, F.-Y.

Htoon, H.

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479, 203–207 (2011).
[Crossref]

Hu, D.

D. A. V. Bout, W.-T. Yip, D. Hu, D.-K. Fu, T. M. Swager, and P. F. Barbara, “Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules,” Science 277, 1074–1077 (1997).
[Crossref]

Hu, H.

T. Cao, T. Yang, Y. Gao, Y. Yang, H. Hu, and F. Li, “Water-soluble NaYF4:Yb/Er upconversion nanophosphors: synthesis, characteristics and application in bioimaging,” Inorg. Chem. Commun. 13, 392–394 (2010).
[Crossref]

J. Zhou, Y. Sun, X. X. Du, L. Q. Xiong, H. Hu, and F. Y. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31, 3287–3295 (2010).
[Crossref]

H. Hu, L. Xiong, J. Zhou, F. Li, T. Cao, and C. Huang, “Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells,” Chem. Eur. J. 15, 3577–3584 (2009).
[Crossref]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81, 930–935 (2009).
[Crossref]

Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi, and C. Huang, “Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels,” J. Am. Chem. Soc. 130, 3023–3029 (2008).
[Crossref]

Hu, S.-L.

S.-L. Hu, K.-Y. Niu, J. Sun, J. Yang, N.-Q. Zhao, and X.-W. Du, “One-step synthesis of fluorescent carbon nanoparticles by laser irradiation,” J. Mater. Chem. 19, 484–488 (2009).
[Crossref]

Hu, Y.

Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, and L. Qu, “Nitrogen-doped graphene quantum dots with oxygen-rich functional groups,” J. Am. Chem. Soc. 134, 15–18 (2011).
[Crossref]

Huang, C.

Y. Sun, W. Feng, P. Yang, C. Huang, and F. Li, “The biosafety of lanthanide upconversion nanomaterials,” Chem. Soc. Rev. 44, 1509–1525 (2015).

H. Hu, L. Xiong, J. Zhou, F. Li, T. Cao, and C. Huang, “Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells,” Chem. Eur. J. 15, 3577–3584 (2009).
[Crossref]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81, 930–935 (2009).
[Crossref]

Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi, and C. Huang, “Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels,” J. Am. Chem. Soc. 130, 3023–3029 (2008).
[Crossref]

Huang, C. Z.

X.-Y. Wan, L.-L. Zheng, P.-F. Gao, X.-X. Yang, C.-M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4, 4529 (2014).

Huang, D.-M.

T.-H. Chung, S.-H. Wu, M. Yao, C.-W. Lu, Y.-S. Lin, Y. Hung, C.-Y. Mou, Y.-C. Chen, and D.-M. Huang, “The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells,” Biomaterials 28, 2959–2966 (2007).
[Crossref]

Huang, G. S.

Y.-S. Chen, Y.-C. Hung, I. Liau, and G. S. Huang, “Assessment of the in vivo toxicity of gold nanoparticles,” Nano. Res. Lett. 4, 858–864 (2009).
[Crossref]

Huang, H. C.

H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” J. Control. Release 155, 344–357 (2011).
[Crossref]

Huang, L.

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. 51, 3125–3129 (2012).
[Crossref]

Huang, Q.

G. Zhang, Z. Yang, W. Lu, R. Zhang, Q. Huang, M. Tian, L. Li, D. Liang, and C. Li, “Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice,” Biomaterials 30, 1928–1936 (2009).
[Crossref]

Huang, S.

X. Duan, S. Huang, F. You, and K. Kang, “Hydrothermal preparation and persistence characteristics of nanosized phosphor SrS: Eu2+, Dy3+,” J. Rare Earths 27, 43–46 (2009).
[Crossref]

Huang, W.

Y. He, H.-T. Lu, L.-M. Sai, W.-Y. Lai, Q.-L. Fan, L.-H. Wang, and W. Huang, “Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence,” J. Phys. Chem. B 110, 13370–13374 (2006).
[Crossref]

Huang, X.

Y.-J. Chuang, Z. Zhen, F. Zhang, F. Liu, J. P. Mishra, W. Tang, H. Chen, X. Huang, L. Wang, X. Chen, J. Xie, and Z. Pan, “Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging,” Theranostics 4, 1112–1122 (2014).
[Crossref]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[Crossref]

Huang, X. H.

E. C. Dreaden, A. M. Alkilany, X. H. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41, 2740–2779 (2012).
[Crossref]

E. B. Dickerson, E. C. Dreaden, X. H. Huang, I. H. El-Sayed, H. H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269, 57–66 (2008).
[Crossref]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[Crossref]

Hung, Y.

T.-H. Chung, S.-H. Wu, M. Yao, C.-W. Lu, Y.-S. Lin, Y. Hung, C.-Y. Mou, Y.-C. Chen, and D.-M. Huang, “The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells,” Biomaterials 28, 2959–2966 (2007).
[Crossref]

Hung, Y.-C.

Y.-S. Chen, Y.-C. Hung, I. Liau, and G. S. Huang, “Assessment of the in vivo toxicity of gold nanoparticles,” Nano. Res. Lett. 4, 858–864 (2009).
[Crossref]

Huo, Y.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8, 32–36 (2013).
[Crossref]

Huo, Z.

L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng, and Y. Li, “Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles,” Angew. Chem. Int. Ed. 44, 6054–6057 (2005).

Hutteman, M.

B. E. Schaafsma, J. S. D. Mieog, M. Hutteman, J. R. Van der Vorst, P. J. K. Kuppen, C. W. G. M. Lowik, J. V. Frangioni, C. J. H. Van de Velde, and A. L. Vahrmeijer, “The clinical use of Indocyanine Green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104, 323–332 (2011).
[Crossref]

Hyeon, T.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44, 1302–1317 (2015).
[Crossref]

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

J. Kim, Y. Piao, and T. Hyeon, “Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy,” Chem. Soc. Rev. 38, 372–390 (2009).
[Crossref]

Hyodo, H.

T. Zako, M. Yoshimoto, H. Hyodo, H. Kishimoto, M. Ito, K. Kaneko, K. Soga, and M. Maeda, “Cancer-targeted near infrared imaging using rare earth ion-doped ceramic nanoparticles,” Biomater. Sci. 3, 59–64 (2015).
[Crossref]

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5, 11339–11361 (2013).
[Crossref]

N. Venkatachalam, T. Yamano, E. Hemmer, H. Hyodo, H. Kishimoto, and K. Soga, “Er3+ -Doped Y2O3 nanophosphors for near-infrared fluorescence bioimaging applications,” J. Am. Ceram. Soc. 96, 2759–2765 (2013).
[Crossref]

E. Hemmer, T. Yamano, H. Kishimoto, N. Venkatachalam, H. Hyodo, and K. Soga, “Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging,” Acta Biomater. 9, 4734–4743 (2013).
[Crossref]

N. Venkatachalam, E. Hemmer, T. Yamano, H. Hyodo, H. Kishimoto, and K. Soga, “Synthesis and toxicity assay of ceramic nanophosphors for bioimaging with near-infrared excitation,” Prog. Cryst. Growth Charact. Mater. 58, 121–134 (2012).
[Crossref]

K. Soga, K. Tokuzen, K. Fukuda, H. Hyodo, E. Hemmer, N. Venkatachalm, and H. Kishimoto, “Application of ceramic/polymer conjugate materials for near infrared biophotonics,” J. Photopolym. Sci. Technol. 25, 57–62 (2012).
[Crossref]

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In vitro and in vivo investigations of upconversion and NIR emitting Gd2O3: Er3+, Yb3+ nanostructures for biomedical applications,” J. Mater. Sci. 23, 2399–2412 (2012).

K. Soga, K. Tokuzen, K. Tsuji, T. Yamano, H. Hyodo, and H. Kishimoto, “NIR bioimaging: development of liposome-encapsulated, rare-earth-doped Y2O3 nanoparticles as fluorescent probes,” Eur. J. Inorg. Chem. 2010, 2673–2677 (2010).
[Crossref]

K. Soga, K. Tokuzen, K. Tsuji, T. Yamano, N. Venkatachalam, H. Hyodo, and H. Kishimoto, “Application of ceramic phosphors for near infrared biomedical imaging technologies,” Proc. SPIE 7598, 759807 (2010).

Iglesias-de la Cruz, M. C.

L. M. Maestro, P. Haro-González, M. C. Iglesias-de la Cruz, F. SanzRodríguez, Á. Juarranz, J. G. Solé, and D. Jaque, “Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia,” Nanomedicine 8, 379–388 (2013).
[Crossref]

L. M. Maestro, C. Jacinto, U. Rocha, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, J. G. Solé, and D. Jaque, “Optimum quantum dot size for highly efficient fluorescence bioimaging,” J. Appl. Phys. 111, 023513 (2012).
[Crossref]

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Iijima, S.

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[Crossref]

Ikura, M.

K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001).
[Crossref]

Imura, K.

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126, 12730–12731 (2004).
[Crossref]

In, I.

J.-E. Lee, I. In, H. Lee, K. D. Lee, J. H. Jeong, and S. Y. Park, “Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots,” Mol. Pharm. 10, 3736–3744 (2013).
[Crossref]

Inoue, H.

K. Soga, M. Tsuda, S. Sakuragi, H. Inoue, S. Inoue, and A. Makishima, “Effects of chloride introduction on the optical properties and the upconversion emission with 980-nm excitation of Er3+ in ZBLAN fluoride glasses,” J. Non-Cryst. Solids 222, 272–281 (1997).
[Crossref]

Inoue, S.

K. Soga, M. Tsuda, S. Sakuragi, H. Inoue, S. Inoue, and A. Makishima, “Effects of chloride introduction on the optical properties and the upconversion emission with 980-nm excitation of Er3+ in ZBLAN fluoride glasses,” J. Non-Cryst. Solids 222, 272–281 (1997).
[Crossref]

Ito, M.

T. Zako, M. Yoshimoto, H. Hyodo, H. Kishimoto, M. Ito, K. Kaneko, K. Soga, and M. Maeda, “Cancer-targeted near infrared imaging using rare earth ion-doped ceramic nanoparticles,” Biomater. Sci. 3, 59–64 (2015).
[Crossref]

Iyer, G.

F. Pinaud, X. Michalet, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Iyer, and S. Weiss, “Advances in fluorescence imaging with quantum dot bio-probes,” Biomaterials 27, 1679–1687 (2006).
[Crossref]

Jacinto, C.

I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, and D. García, “1.3  μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window,” Nano Res. 8,649–665 (2015).

E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25, 615–626 (2015).
[Crossref]

U. Rocha, K. Upendra Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. García Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104, 053703 (2014).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10, 1141–1154 (2013).

U. Rocha, C. Jacinto, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, M. A. Elias, E. Bovero, F. van Veggel, J. A. G. Sole, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

L. M. Maestro, C. Jacinto, U. Rocha, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, J. G. Solé, and D. Jaque, “Optimum quantum dot size for highly efficient fluorescence bioimaging,” J. Appl. Phys. 111, 023513 (2012).
[Crossref]

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging,” Small 7, 1774–1778 (2011).
[Crossref]

Jacquart, S.

A. Bessiere, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19, 10131–10137 (2011).
[Crossref]

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115, 4217–4227 (2011).
[Crossref]

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref]

Jain, R. K.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, and R. K. Jain, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12, 445–451 (2013).
[Crossref]

Jaiswal, J. K.

J. K. Jaiswal and S. M. Simon, “Potentials and pitfalls of fluorescent quantum dots for biological imaging,” Trends Cell Biol. 14, 497–504 (2004).
[Crossref]

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21, 47–51 (2003).
[Crossref]

Jana, N. R.

S. K. Bhunia, A. Saha, A. R. Maity, S. C. Ray, and N. R. Jana, “Carbon nanoparticle-based fluorescent bioimaging probes,” Sci. Rep. 3, 1473 (2013).
[Crossref]

Janko, B.

P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519–522 (2008).
[Crossref]

Janoff, A. S.

C. Allen, N. Dos Santos, R. Gallagher, G. N. C. Chiu, Y. Shu, W. M. Li, S. A. Johnstone, A. S. Janoff, L. D. Mayer, M. S. Webb, and M. B. Bally, “Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol),” Biosci. Rep. 22, 225–250 (2002).
[Crossref]

Jaque, D.

E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25, 615–626 (2015).
[Crossref]

D. Jaque, B. del Rosal, E. M. Rodríguez, L. M. Maestro, P. Haro-González, and J. G. Solé, “Fluorescent nanothermometers for intracellular thermal sensing,” Nanomedicine 9, 1047–1062 (2014).
[Crossref]

L. M. Maestro, P. Haro-González, A. Sánchez-Iglesias, L. M. Liz-Marzán, J. García Solé, and D. Jaque, “Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles,” Langmuir 30, 1650–1658 (2014).
[Crossref]

L. M. Maestro, Q. Zhang, X. Li, D. Jaque, and M. Gu, “Quantum-dot based nanothermometry in optical plasmonic recording media,” Appl. Phys. Lett. 105, 181110 (2014).
[Crossref]

U. Rocha, K. Upendra Kumar, C. Jacinto, J. Ramiro, A. J. Caamaño, J. García Solé, and D. Jaque, “Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents,” Appl. Phys. Lett. 104, 053703 (2014).
[Crossref]

D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6, 9494–9530 (2014).
[Crossref]

L. M. Maestro, P. Haro-González, M. C. Iglesias-de la Cruz, F. SanzRodríguez, Á. Juarranz, J. G. Solé, and D. Jaque, “Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia,” Nanomedicine 8, 379–388 (2013).
[Crossref]

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9, 2162–2170 (2013).
[Crossref]

L. M. Maestro, P. Haro-Gonzalez, B. del Rosal, J. Ramiro, A. J. Caamano, E. Carrasco, A. Juarranz, F. Sanz-Rodriguez, J. G. Sole, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5, 7882–7889 (2013).

U. Rocha, C. Jacinto, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, M. A. Elias, E. Bovero, F. van Veggel, J. A. G. Sole, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10, 1141–1154 (2013).

P. Haro-González, L. Martínez-Maestro, I. Martín, J. García-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
[Crossref]

L. M. Maestro, P. Haro-González, J. G. Coello, and D. Jaque, “Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100, 201110 (2012).
[Crossref]

L. M. Maestro, C. Jacinto, U. Rocha, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, J. G. Solé, and D. Jaque, “Optimum quantum dot size for highly efficient fluorescence bioimaging,” J. Appl. Phys. 111, 023513 (2012).
[Crossref]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012).
[Crossref]

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging,” Small 7, 1774–1778 (2011).
[Crossref]

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. I.-D. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10, 5109–5115 (2010).
[Crossref]

L. M. Maestro, E. M. Rodriguez, F. Vetrone, R. Naccache, H. L. Ramirez, D. Jaque, J. A. Capobianco, and J. G. Solé, “Nanoparticles for highly efficient multiphoton fluorescence bioimaging,” Opt. Express 18, 23544–23553 (2010).
[Crossref]

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodriguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2, 495–498 (2010).
[Crossref]

J. G. Solé, L. E. Bausá, and D. Jaque, “Front matter,” in An Introduction to the Optical Spectroscopy of Inorganic Solids (Wiley, 2005), pp. i–xx.

Jekic-McMullen, D.

T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models,” Mol. Imaging 3, 9–23 (2004).
[Crossref]

Jensen, K.

B. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. Heine, H. Mattoussi, R. Ober, K. Jensen, and M. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

Jeon, K.-S.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

Jeong, J. H.

J.-E. Lee, I. In, H. Lee, K. D. Lee, J. H. Jeong, and S. Y. Park, “Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots,” Mol. Pharm. 10, 3736–3744 (2013).
[Crossref]

Ji, L.

M. Xue, X. Wang, L. Duan, W. Gao, L. Ji, and B. Tang, “A new nanoprobe based on FRET between functional quantum dots and gold nanoparticles for fluoride anion and its applications for biological imaging,” Biosens. Bioelectron. 36, 168–173 (2012).
[Crossref]

Ji, Z.

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53, 8638–8645 (2014).
[Crossref]

Jia, D. D.

X. J. Wang, D. D. Jia, and W. M. Yen, “Mn2+ activated green, yellow, and red long persistent phosphors,” J. Lumin. 102, 34–37 (2003).
[Crossref]

Jiang, C.

C. R. Stanek, C. Jiang, S. K. Yadav, K. J. McClellan, B. P. Uberuaga, D. A. Andersson, and M. Nikl, “The effect of Ga-doping on the defect chemistry of RE3Al5O12 garnets,” Phys. Status Solidi B 250, 244–248 (2013).
[Crossref]

Jiang, P.

M. Yang, E. Baranov, P. Jiang, F.-X. Sun, X.-M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, and T. Chishima, “Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases,” Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).
[Crossref]

M. Yang, P. Jiang, F.-X. Sun, S. Hasegawa, E. Baranov, T. Chishima, H. Shimada, A. Moossa, and R. M. Hoffman, “A fluorescent orthotopic bone metastasis model of human prostate cancer,” Cancer Res. 59, 781–786 (1999).

Jiang, S.

S. Jiang, M. K. Gnanasammandhan, and Y. Zhang, “Optical imaging-guided cancer therapy with fluorescent nanoparticles,” J. R. Soc. Interface 7, 3–18 (2010).
[Crossref]

Jiao, P. F.

P. F. Jiao, H. Y. Zhou, L. X. Chen, and B. Yan, “Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy,” Curr. Med. Chem. 18, 2086–2102 (2011).
[Crossref]

Jin, D.

Y. Zhang, L. Zhang, R. Deng, J. Tian, Y. Zong, D. Jin, and X. Liu, “Multicolor barcoding in a single upconversion crystal,” J. Am. Chem. Soc. 136, 4893–4896 (2014).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8, 32–36 (2013).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nano 8, 729–734 (2013).
[Crossref]

Jin, H.

J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung, S. Jung, Y. Park, and S. Kim, “Surface engineering of inorganic nanoparticles for imaging and therapy,” Adv. Drug Delivery Rev. 65, 622–648 (2013).
[Crossref]

H. Jin, D. A. Heller, R. Sharma, and M. S. Strano, “Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles,” ACS Nano 3, 149–158 (2009).
[Crossref]

Jin, J.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5, 7838–7847 (2011).
[Crossref]

Johnson, F. H.

O. Shimomura, F. H. Johnson, and Y. Saiga, “Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea,” J. Cell. Comp. Physiol. 59, 223–239 (1962).
[Crossref]

Johnson, N. J. J.

N. J. J. Johnson, N. M. Sangeetha, J.-C. Boyer, and F. C. J. M. van Veggel, “Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles,” Nanoscale 2, 771–777 (2010).
[Crossref]

Johnstone, S. A.

C. Allen, N. Dos Santos, R. Gallagher, G. N. C. Chiu, Y. Shu, W. M. Li, S. A. Johnstone, A. S. Janoff, L. D. Mayer, M. S. Webb, and M. B. Bally, “Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol),” Biosci. Rep. 22, 225–250 (2002).
[Crossref]

Jolivet, J.-P.

Q. le Masne de Chermont, C. Chaneac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. USA 104, 9266–9271 (2007).
[Crossref]

Jørgensen, C. K.

R. Reisfeld and C. K. Jørgensen, Lasers and Excited States of Rare Earths (Springer-Verlag, 1977).

R. Reisfeld and C. K. Jørgensen, “Excited state phenomena in vitreous materials,” in Handbook on the Physics and Chemistry of Rare Earths (1987), Vol. 9, pp. 1–90.
[Crossref]

Joyce, M. A.

N. H. Bander, E. J. Trabulsi, L. Kostakoglu, D. Yao, S. Vallabhajosula, P. Smith-Jones, M. A. Joyce, M. Milowsky, D. M. Nanus, and S. J. Goldsmith, “Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen,” J. Urol. 170, 1717–1721 (2003).
[Crossref]

Ju, Y.

J. Shan, J. Chen, J. Meng, J. Collins, W. Soboyejo, J. S. Friedberg, and Y. Ju, “Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors,” J. Appl. Phys. 104, 094308 (2008).
[Crossref]

Juarranz, A.

L. M. Maestro, P. Haro-Gonzalez, B. del Rosal, J. Ramiro, A. J. Caamano, E. Carrasco, A. Juarranz, F. Sanz-Rodriguez, J. G. Sole, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5, 7882–7889 (2013).

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10, 1141–1154 (2013).

L. M. Maestro, C. Jacinto, U. Rocha, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, J. G. Solé, and D. Jaque, “Optimum quantum dot size for highly efficient fluorescence bioimaging,” J. Appl. Phys. 111, 023513 (2012).
[Crossref]

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. I.-D. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10, 5109–5115 (2010).
[Crossref]

Juarranz, Á.

I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, and D. García, “1.3  μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window,” Nano Res. 8,649–665 (2015).

L. M. Maestro, P. Haro-González, M. C. Iglesias-de la Cruz, F. SanzRodríguez, Á. Juarranz, J. G. Solé, and D. Jaque, “Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia,” Nanomedicine 8, 379–388 (2013).
[Crossref]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodriguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2, 495–498 (2010).
[Crossref]

Jung, S.

J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung, S. Jung, Y. Park, and S. Kim, “Surface engineering of inorganic nanoparticles for imaging and therapy,” Adv. Drug Delivery Rev. 65, 622–648 (2013).
[Crossref]

J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung, S. Jung, Y. Park, and S. Kim, “Surface engineering of inorganic nanoparticles for imaging and therapy,” Adv. Drug Delivery Rev. 65, 622–648 (2013).
[Crossref]

Jungner, H.

J. Holsa, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloys Compd. 374, 56–59 (2004).
[Crossref]

Juste, J. P.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, and L. M. Liz-Marzan, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref]

Kahr, B.

E. A. Riley, C. Bingham, E. D. Bott, B. Kahr, and P. J. Reid, “Two mechanisms for fluorescence intermittency of single violamine R molecules,” Phys. Chem. Chem. Phys. 13, 1879–1887 (2011).
[Crossref]

Kaikkonen, M. U.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Yla-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjugate Chemistry 23, 472–478 (2012).
[Crossref]

Kaittanis, C.

A. Asati, S. Santra, C. Kaittanis, and J. M. Perez, “Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles,” ACS Nano 4, 5321–5331 (2010).
[Crossref]

Kamimura, M.

M. Kamimura, N. Kanayama, K. Tokuzen, K. Soga, and Y. Nagasaki, “Near-infrared (1550  nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly (4-vinylbenzylphosphonate),” Nanoscale 3, 3705–3713 (2011).
[Crossref]

Y. Kawasaki, Y. Gotoh, K. Tokuzen, M. Kamimura, T. Komeno, M. Tomatsu, R. Todoroki, Y. Nagasaki, K. Soga, and F. Tashiro, “Selective tumor imaging by a novel tumor specific aralin-infrared-to-visible phosphor conjugate,” J. Phys. Conf. Ser. 191, 012001 (2009).

Kamimura, S.

S. Kamimura, C.-N. Xu, H. Yamada, N. Terasaki, and M. Fujihala, “Long-persistent luminescence in the near-infrared from Nd3+-doped Sr2SnO4 for in vivo optical imaging,” Jpn. J. Appl. Phys. 53, 092403 (2014).
[Crossref]

Kanamori, T.

F. Osaki, T. Kanamori, S. Sando, T. Sera, and Y. Aoyama, “A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region,” J. Am. Chem. Soc. 126, 6520–6521 (2004).
[Crossref]

Kanayama, N.

M. Kamimura, N. Kanayama, K. Tokuzen, K. Soga, and Y. Nagasaki, “Near-infrared (1550  nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly (4-vinylbenzylphosphonate),” Nanoscale 3, 3705–3713 (2011).
[Crossref]

Kaneko, K.

T. Zako, M. Yoshimoto, H. Hyodo, H. Kishimoto, M. Ito, K. Kaneko, K. Soga, and M. Maeda, “Cancer-targeted near infrared imaging using rare earth ion-doped ceramic nanoparticles,” Biomater. Sci. 3, 59–64 (2015).
[Crossref]

Kang, K.

X. Duan, S. Huang, F. You, and K. Kang, “Hydrothermal preparation and persistence characteristics of nanosized phosphor SrS: Eu2+, Dy3+,” J. Rare Earths 27, 43–46 (2009).
[Crossref]

Kang, M. W.

S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127, 17604–17605 (2005).
[Crossref]

Kar, A. K.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9, 2162–2170 (2013).
[Crossref]

Kardos, K.

H. J. M. A. A. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala, and H. J. Tanke, “Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology,” Anal. Biochem. 267, 30–36 (1999).
[Crossref]

Katayama, Y.

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36, 1907–1912 (2014).
[Crossref]

Katz, E. M.

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10  nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6, 2686–2692 (2012).
[Crossref]

Kaur, S.

T. Wu, S. Kaur, and N. R. Branda, “Energy transfer between amphiphilic porphyrin polymer shells and upconverting nanoparticle cores in water-dispersible nano-assemblies,” Org. Biomol. Chem. 13, 2317–2322 (2015).

Kawamoto, A.

T. Asahara and A. Kawamoto, “Endothelial progenitor cells for postnatal vasculogenesis,” Am. J. Physiol. Cell Physiol. 287, C572–C579 (2004).
[Crossref]

Kawasaki, Y.

Y. Kawasaki, Y. Gotoh, K. Tokuzen, M. Kamimura, T. Komeno, M. Tomatsu, R. Todoroki, Y. Nagasaki, K. Soga, and F. Tashiro, “Selective tumor imaging by a novel tumor specific aralin-infrared-to-visible phosphor conjugate,” J. Phys. Conf. Ser. 191, 012001 (2009).

Kelkar, S. S.

S. S. Kelkar and T. M. Reineke, “Theranostics: combining imaging and therapy,” Bioconjug. Chem. 22, 1879–1903 (2011).
[Crossref]

Kelley, D.

J. Wilcoxon, J. Martin, F. Parsapour, B. Wiedenman, and D. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108, 9137–9143 (1998).
[Crossref]

Khlebtsov, N.

N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies,” Chem. Soc. Rev. 40, 1647–1671 (2011).
[Crossref]

Kim, C.

J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. J. Welch, and Y. Xia, “Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications,” Adv. Funct. Mater. 20, 3684–3694 (2010).
[Crossref]

Kim, H.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

Kim, H. M.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

Kim, J.

J. Kim, Y. Piao, and T. Hyeon, “Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy,” Chem. Soc. Rev. 38, 372–390 (2009).
[Crossref]

Kim, J. H.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

Kim, S.

J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung, S. Jung, Y. Park, and S. Kim, “Surface engineering of inorganic nanoparticles for imaging and therapy,” Adv. Drug Delivery Rev. 65, 622–648 (2013).
[Crossref]

S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures,” J. Am. Chem. Soc. 125, 11466–11467 (2003).
[Crossref]

Kim, Y. W.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

King, D.

F. Pinaud, D. King, H. P. Moore, and S. Weiss, “Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides,” J. Am. Chem. Soc. 126, 6115–6123 (2004).
[Crossref]

Kirchhoff, F.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells,” PLoS ONE 5, e9344 (2010).
[Crossref]

Kishimoto, H.

T. Zako, M. Yoshimoto, H. Hyodo, H. Kishimoto, M. Ito, K. Kaneko, K. Soga, and M. Maeda, “Cancer-targeted near infrared imaging using rare earth ion-doped ceramic nanoparticles,” Biomater. Sci. 3, 59–64 (2015).
[Crossref]

E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, and K. Soga, “Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging,” Nanoscale 5, 11339–11361 (2013).
[Crossref]

N. Venkatachalam, T. Yamano, E. Hemmer, H. Hyodo, H. Kishimoto, and K. Soga, “Er3+ -Doped Y2O3 nanophosphors for near-infrared fluorescence bioimaging applications,” J. Am. Ceram. Soc. 96, 2759–2765 (2013).
[Crossref]

E. Hemmer, T. Yamano, H. Kishimoto, N. Venkatachalam, H. Hyodo, and K. Soga, “Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging,” Acta Biomater. 9, 4734–4743 (2013).
[Crossref]

N. Venkatachalam, E. Hemmer, T. Yamano, H. Hyodo, H. Kishimoto, and K. Soga, “Synthesis and toxicity assay of ceramic nanophosphors for bioimaging with near-infrared excitation,” Prog. Cryst. Growth Charact. Mater. 58, 121–134 (2012).
[Crossref]

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In vitro and in vivo investigations of upconversion and NIR emitting Gd2O3: Er3+, Yb3+ nanostructures for biomedical applications,” J. Mater. Sci. 23, 2399–2412 (2012).

K. Soga, K. Tokuzen, K. Fukuda, H. Hyodo, E. Hemmer, N. Venkatachalm, and H. Kishimoto, “Application of ceramic/polymer conjugate materials for near infrared biophotonics,” J. Photopolym. Sci. Technol. 25, 57–62 (2012).
[Crossref]

K. Soga, K. Tokuzen, K. Tsuji, T. Yamano, H. Hyodo, and H. Kishimoto, “NIR bioimaging: development of liposome-encapsulated, rare-earth-doped Y2O3 nanoparticles as fluorescent probes,” Eur. J. Inorg. Chem. 2010, 2673–2677 (2010).
[Crossref]

K. Soga, K. Tokuzen, K. Tsuji, T. Yamano, N. Venkatachalam, H. Hyodo, and H. Kishimoto, “Application of ceramic phosphors for near infrared biomedical imaging technologies,” Proc. SPIE 7598, 759807 (2010).

Klar, T. A.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5, 585–589 (2005).
[Crossref]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[Crossref]

Klimov, V. I.

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479, 203–207 (2011).
[Crossref]

Koenig, K.

K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8, 432–439 (2003).
[Crossref]

Kohl, J.

D. Naczynski, M. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. Roth, R. Riman, and P. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref]

Kohl, Y.

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In vitro and in vivo investigations of upconversion and NIR emitting Gd2O3: Er3+, Yb3+ nanostructures for biomedical applications,” J. Mater. Sci. 23, 2399–2412 (2012).

E. Hemmer, Y. Kohl, V. Colquhoun, H. Thielecke, K. Soga, and S. Mathur, “Probing cytotoxicity of gadolinium hydroxide nanostructures,” J. Phys. Chem. B 114, 4358–4365 (2010).
[Crossref]

Komeno, T.

Y. Kawasaki, Y. Gotoh, K. Tokuzen, M. Kamimura, T. Komeno, M. Tomatsu, R. Todoroki, Y. Nagasaki, K. Soga, and F. Tashiro, “Selective tumor imaging by a novel tumor specific aralin-infrared-to-visible phosphor conjugate,” J. Phys. Conf. Ser. 191, 012001 (2009).

Kong, X.

X. Liu, X. Kong, Y. Zhang, L. Tu, Y. Wang, Q. Zeng, C. Li, Z. Shi, and H. Zhang, “Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications,” Chem. Commun. 47, 11957–11959 (2011).
[Crossref]

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
[Crossref]

Koppensteiner, H.

C. Banning, J. Votteler, D. Hoffmann, H. Koppensteiner, M. Warmer, R. Reimer, F. Kirchhoff, U. Schubert, J. Hauber, and M. Schindler, “A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells,” PLoS ONE 5, e9344 (2010).
[Crossref]

Korgel, B. A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941–945 (2007).
[Crossref]

Korthout, K.

P. F. Smet, J. Botterman, K. Van den Eeckhout, K. Korthout, and D. Poelman, “Persistent luminescence in nitride and oxynitride phosphors: a review,” Opt. Mater. 36, 1913–1919 (2014).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu, Dy powders: evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
[Crossref]

Kostakoglu, L.

N. H. Bander, E. J. Trabulsi, L. Kostakoglu, D. Yao, S. Vallabhajosula, P. Smith-Jones, M. A. Joyce, M. Milowsky, D. M. Nanus, and S. J. Goldsmith, “Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen,” J. Urol. 170, 1717–1721 (2003).
[Crossref]

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Kotov, N. A.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nano. Res. Lett. 1, 84–90 (2006).
[Crossref]

Kovochich, M.

M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, and J. I. Zink, “Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery,” ACS Nano 2, 889–896 (2008).
[Crossref]

Krystek, P.

W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. A. M. Sips, and R. E. Geertsma, “Particle size-dependent organ distribution of gold nanoparticles after intravenous administration,” Biomaterials 29, 1912–1919 (2008).
[Crossref]

Kubo, M.

G. Kucsko, P. Maurer, N. Y. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Kucsko, G.

G. Kucsko, P. Maurer, N. Y. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Kulesa, A.

D. Naczynski, M. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. Roth, R. Riman, and P. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref]

Kumar, K. U.

E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles,” Adv. Funct. Mater. 25, 615–626 (2015).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window,” Small 10, 1141–1154 (2013).

Kumar, R.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8, 3834–3838 (2008).
[Crossref]

Kuno, M.

P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519–522 (2008).
[Crossref]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B 54, 4843–4856 (1996).
[Crossref]

M. Nirmal, D. Norris, M. Kuno, M. Bawendi, A. L. Efros, and M. Rosen, “Observation of the ‘dark exciton’ in CdSe quantum dots,” Phys. Rev. Lett. 75, 3728–3731 (1995).
[Crossref]

Kuppen, P. J. K.

B. E. Schaafsma, J. S. D. Mieog, M. Hutteman, J. R. Van der Vorst, P. J. K. Kuppen, C. W. G. M. Lowik, J. V. Frangioni, C. J. H. Van de Velde, and A. L. Vahrmeijer, “The clinical use of Indocyanine Green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104, 323–332 (2011).
[Crossref]

Kuroishi, K.

J. Ueda, K. Kuroishi, and S. Tanabe, “Development of blue excitable persistent phosphor of Ce3+-doped garnet ceramics by bandgap engineering and metal sensitization,” Proc. SPIE 8987, 89870L (2014).

Kushida, T.

T. Kushida, “Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation,” J. Phys. Soc. Jpn. 34, 1318–1326 (1973).
[Crossref]

Kutikov, A.

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6, 8280–8287 (2012).
[Crossref]

Kwon, Y. K.

C. Liu, Y. K. Kwon, and J. Heo, “Temperature-dependent brightening and darkening of photoluminescence from PbS quantum dots in glasses,” Appl. Phys. Lett. 90, 241111 (2007).
[Crossref]

la Cruz, M. I.-D.

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. I.-D. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10, 5109–5115 (2010).
[Crossref]

Laakkonen, P.

M. E. Åkerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, “Nanocrystal targeting in vivo,” Proc. Natl. Acad. Sci. USA. 99, 12617–12621 (2002).
[Crossref]

Laamanen, T.

Lagueux, J.

C. Rosticher, C. Chanéac, B. Viana, M. A. Fortin, J. Lagueux, and L. Faucher, “Red persistent luminescence and magnetic properties of nanomaterials for multimodal imaging,” Proc. SPIE 9364, 936419 (2015).

Lai, W.-Y.

Y. He, H.-T. Lu, L.-M. Sai, W.-Y. Lai, Q.-L. Fan, L.-H. Wang, and W. Huang, “Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence,” J. Phys. Chem. B 110, 13370–13374 (2006).
[Crossref]

Lalatonne, Y.

E. Teston, Y. Lalatonne, D. Elgrabli, G. Autret, L. Motte, F. Gazeau, D. Scherman, O. Clément, C. Richard, and T. Maldiney, “Design, properties and in-vivo behavior of super-paramagnetic persistent luminescence nanohybrids,” Small 11, 2696–2704 (2015).
[Crossref]

Larson, D. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[Crossref]

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941–945 (2007).
[Crossref]

Lastusaari, M.

H. F. Brito, J. Holsa, T. Laamanen, M. Lastusaari, M. Malkamaki, and L. C. V. Rodrigues, “Persistent luminescence mechanisms: human imagination at work,” Opt. Mater. Express 2, 371–381 (2012).
[Crossref]

J. Holsa, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloys Compd. 374, 56–59 (2004).
[Crossref]

Latham, C. B.

J. M. Ness, R. S. Akhtar, C. B. Latham, and K. A. Roth, “Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection,” J. Histochem. Cytochem. 51, 981–987 (2003).
[Crossref]

Law, W.-C.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/Shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6, 2969–2977 (2012).
[Crossref]

le Masne de Chermont, Q.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Yla-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjugate Chemistry 23, 472–478 (2012).
[Crossref]

Q. le Masne de Chermont, C. Chaneac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. USA 104, 9266–9271 (2007).
[Crossref]

Leblans, P.

P. Leblans, D. Vandenbroucke, and P. Willems, “Storage phosphors for medical imaging,” Materials 4, 1034–1086 (2011).
[Crossref]

Lecointre, A.

A. Bessiere, A. Lecointre, R. A. Benhamou, E. Suard, G. Wallez, and B. Viana, “How to induce red persistent luminescence in biocompatible Ca3(PO4)2,” J. Mater. Chem. C 1, 1252–1259 (2013).
[Crossref]

A. Bessiere, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19, 10131–10137 (2011).
[Crossref]

A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115, 4217–4227 (2011).
[Crossref]

T. Maldiney, A. Lecointre, B. Viana, A. Bessiere, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133, 11810–11815 (2011).
[Crossref]

Ledoux, G.

A.-L. Bulin, C. Truillett, R. Chouikrat, F. Lux, C. Frochot, D. Amans, G. Ledoux, O. Tillement, P. Perriat, M. Barberi-Heyob, and C. Dujardin, “X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins,” J. Phys. Chem. C 117, 21583–21589 (2013).
[Crossref]

Lee, H.

J.-E. Lee, I. In, H. Lee, K. D. Lee, J. H. Jeong, and S. Y. Park, “Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots,” Mol. Pharm. 10, 3736–3744 (2013).
[Crossref]

Lee, H.-Y.

Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3, 284–288 (2008).
[Crossref]

Lee, J.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nano. Res. Lett. 1, 84–90 (2006).
[Crossref]

Lee, J.-E.

J.-E. Lee, I. In, H. Lee, K. D. Lee, J. H. Jeong, and S. Y. Park, “Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots,” Mol. Pharm. 10, 3736–3744 (2013).
[Crossref]

Lee, K. D.

J.-E. Lee, I. In, H. Lee, K. D. Lee, J. H. Jeong, and S. Y. Park, “Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots,” Mol. Pharm. 10, 3736–3744 (2013).
[Crossref]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref]

Lee, K. T.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44, 1302–1317 (2015).
[Crossref]

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

Lee, N.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

Lee, S.

M. Swierczewska, S. Lee, and X. Chen, “Inorganic nanoparticles for multimodal molecular imaging,” Mol. Imaging 10, 3–16 (2011).

Lee, S. H.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

Lee, S.-T.

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.-T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. 50, 7385–7390 (2011).
[Crossref]

Lee, V. H.-Y.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5, 7838–7847 (2011).
[Crossref]

Leif, R. C.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8, 32–36 (2013).
[Crossref]

Lejay, J.

S. Blahuta, A. Bessiere, B. Viana, V. Ouspenski, E. Mattmann, J. Lejay, and D. Gourier, “Defects identification and effects of annealing on Lu2(1−x)Y2xSiO5 (LYSO) single crystals for scintillation application,” Materials 4, 1224–1237 (2011).
[Crossref]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Leunig, A.

C. Betz, M. Mehlmann, K. Rick, H. Stepp, G. Grevers, R. Baumgartner, and A. Leunig, “Autofluorescence imaging and spectroscopy of normal and malignant mucosa in patients with head and neck cancer,” Lasers Surg. Med. 25, 323–334 (1999).
[Crossref]

Levenson, R. M.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
[Crossref]

Levi, S.

M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302, 442–445 (2003).
[Crossref]

Levi, S. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[Crossref]

Li, C.

Y. Zhang, Y. Liu, C. Li, X. Chen, and Q. Wang, “Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton Bohr radius,” J. Phys. Chem. C 118, 4918–4923 (2014).
[Crossref]

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35, 393–400 (2014).
[Crossref]

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114, 2343–2389 (2013).
[Crossref]

X. Liu, X. Kong, Y. Zhang, L. Tu, Y. Wang, Q. Zeng, C. Li, Z. Shi, and H. Zhang, “Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications,” Chem. Commun. 47, 11957–11959 (2011).
[Crossref]

G. Zhang, Z. Yang, W. Lu, R. Zhang, Q. Huang, M. Tian, L. Li, D. Liang, and C. Li, “Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice,” Biomaterials 30, 1928–1936 (2009).
[Crossref]

Li, C. L.

C. Y. Fang, V. Vaijayanthimala, C. A. Cheng, S. H. Yeh, C. F. Chang, C. L. Li, and H. C. Chang, “The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker,” Small 7, 3363–3370 (2011).
[Crossref]

Li, C.-M.

X.-Y. Wan, L.-L. Zheng, P.-F. Gao, X.-X. Yang, C.-M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4, 4529 (2014).

Li, F.

Y. Sun, W. Feng, P. Yang, C. Huang, and F. Li, “The biosafety of lanthanide upconversion nanomaterials,” Chem. Soc. Rev. 44, 1509–1525 (2015).

Q. Liu, W. Feng, T. Yang, T. Yi, and F. Li, “Upconversion luminescence imaging of cells and small animals,” Nat. Protocols 8, 2033–2044 (2013).
[Crossref]

W. Feng, X. Zhu, and F. Li, “Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications,” NPG Asia Mater. 5, e75 (2013).
[Crossref]

L. Xiong, T. Yang, Y. Yang, C. Xu, and F. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31, 7078–7085 (2010).
[Crossref]

T. Cao, T. Yang, Y. Gao, Y. Yang, H. Hu, and F. Li, “Water-soluble NaYF4:Yb/Er upconversion nanophosphors: synthesis, characteristics and application in bioimaging,” Inorg. Chem. Commun. 13, 392–394 (2010).
[Crossref]

H. Hu, L. Xiong, J. Zhou, F. Li, T. Cao, and C. Huang, “Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells,” Chem. Eur. J. 15, 3577–3584 (2009).
[Crossref]

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J. Phys. Chem. C 113, 19021–19027 (2009).
[Crossref]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81, 930–935 (2009).
[Crossref]

Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi, and C. Huang, “Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels,” J. Am. Chem. Soc. 130, 3023–3029 (2008).
[Crossref]

Li, F. Y.

J. Zhou, Y. Sun, X. X. Du, L. Q. Xiong, H. Hu, and F. Y. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31, 3287–3295 (2010).
[Crossref]

Li, J.

J. Shi, X. Sun, J. Li, H. Man, J. Shen, Y. Yu, and H. Zhang, “Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging,” Biomaterials 37, 260–270 (2015).
[Crossref]

Li, J. J.

F. Pinaud, X. Michalet, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Iyer, and S. Weiss, “Advances in fluorescence imaging with quantum dot bio-probes,” Biomaterials 27, 1679–1687 (2006).
[Crossref]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[Crossref]

Li, L.

C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, “In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window,” Biomaterials 35, 393–400 (2014).
[Crossref]

G. Zhang, Z. Yang, W. Lu, R. Zhang, Q. Huang, M. Tian, L. Li, D. Liang, and C. Li, “Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice,” Biomaterials 30, 1928–1936 (2009).
[Crossref]

M. Yang, E. Baranov, P. Jiang, F.-X. Sun, X.-M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, and T. Chishima, “Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases,” Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).
[Crossref]

Li, N.

S. Yang, N. Li, Z. Liu, W. Sha, D. Chen, Q. Xu, and J. Lu, “Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment,” Nanoscale 6, 14903–14910 (2014).
[Crossref]

N. Li, Y. Li, Y. Han, W. Pan, T. Zhang, and B. Tang, “A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo,” Anal. Chem. 86, 3924–3930 (2014).
[Crossref]

N. Li, W. Diao, Y. Han, W. Pan, T. Zhang, and B. Tang, “MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo,” Chem. Eur. J. 20, 16488–16491 (2014).
[Crossref]

Li, W.

Q. Zhang, W. Li, L. P. Wen, J. Chen, and Y. Xia, “Facile synthesis of Ag nanocubes of 30 to 70  nm in edge length with CF(3)COOAg as a precursor,” Chemistry 16, 10234–10239 (2010).
[Crossref]

Li, W. M.

C. Allen, N. Dos Santos, R. Gallagher, G. N. C. Chiu, Y. Shu, W. M. Li, S. A. Johnstone, A. S. Janoff, L. D. Mayer, M. S. Webb, and M. B. Bally, “Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol),” Biosci. Rep. 22, 225–250 (2002).
[Crossref]

Li, X.

L. M. Maestro, Q. Zhang, X. Li, D. Jaque, and M. Gu, “Quantum-dot based nanothermometry in optical plasmonic recording media,” Appl. Phys. Lett. 105, 181110 (2014).
[Crossref]

W. Yang, X. Li, D. Chi, H. Zhang, and X. Liu, “Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis,” Nanotechnology 25, 482001 (2014).
[Crossref]

R. Wang, X. Li, L. Zhou, and F. Zhang, “Epitaxial seeded growth of rare-earth nanocrystals with efficient 800  nm near-infrared to 1525  nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging,” Angew. Chem. 126, 12282–12286 (2014).
[Crossref]

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800  nm,” Sci. Rep. 3, 3536 (2013).

Li, X.-M.

M. Yang, E. Baranov, P. Jiang, F.-X. Sun, X.-M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, and T. Chishima, “Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases,” Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).
[Crossref]

Li, Y.

N. Li, Y. Li, Y. Han, W. Pan, T. Zhang, and B. Tang, “A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo,” Anal. Chem. 86, 3924–3930 (2014).
[Crossref]

Y. Li, S. Zhou, G. Dong, M. Peng, L. Wondraczek, and J. Qiu, “Anti-Stokes fluorescent probe with incoherent excitation,” Sci. Rep. 4, 4059 (2014).

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C 2, 2657–2663 (2014).
[Crossref]

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C 2, 2657–2663 (2014).
[Crossref]

Y. Li, Y.-Y. Li, K. Sharafudeen, G.-P. Dong, S.-F. Zhou, Z.-J. Ma, M.-Y. Peng, and J.-R. Qiu, “A strategy for developing near infrared long-persistent phosphors: taking MAlO3:Mn4+, Ge4+ (M = La, Gd) as an example,” J. Mater. Chem C 2, 2019–2027 (2014).
[Crossref]

Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, and L. Qu, “Nitrogen-doped graphene quantum dots with oxygen-rich functional groups,” J. Am. Chem. Soc. 134, 15–18 (2011).
[Crossref]

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.-T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. 50, 7385–7390 (2011).
[Crossref]

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437, 121–124 (2005).
[Crossref]

L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng, and Y. Li, “Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles,” Angew. Chem. Int. Ed. 44, 6054–6057 (2005).

Li, Y. F.

X.-Y. Wan, L.-L. Zheng, P.-F. Gao, X.-X. Yang, C.-M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4, 4529 (2014).

Li, Y.-Y.

Y. Li, Y.-Y. Li, K. Sharafudeen, G.-P. Dong, S.-F. Zhou, Z.-J. Ma, M.-Y. Peng, and J.-R. Qiu, “A strategy for developing near infrared long-persistent phosphors: taking MAlO3:Mn4+, Ge4+ (M = La, Gd) as an example,” J. Mater. Chem C 2, 2019–2027 (2014).
[Crossref]

Li, Z.

Z. Li, J. Shi, H. Zhang, and M. Sun, “Highly controllable synthesis of near-infrared persistent luminescence SiO2/CaMgSi2O6 composite nanospheres for imaging in vivo,” Opt. Express 22, 10509–10518 (2014).
[Crossref]

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6, 8280–8287 (2012).
[Crossref]

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19, 345606 (2008).
[Crossref]

Li, Z.-J.

M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
[Crossref]

Liang, D.

G. Zhang, Z. Yang, W. Lu, R. Zhang, Q. Huang, M. Tian, L. Li, D. Liang, and C. Li, “Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice,” Biomaterials 30, 1928–1936 (2009).
[Crossref]

Liang, H.

Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, and S. Andersson-Engels, “Using 915  nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation,” ACS Nano 5, 3744–3757 (2011).
[Crossref]

G. Chen, H. Liu, G. Somesfalean, H. Liang, and Z. Zhang, “Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions,” Nanotechnology 20, 385704 (2009).
[Crossref]

Liang, Y.

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor,” Phys. Rev. Lett. 113, 177401 (2014).

Liau, I.

Y.-S. Chen, Y.-C. Hung, I. Liau, and G. S. Huang, “Assessment of the in vivo toxicity of gold nanoparticles,” Nano. Res. Lett. 4, 858–864 (2009).
[Crossref]

Libchaber, A.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298, 1759–1762 (2002).
[Crossref]

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref]

Lim, T.-S.

Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3, 284–288 (2008).
[Crossref]

Lima, P. P.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

Lin, C.-W.

Lin, J.

S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev. 114, 2343–2389 (2013).
[Crossref]

Lin, Y. H.

X. X. Wang, Z. T. Zhang, Z. L. Tang, and Y. H. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80, 1–5 (2003).
[Crossref]

Lin, Y.-S.

S. A. Love, M. A. Maurer-Jones, J. W. Thompson, Y.-S. Lin, and C. L. Haynes, “Assessing nanoparticle toxicity,” Ann. Rev. Anal. Chem. 5, 181–205 (2012).
[Crossref]

T.-H. Chung, S.-H. Wu, M. Yao, C.-W. Lu, Y.-S. Lin, Y. Hung, C.-Y. Mou, Y.-C. Chen, and D.-M. Huang, “The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells,” Biomaterials 28, 2959–2966 (2007).
[Crossref]

Link, S.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).
[Crossref]

Liong, M.

M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, and J. I. Zink, “Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery,” ACS Nano 2, 889–896 (2008).
[Crossref]

Lipinski, T.

A. Gnach, T. Lipinski, A. Bednarkiewicz, J. Rybka, and J. A. Capobianco, “Upconverting nanoparticles: assessing the toxicity,” Chem. Soc. Rev. 44, 1561–1584 (2015).

Liras, M.

M. Liras, M. González-Béjar, E. Peinado, L. Francés-Soriano, J. Pérez-Prieto, I. Quijada-Garrido, and O. García, “Thin amphiphilic polymer-capped upconversion nanoparticles: enhanced emission and thermoresponsive properties,” Chem. Mater. 26, 4014–4022 (2014).
[Crossref]

Liu, C.

C. Liu, Y. Hou, and M. Gao, “Are rare-earth nanoparticles suitable for in vivo applications?” Adv. Mater. 26, 6922–6932 (2014).
[Crossref]

X. Fu, C. Liu, J. Shi, H. Man, J. Xu, and H. Zhang, “Long persistent near infrared luminescence nanoprobes LiGa5O8:Cr3+-PEG-OCH3 for in vivo imaging,” Opt. Mater. 36, 1792–1797 (2014).
[Crossref]

C. Liu, Y. K. Kwon, and J. Heo, “Temperature-dependent brightening and darkening of photoluminescence from PbS quantum dots in glasses,” Appl. Phys. Lett. 90, 241111 (2007).
[Crossref]

Liu, C.-H.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-Excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles,” ACS Nano 3, 1580–1586 (2009).
[Crossref]

Liu, C.-L.

M. Sun, Z.-J. Li, C.-L. Liu, H.-X. Fu, J.-S. Shen, and H.-W. Zhang, “Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation,” J. Lumin. 145, 838–842 (2014).
[Crossref]

Liu, C.-P.

N.-T. Chen, S.-H. Cheng, C.-P. Liu, J. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling,” Int. J. Mol. Sci. 13, 16598–16623 (2012).
[Crossref]

Liu, D.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8, 32–36 (2013).
[Crossref]

Liu, F.

Y.-J. Chuang, Z. Zhen, F. Zhang, F. Liu, J. P. Mishra, W. Tang, H. Chen, X. Huang, L. Wang, X. Chen, J. Xie, and Z. Pan, “Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging,” Theranostics 4, 1112–1122 (2014).
[Crossref]

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor,” Phys. Rev. Lett. 113, 177401 (2014).

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 31554 (2013).

Y.-Y. Lu, F. Liu, Z. Gu, and Z. Pan, “Long-lasting near-infrared persistent luminescence from beta-Ga2O3:Cr3+ nanowire assemblies,” J. Lumin. 131, 2784–2787 (2011).
[Crossref]

Liu, G.-Y.

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7, 7200–7206 (2013).
[Crossref]

Liu, H.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6, 4788–4795 (2012).
[Crossref]

G. Chen, H. Liu, G. Somesfalean, H. Liang, and Z. Zhang, “Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions,” Nanotechnology 20, 385704 (2009).
[Crossref]

Liu, J.

J. Liu, Y. Liu, W. Bu, J. Bu, Y. Sun, J. Du, and J. Shi, “Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation,” J. Am. Chem. Soc. 136, 9701–9709 (2014).
[Crossref]

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4, 4073–4083 (2012).
[Crossref]

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J. Phys. Chem. C 113, 19021–19027 (2009).
[Crossref]

Liu, P.-X.

X.-D. Zhang, D. Wu, X. Shen, P.-X. Liu, N. Yang, B. Zhao, H. Zhang, Y.-M. Sun, L.-A. Zhang, and F.-Y. Fan, “Size-dependent in vivo toxicity of PEG-coated gold nanoparticles,” Int. J. Nanomed. 6, 2071 (2011).
[Crossref]

Liu, Q.

Q. Liu, W. Feng, T. Yang, T. Yi, and F. Li, “Upconversion luminescence imaging of cells and small animals,” Nat. Protocols 8, 2033–2044 (2013).
[Crossref]

Liu, R.-S.

Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C.-K. Chen, R.-S. Liu, X. Chen, F. Wang, and X. Liu, “The effect of surface coating on energy migration-mediated upconversion,” J. Am. Chem. Soc. 134, 20849–20857 (2012).
[Crossref]

Liu, S.

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/Shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6, 2969–2977 (2012).
[Crossref]

Liu, X.

S. Han, R. Deng, X. Xie, and X. Liu, “Enhancing luminescence in lanthanide-doped upconversion nanoparticles,” Angew. Chem. Int. Ed. 53, 11702–11715 (2014).
[Crossref]

F. Wang, R. Deng, and X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protocols 9, 1634–1644 (2014).
[Crossref]

Y. Zhang, L. Zhang, R. Deng, J. Tian, Y. Zong, D. Jin, and X. Liu, “Multicolor barcoding in a single upconversion crystal,” J. Am. Chem. Soc. 136, 4893–4896 (2014).
[Crossref]

W. Yang, X. Li, D. Chi, H. Zhang, and X. Liu, “Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis,” Nanotechnology 25, 482001 (2014).
[Crossref]

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles,” J. Am. Chem. Soc. 135, 12608–12611 (2013).
[Crossref]

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. 51, 3125–3129 (2012).
[Crossref]

Q. Su, S. Han, X. Xie, H. Zhu, H. Chen, C.-K. Chen, R.-S. Liu, X. Chen, F. Wang, and X. Liu, “The effect of surface coating on energy migration-mediated upconversion,” J. Am. Chem. Soc. 134, 20849–20857 (2012).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

X. Liu, X. Kong, Y. Zhang, L. Tu, Y. Wang, Q. Zeng, C. Li, Z. Shi, and H. Zhang, “Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications,” Chem. Commun. 47, 11957–11959 (2011).
[Crossref]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals,” Angew. Chem. Int. Ed. 50, 10369–10372 (2011).
[Crossref]

F. Wang, J. Wang, and X. Liu, “Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles,” Angew. Chem. Int. Ed. Engl. 49, 7456–7460 (2010).

J. Wang, F. Wang, J. Xu, Y. Wang, Y. Liu, X. Chen, H. Chen, and X. Liu, “Lanthanide-doped LiYF4 nanoparticles: synthesis and multicolor upconversion tuning,” C. R. Chim. 13, 731–736 (2010).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38, 976–989 (2009).
[Crossref]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130, 5642–5643 (2008).
[Crossref]

Liu, X. G.

F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen, and X. G. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
[Crossref]

Liu, Y.

J. Liu, Y. Liu, W. Bu, J. Bu, Y. Sun, J. Du, and J. Shi, “Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation,” J. Am. Chem. Soc. 136, 9701–9709 (2014).
[Crossref]

Y. Zhang, Y. Liu, C. Li, X. Chen, and Q. Wang, “Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton Bohr radius,” J. Phys. Chem. C 118, 4918–4923 (2014).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nano 8, 729–734 (2013).
[Crossref]

Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev. 42, 6924–6958 (2013).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8, 32–36 (2013).
[Crossref]

J. Wang, F. Wang, J. Xu, Y. Wang, Y. Liu, X. Chen, H. Chen, and X. Liu, “Lanthanide-doped LiYF4 nanoparticles: synthesis and multicolor upconversion tuning,” C. R. Chim. 13, 731–736 (2010).
[Crossref]

Liu, Y. S.

F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen, and X. G. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
[Crossref]

Liu, Z.

S. Yang, N. Li, Z. Liu, W. Sha, D. Chen, Q. Xu, and J. Lu, “Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment,” Nanoscale 6, 14903–14910 (2014).
[Crossref]

L. Cheng, C. Wang, L. Feng, K. Yang, and Z. Liu, “Functional nanomaterials for phototherapies of cancer,” Chem. Rev. 114, 10869–10939 (2014).
[Crossref]

L. Cheng, C. Wang, and Z. Liu, “Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy,” Nanoscale 5, 23–37 (2013).
[Crossref]

Y. Yang, Q. Shao, R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X. Liu, and B. Xing, “In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles,” Angew. Chem. Int. Ed. 51, 3125–3129 (2012).
[Crossref]

L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.-T. Lee, and Z. Liu, “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angew. Chem. Int. Ed. 50, 7385–7390 (2011).
[Crossref]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals,” Angew. Chem. Int. Ed. 50, 10369–10372 (2011).
[Crossref]

K. Welsher, Z. Liu, D. Daranciang, and H. Dai, “Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules,” Nano Lett. 8, 586–590 (2008).
[Crossref]

Liz-Marzan, L. M.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, and L. M. Liz-Marzan, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref]

Liz-Marzán, L. M.

L. M. Maestro, P. Haro-González, A. Sánchez-Iglesias, L. M. Liz-Marzán, J. García Solé, and D. Jaque, “Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles,” Langmuir 30, 1650–1658 (2014).
[Crossref]

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[Crossref]

E. Carbó-Argibay, B. Rodríguez-González, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Chemical sharpening of gold nanorods: the rod-to-octahedron transition,” Angew. Chem. Int. Ed. 46, 8983–8987 (2007).

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Lo, L.-W.

N.-T. Chen, S.-H. Cheng, C.-P. Liu, J. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling,” Int. J. Mol. Sci. 13, 16598–16623 (2012).
[Crossref]

Lo, P.

G. Kucsko, P. Maurer, N. Y. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Loening, A. M.

M. K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, “Self-illuminating quantum dot conjugates for in vivo imaging,” Nat. Biotechnol. 24, 339–343 (2006).
[Crossref]

Lombardo, A.

T. Gokus, R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. Novoselov, A. Geim, A. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3, 3963–3968 (2009).
[Crossref]

Love, S. A.

S. A. Love, M. A. Maurer-Jones, J. W. Thompson, Y.-S. Lin, and C. L. Haynes, “Assessing nanoparticle toxicity,” Ann. Rev. Anal. Chem. 5, 181–205 (2012).
[Crossref]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[Crossref]

Löw, K.

E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, and K. Soga, “In vitro and in vivo investigations of upconversion and NIR emitting Gd2O3: Er3+, Yb3+ nanostructures for biomedical applications,” J. Mater. Sci. 23, 2399–2412 (2012).

Lowik, C. W. G. M.

B. E. Schaafsma, J. S. D. Mieog, M. Hutteman, J. R. Van der Vorst, P. J. K. Kuppen, C. W. G. M. Lowik, J. V. Frangioni, C. J. H. Van de Velde, and A. L. Vahrmeijer, “The clinical use of Indocyanine Green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104, 323–332 (2011).
[Crossref]

Lu, C.-W.

T.-H. Chung, S.-H. Wu, M. Yao, C.-W. Lu, Y.-S. Lin, Y. Hung, C.-Y. Mou, Y.-C. Chen, and D.-M. Huang, “The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells,” Biomaterials 28, 2959–2966 (2007).
[Crossref]

Lu, H.

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence,” Inorg. Chem. 53, 8638–8645 (2014).
[Crossref]

Lu, H.-T.

Y. He, H.-T. Lu, L.-M. Sai, W.-Y. Lai, Q.-L. Fan, L.-H. Wang, and W. Huang, “Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence,” J. Phys. Chem. B 110, 13370–13374 (2006).
[Crossref]

Lu, J.

S. Yang, N. Li, Z. Liu, W. Sha, D. Chen, Q. Xu, and J. Lu, “Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment,” Nanoscale 6, 14903–14910 (2014).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8, 32–36 (2013).
[Crossref]

M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, and J. I. Zink, “Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery,” ACS Nano 2, 889–896 (2008).
[Crossref]

Lu, W.

G. Zhang, Z. Yang, W. Lu, R. Zhang, Q. Huang, M. Tian, L. Li, D. Liang, and C. Li, “Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice,” Biomaterials 30, 1928–1936 (2009).
[Crossref]

Lu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nano 8, 729–734 (2013).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8, 32–36 (2013).
[Crossref]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010).
[Crossref]

Lu, Y.-Y.

Y.-Y. Lu, F. Liu, Z. Gu, and Z. Pan, “Long-lasting near-infrared persistent luminescence from beta-Ga2O3:Cr3+ nanowire assemblies,” J. Lumin. 131, 2784–2787 (2011).
[Crossref]

Luccardini, C.

M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science 302, 442–445 (2003).
[Crossref]

Lucky, S. S.

S. S. Lucky, K. C. Soo, and Y. Zhang, “Nanoparticles in photodynamic therapy,” Chem. Rev. 115, 1990–2042 (2015).
[Crossref]

Lukin, M. D.

G. Kucsko, P. Maurer, N. Y. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Lux, F.

A.-L. Bulin, C. Truillett, R. Chouikrat, F. Lux, C. Frochot, D. Amans, G. Ledoux, O. Tillement, P. Perriat, M. Barberi-Heyob, and C. Dujardin, “X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins,” J. Phys. Chem. C 117, 21583–21589 (2013).
[Crossref]

Ma, D.

N. Schülke, O. A. Varlamova, G. P. Donovan, D. Ma, J. P. Gardner, D. M. Morrissey, R. R. Arrigale, C. Zhan, A. J. Chodera, K. G. Surowitz, P. J. Maddon, W. D. W. Heston, and W. C. Olson, “The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy,” Proc. Natl. Acad. Sci. USA 100, 12590–12595 (2003).
[Crossref]

Ma, Z.

Y. Li, S. Zhou, Y. Li, K. Sharafudeen, Z. Ma, G. Dong, M. Peng, and J. Qiu, “Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging,” J. Mater. Chem. C 2, 2657–2663 (2014).
[Crossref]

Ma, Z.-J.

Y. Li, Y.-Y. Li, K. Sharafudeen, G.-P. Dong, S.-F. Zhou, Z.-J. Ma, M.-Y. Peng, and J.-R. Qiu, “A strategy for developing near infrared long-persistent phosphors: taking MAlO3:Mn4+, Ge4+ (M = La, Gd) as an example,” J. Mater. Chem C 2, 2019–2027 (2014).
[Crossref]

Maddon, P. J.

N. Schülke, O. A. Varlamova, G. P. Donovan, D. Ma, J. P. Gardner, D. M. Morrissey, R. R. Arrigale, C. Zhan, A. J. Chodera, K. G. Surowitz, P. J. Maddon, W. D. W. Heston, and W. C. Olson, “The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy,” Proc. Natl. Acad. Sci. USA 100, 12590–12595 (2003).
[Crossref]

Maeda, M.

T. Zako, M. Yoshimoto, H. Hyodo, H. Kishimoto, M. Ito, K. Kaneko, K. Soga, and M. Maeda, “Cancer-targeted near infrared imaging using rare earth ion-doped ceramic nanoparticles,” Biomater. Sci. 3, 59–64 (2015).
[Crossref]

T. Zako, H. Nagata, N. Terada, A. Utsumi, M. Sakono, M. Yohda, H. Ueda, K. Soga, and M. Maeda, “Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging,” Biochem. Biophys. Res. Commun. 381, 54–58 (2009).
[Crossref]

Maestro, L. M.

L. M. Maestro, P. Haro-González, A. Sánchez-Iglesias, L. M. Liz-Marzán, J. García Solé, and D. Jaque, “Quantum dot thermometry evaluation of geometry dependent heating efficiency in gold nanoparticles,” Langmuir 30, 1650–1658 (2014).
[Crossref]

L. M. Maestro, Q. Zhang, X. Li, D. Jaque, and M. Gu, “Quantum-dot based nanothermometry in optical plasmonic recording media,” Appl. Phys. Lett. 105, 181110 (2014).
[Crossref]

D. Jaque, B. del Rosal, E. M. Rodríguez, L. M. Maestro, P. Haro-González, and J. G. Solé, “Fluorescent nanothermometers for intracellular thermal sensing,” Nanomedicine 9, 1047–1062 (2014).
[Crossref]

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9, 2162–2170 (2013).
[Crossref]

L. M. Maestro, P. Haro-González, M. C. Iglesias-de la Cruz, F. SanzRodríguez, Á. Juarranz, J. G. Solé, and D. Jaque, “Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia,” Nanomedicine 8, 379–388 (2013).
[Crossref]

U. Rocha, C. Jacinto, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, M. A. Elias, E. Bovero, F. van Veggel, J. A. G. Sole, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

L. M. Maestro, P. Haro-Gonzalez, B. del Rosal, J. Ramiro, A. J. Caamano, E. Carrasco, A. Juarranz, F. Sanz-Rodriguez, J. G. Sole, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5, 7882–7889 (2013).

L. M. Maestro, P. Haro-González, J. G. Coello, and D. Jaque, “Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry,” Appl. Phys. Lett. 100, 201110 (2012).
[Crossref]

L. M. Maestro, C. Jacinto, U. Rocha, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, J. G. Solé, and D. Jaque, “Optimum quantum dot size for highly efficient fluorescence bioimaging,” J. Appl. Phys. 111, 023513 (2012).
[Crossref]

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. A. Capobianco, D. Jaque, and J. G. Solé, “CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging,” Small 7, 1774–1778 (2011).
[Crossref]

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. I.-D. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10, 5109–5115 (2010).
[Crossref]

L. M. Maestro, E. M. Rodriguez, F. Vetrone, R. Naccache, H. L. Ramirez, D. Jaque, J. A. Capobianco, and J. G. Solé, “Nanoparticles for highly efficient multiphoton fluorescence bioimaging,” Opt. Express 18, 23544–23553 (2010).
[Crossref]

Mahmood, U.

R. Weissleder, C.-H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[Crossref]

Mai, H.-X.

H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L.-D. Sun, L.-P. You, and C.-H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128, 6426–6436 (2006).
[Crossref]

Maitrejean, S.

Q. le Masne de Chermont, C. Chaneac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. USA 104, 9266–9271 (2007).
[Crossref]

Maity, A. R.

S. K. Bhunia, A. Saha, A. R. Maity, S. C. Ray, and N. R. Jana, “Carbon nanoparticle-based fluorescent bioimaging probes,” Sci. Rep. 3, 1473 (2013).
[Crossref]

Makino, K.

G. Sonavane, K. Tomoda, and K. Makino, “Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size,” Colloids Surf. B 66, 274–280 (2008).
[Crossref]

Makishima, A.

K. Soga, M. Tsuda, S. Sakuragi, H. Inoue, S. Inoue, and A. Makishima, “Effects of chloride introduction on the optical properties and the upconversion emission with 980-nm excitation of Er3+ in ZBLAN fluoride glasses,” J. Non-Cryst. Solids 222, 272–281 (1997).
[Crossref]

Maldiney, T.

C. Rosticher, B. Viana, T. Maldiney, C. Richard, and C. Chaneac, “Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging,” J. Lumin. 170, 460–466 (2016).

E. Teston, Y. Lalatonne, D. Elgrabli, G. Autret, L. Motte, F. Gazeau, D. Scherman, O. Clément, C. Richard, and T. Maldiney, “Design, properties and in-vivo behavior of super-paramagnetic persistent luminescence nanohybrids,” Small 11, 2696–2704 (2015).
[Crossref]

T. Maldiney, B.-T. Doan, D. Alloyeau, M. Bessodes, D. Scherman, and C. Richard, “Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging,” Adv. Funct. Mater. 25, 331–338 (2015).
[Crossref]

S. K. Sharma, D. Gourier, B. Viana, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Persistent luminescence of AB(2)O(4):Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: new biomarkers for in vivo imaging,” Opt. Mater. 36, 1901–1906 (2014).
[Crossref]

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref]

T. Maldiney, B. Ballet, M. Bessodes, D. Scherman, and C. Richard, “Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery,” Nanoscale 6, 13970–13976 (2014).
[Crossref]

A. Bessiere, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26, 1365–1373 (2014).
[Crossref]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2, 261–268 (2012).
[Crossref]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Yla-Herttuala, D. Scherman, and C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjugate Chemistry 23, 472–478 (2012).
[Crossref]

T. Maldiney, A. Lecointre, B. Viana, A. Bessiere, M. Bessodes, D. Gourier, C. Richard, and D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133, 11810–11815 (2011).
[Crossref]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5, 854–862 (2011).
[Crossref]

Malkamaki, M.

Man, C. W.-Y.

J. Jin, Y.-J. Gu, C. W.-Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.-Y. Lee, S. H. Cheng, and W.-T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5, 7838–7847 (2011).
[Crossref]

Man, H.

J. Shi, X. Sun, J. Li, H. Man, J. Shen, Y. Yu, and H. Zhang, “Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging,” Biomaterials 37, 260–270 (2015).
[Crossref]

X. Fu, C. Liu, J. Shi, H. Man, J. Xu, and H. Zhang, “Long persistent near infrared luminescence nanoprobes LiGa5O8:Cr3+-PEG-OCH3 for in vivo imaging,” Opt. Mater. 36, 1792–1797 (2014).
[Crossref]

Mancini, M. C.

A. M. Smith, M. C. Mancini, and S. Nie, “Second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref]

Manseau, M.-P.

J.-C. Boyer, M.-P. Manseau, J. I. Murray, and F. C. J. M. van Veggel, “Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800  nm) biolabeling within the biological window,” Langmuir 26, 1157–1164 (2009).
[Crossref]

Mao, C.

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J. Phys. Chem. C 113, 19021–19027 (2009).
[Crossref]

Mao, C.-B.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-Excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles,” ACS Nano 3, 1580–1586 (2009).
[Crossref]

Mao, H.

M. N. Rhyner, A. M. Smith, X. H. Gao, H. Mao, L. L. Yang, and S. M. Nie, “Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging,” Nanomedicine 1, 209–217 (2006).
[Crossref]

Marcus, A. I.

G. Ruan, A. Agrawal, A. I. Marcus, and S. Nie, “Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding,” J. Am. Chem. Soc. 129, 14759–14766 (2007).
[Crossref]

Marcus, R.

P. A. Frantsuzov and R. Marcus, “Explanation of quantum dot blinking without the long-lived trap hypothesis,” Phys. Rev. B 72, 155321 (2005).
[Crossref]

Marcus, R. A.

P. Frantsuzov, M. Kuno, B. Janko, and R. A. Marcus, “Universal emission intermittency in quantum dots, nanorods and nanowires,” Nat. Phys. 4, 519–522 (2008).
[Crossref]

Martin, J.

J. Wilcoxon, J. Martin, F. Parsapour, B. Wiedenman, and D. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys. 108, 9137–9143 (1998).
[Crossref]

Martín, I.

P. Haro-González, L. Martínez-Maestro, I. Martín, J. García-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
[Crossref]

Martín Rodríguez, E.

D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6, 9494–9530 (2014).
[Crossref]

Martínez Maestro, L.

D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6, 9494–9530 (2014).
[Crossref]

Martínez-Maestro, L.

P. Haro-González, L. Martínez-Maestro, I. Martín, J. García-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
[Crossref]

Masumoto, Y.

Y. Masumoto and T. Takagahara, Semiconductor Quantum Dots: Physics, Spectroscopy and Applications (Springer, 2002).

Mathur, S.

E. Hemmer, Y. Kohl, V. Colquhoun, H. Thielecke, K. Soga, and S. Mathur, “Probing cytotoxicity of gadolinium hydroxide nanostructures,” J. Phys. Chem. B 114, 4358–4365 (2010).
[Crossref]

Matsumura, Y.

Y. Matsumura and H. N. Ananthaswamy, “Toxic effects of ultraviolet radiation on the skin,” Toxicol. Appl. Pharmacol. 195, 298–308 (2004).
[Crossref]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143, 2670–2673 (1996).
[Crossref]

Mattmann, E.

S. Blahuta, A. Bessiere, B. Viana, V. Ouspenski, E. Mattmann, J. Lejay, and D. Gourier, “Defects identification and effects of annealing on Lu2(1−x)Y2xSiO5 (LYSO) single crystals for scintillation application,” Materials 4, 1224–1237 (2011).
[Crossref]

Mattoussi, H.

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21, 47–51 (2003).
[Crossref]

B. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. Heine, H. Mattoussi, R. Ober, K. Jensen, and M. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

Maurer, P.

G. Kucsko, P. Maurer, N. Y. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Maurer-Jones, M. A.

S. A. Love, M. A. Maurer-Jones, J. W. Thompson, Y.-S. Lin, and C. L. Haynes, “Assessing nanoparticle toxicity,” Ann. Rev. Anal. Chem. 5, 181–205 (2012).
[Crossref]

Mauro, J. M.

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21, 47–51 (2003).
[Crossref]

Mayer, L. D.

C. Allen, N. Dos Santos, R. Gallagher, G. N. C. Chiu, Y. Shu, W. M. Li, S. A. Johnstone, A. S. Janoff, L. D. Mayer, M. S. Webb, and M. B. Bally, “Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol),” Biosci. Rep. 22, 225–250 (2002).
[Crossref]

McClellan, K. J.

L. Casillas-Trujillo, D. A. Andersson, B. Dorado, M. Nikl, K. E. Sickafus, K. J. McClellan, and C. R. Stanek, “Intrinsic defects, nonstoichiometry, and aliovalent doping of A2+B4+O3 perovskite scintillators,” Phys. Status Solidi B 251, 2279–2286 (2014).
[Crossref]

C. R. Stanek, C. Jiang, S. K. Yadav, K. J. McClellan, B. P. Uberuaga, D. A. Andersson, and M. Nikl, “The effect of Ga-doping on the defect chemistry of RE3Al5O12 garnets,” Phys. Status Solidi B 250, 244–248 (2013).
[Crossref]

McDonald, J. F.

E. B. Dickerson, E. C. Dreaden, X. H. Huang, I. H. El-Sayed, H. H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269, 57–66 (2008).
[Crossref]

Mehlmann, M.

C. Betz, M. Mehlmann, K. Rick, H. Stepp, G. Grevers, R. Baumgartner, and A. Leunig, “Autofluorescence imaging and spectroscopy of normal and malignant mucosa in patients with head and neck cancer,” Lasers Surg. Med. 25, 323–334 (1999).
[Crossref]

Meng, J.

J. Shan, J. Chen, J. Meng, J. Collins, W. Soboyejo, J. S. Friedberg, and Y. Ju, “Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors,” J. Appl. Phys. 104, 094308 (2008).
[Crossref]

Mertz, J.

J. Mertz, Introduction to Optical Microscopy (Roberts, 2010).

Messing, M. E.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6, 4788–4795 (2012).
[Crossref]

Mi, C.

M. Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, and S. Xu, “NIR-responsive silica-coated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells,” J. Phys. Chem. C 113, 19021–19027 (2009).
[Crossref]

Mi, C.-C.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-Excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles,” ACS Nano 3, 1580–1586 (2009).
[Crossref]

Michalet, X.

F. Pinaud, X. Michalet, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Iyer, and S. Weiss, “Advances in fluorescence imaging with quantum dot bio-probes,” Biomaterials 27, 1679–1687 (2006).
[Crossref]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[Crossref]

Mieog, J. S. D.

B. E. Schaafsma, J. S. D. Mieog, M. Hutteman, J. R. Van der Vorst, P. J. K. Kuppen, C. W. G. M. Lowik, J. V. Frangioni, C. J. H. Van de Velde, and A. L. Vahrmeijer, “The clinical use of Indocyanine Green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104, 323–332 (2011).
[Crossref]

Mikeska, K. R.

K. Soga, W. Wang, R. E. Riman, J. B. Brown, and K. R. Mikeska, “Luminescent properties of nanostructured Dy3+-and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide,” J. Appl. Phys. 93, 2946–2951 (2003).
[Crossref]

Mikulec, F. V.

B. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. Heine, H. Mattoussi, R. Ober, K. Jensen, and M. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

Millan, A.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

Milliron, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nano 9, 300–305 (2014).
[Crossref]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10  nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6, 2686–2692 (2012).
[Crossref]

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci USA. 106, 10917–10921 (2009).
[Crossref]

Milner, T. E.

Milowsky, M.

N. H. Bander, E. J. Trabulsi, L. Kostakoglu, D. Yao, S. Vallabhajosula, P. Smith-Jones, M. A. Joyce, M. Milowsky, D. M. Nanus, and S. J. Goldsmith, “Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen,” J. Urol. 170, 1717–1721 (2003).
[Crossref]

Min, J.

P. D. Nguyen, S. J. Son, and J. Min, “Upconversion nanoparticles in bioassays, optical imaging and therapy,” J. Nanosci. Nanotechnol. 14, 157–174 (2014).
[Crossref]

Mishra, B.

B. Mishra, B. B. Patel, and S. Tiwari, “Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery,” Nanomed. Nanotechnol. Biol. Med. 6, 9–24 (2010).
[Crossref]

Mishra, J. P.

Y.-J. Chuang, Z. Zhen, F. Zhang, F. Liu, J. P. Mishra, W. Tang, H. Chen, X. Huang, L. Wang, X. Chen, J. Xie, and Z. Pan, “Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging,” Theranostics 4, 1112–1122 (2014).
[Crossref]

Miyagi, Y.

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. Moossa, and R. M. Hoffman, “Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression,” Cancer Res. 57, 2042–2047 (1997).

Mochalin, V. N.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7, 11–23 (2012).
[Crossref]

Moghe, P.

D. Naczynski, M. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. Roth, R. Riman, and P. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref]

Moghe, P. V.

D. J. Naczynski, M. C. Tan, R. E. Riman, and P. V. Moghe, “Rare earth nanoprobes for functional biomolecular imaging and theranostics,” J. Mater. Chem. B 2, 2958–2973 (2014).
[Crossref]

Mohamed, M. B.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).
[Crossref]

Möller, M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[Crossref]

Monopoli, M. P.

M. P. Monopoli, C. Aberg, A. Salvati, and K. A. Dawson, “Biomolecular coronas provide the biological identity of nanosized materials,” Nat. Nanotechnol. 7, 779–786 (2012).
[Crossref]

Monro, T. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nano 8, 729–734 (2013).
[Crossref]

Moon, W. K.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

Mooradian, A.

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22, 185–187 (1969).
[Crossref]

Moore, H. P.

F. Pinaud, D. King, H. P. Moore, and S. Weiss, “Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides,” J. Am. Chem. Soc. 126, 6115–6123 (2004).
[Crossref]

Moossa, A.

M. Yang, P. Jiang, F.-X. Sun, S. Hasegawa, E. Baranov, T. Chishima, H. Shimada, A. Moossa, and R. M. Hoffman, “A fluorescent orthotopic bone metastasis model of human prostate cancer,” Cancer Res. 59, 781–786 (1999).

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. Moossa, and R. M. Hoffman, “Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression,” Cancer Res. 57, 2042–2047 (1997).

Morales, J.

J. S. Donner, S. A. Thompson, C. Alonso-Ortega, J. Morales, L. G. Rico, S. I. C. O. Santos, and R. Quidant, “Imaging of plasmonic heating in a living organism,” ACS Nano 7, 8666–8672 (2013).
[Crossref]

Moronne, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[Crossref]

Morrissey, D. M.

N. Schülke, O. A. Varlamova, G. P. Donovan, D. Ma, J. P. Gardner, D. M. Morrissey, R. R. Arrigale, C. Zhan, A. J. Chodera, K. G. Surowitz, P. J. Maddon, W. D. W. Heston, and W. C. Olson, “The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy,” Proc. Natl. Acad. Sci. USA 100, 12590–12595 (2003).
[Crossref]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[Crossref]

Motte, L.

E. Teston, Y. Lalatonne, D. Elgrabli, G. Autret, L. Motte, F. Gazeau, D. Scherman, O. Clément, C. Richard, and T. Maldiney, “Design, properties and in-vivo behavior of super-paramagnetic persistent luminescence nanohybrids,” Small 11, 2696–2704 (2015).
[Crossref]

Mou, C.-Y.

N.-T. Chen, S.-H. Cheng, C.-P. Liu, J. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling,” Int. J. Mol. Sci. 13, 16598–16623 (2012).
[Crossref]

T.-H. Chung, S.-H. Wu, M. Yao, C.-W. Lu, Y.-S. Lin, Y. Hung, C.-Y. Mou, Y.-C. Chen, and D.-M. Huang, “The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells,” Biomaterials 28, 2959–2966 (2007).
[Crossref]

Muhr, V.

V. Muhr, S. Wilhelm, T. Hirsch, and O. S. Wolfbeis, “Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces,” Acc. Chem. Res. 47, 3481–3493 (2014).
[Crossref]

Mulvaney, P.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[Crossref]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Muñoz Javier, A.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5, 585–589 (2005).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “New long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. 143, 2670–2673 (1996).
[Crossref]

Murphy, C. J.

E. C. Dreaden, A. M. Alkilany, X. H. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41, 2740–2779 (2012).
[Crossref]

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008).
[Crossref]

Murray, J. I.

J.-C. Boyer, M.-P. Manseau, J. I. Murray, and F. C. J. M. van Veggel, “Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800  nm) biolabeling within the biological window,” Langmuir 26, 1157–1164 (2009).
[Crossref]

Na, H. B.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21, 4467–4471 (2009).
[Crossref]

Naccache, R.

L. M. Maestro, E. M. Rodriguez, F. Vetrone, R. Naccache, H. L. Ramirez, D. Jaque, J. A. Capobianco, and J. G. Solé, “Nanoparticles for highly efficient multiphoton fluorescence bioimaging,” Opt. Express 18, 23544–23553 (2010).
[Crossref]

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. I.-D. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé, “CdSe quantum dots for two-photon fluorescence thermal imaging,” Nano Lett. 10, 5109–5115 (2010).
[Crossref]

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodriguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2, 495–498 (2010).
[Crossref]

Naczynski, D.

D. Naczynski, M. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. Roth, R. Riman, and P. Moghe, “Rare-earth-doped biological composites as in vivo shortwave infrared reporters,” Nat. Commun. 4, 2199 (2013).
[Crossref]

Naczynski, D. J.

D. J. Naczynski, M. C. Tan, R. E. Riman, and P. V. Moghe, “Rare earth nanoprobes for functional biomolecular imaging and theranostics,” J. Mater. Chem. B 2, 2958–2973 (2014).
[Crossref]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126, 12730–12731 (2004).
[Crossref]

Nagasaki, Y.

M. Kamimura, N. Kanayama, K. Tokuzen, K. Soga, and Y. Nagasaki, “Near-infrared (1550  nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly (4-vinylbenzylphosphonate),” Nanoscale 3, 3705–3713 (2011).
[Crossref]

Y. Kawasaki, Y. Gotoh, K. Tokuzen, M. Kamimura, T. Komeno, M. Tomatsu, R. Todoroki, Y. Nagasaki, K. Soga, and F. Tashiro, “Selective tumor imaging by a novel tumor specific aralin-infrared-to-visible phosphor conjugate,” J. Phys. Conf. Ser. 191, 012001 (2009).

Nagata, H.

T. Zako, H. Nagata, N. Terada, A. Utsumi, M. Sakono, M. Yohda, H. Ueda, K. Soga, and M. Maeda, “Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging,” Biochem. Biophys. Res. Commun. 381, 54–58 (2009).
[Crossref]

Nair, R.

T. Gokus, R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. Novoselov, A. Geim, A. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3, 3963–3968 (2009).
[Crossref]

Nakanishi, T.

J. Ueda, S. Tanabe, and T. Nakanishi, “Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement,” J. Appl. Phys. 110, 053102 (2011).

Nam, J.

J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung, S. Jung, Y. Park, and S. Kim, “Surface engineering of inorganic nanoparticles for imaging and therapy,” Adv. Drug Delivery Rev. 65, 622–648 (2013).
[Crossref]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[Crossref]

Nanus, D. M.

N. H. Bander, E. J. Trabulsi, L. Kostakoglu, D. Yao, S. Vallabhajosula, P. Smith-Jones, M. A. Joyce, M. Milowsky, D. M. Nanus, and S. J. Goldsmith, “Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen,” J. Urol. 170, 1717–1721 (2003).
[Crossref]

Nel, A. E.

M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, and J. I. Zink, “Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery,” ACS Nano 2, 889–896 (2008).
[Crossref]

Ness, J. M.

J. M. Ness, R. S. Akhtar, C. B. Latham, and K. A. Roth, “Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection,” J. Histochem. Cytochem. 51, 981–987 (2003).
[Crossref]

Nguyen, P. D.

P. D. Nguyen, S. J. Son, and J. Min, “Upconversion nanoparticles in bioassays, optical imaging and therapy,” J. Nanosci. Nanotechnol. 14, 157–174 (2014).
[Crossref]

Nie, S.

A. M. Smith, M. C. Mancini, and S. Nie, “Second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[Crossref]

G. Ruan, A. Agrawal, A. I. Marcus, and S. Nie, “Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding,” J. Am. Chem. Soc. 129, 14759–14766 (2007).
[Crossref]

A. M. Smith, S. Dave, S. Nie, L. True, and X. Gao, “Multicolor quantum dots for molecular diagnostics of cancer,” Expert Rev. Mol. Diagn. 6, 231–244 (2006).
[Crossref]

A. M. Smith and S. Nie, “Chemical analysis and cellular imaging with quantum dots,” Analyst 129, 672–677 (2004).
[Crossref]

W. C. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016–2018 (1998).
[Crossref]

Nie, S. M.

M. N. Rhyner, A. M. Smith, X. H. Gao, H. Mao, L. L. Yang, and S. M. Nie, “Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging,” Nanomedicine 1, 209–217 (2006).
[Crossref]

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).
[Crossref]

Niedbala, R. S.

H. J. M. A. A. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala, and H. J. Tanke, “Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology,” Anal. Biochem. 267, 30–36 (1999).
[Crossref]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[Crossref]

Niittykoski, J.

J. Holsa, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloys Compd. 374, 56–59 (2004).
[Crossref]

Nikitenko, S.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu, Dy powders: evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
[Crossref]

Nikl, M.

L. Casillas-Trujillo, D. A. Andersson, B. Dorado, M. Nikl, K. E. Sickafus, K. J. McClellan, and C. R. Stanek, “Intrinsic defects, nonstoichiometry, and aliovalent doping of A2+B4+O3 perovskite scintillators,” Phys. Status Solidi B 251, 2279–2286 (2014).
[Crossref]

C. R. Stanek, C. Jiang, S. K. Yadav, K. J. McClellan, B. P. Uberuaga, D. A. Andersson, and M. Nikl, “The effect of Ga-doping on the defect chemistry of RE3Al5O12 garnets,” Phys. Status Solidi B 250, 244–248 (2013).
[Crossref]

Nirmal, M.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B 54, 4843–4856 (1996).
[Crossref]

M. Nirmal, D. Norris, M. Kuno, M. Bawendi, A. L. Efros, and M. Rosen, “Observation of the ‘dark exciton’ in CdSe quantum dots,” Phys. Rev. Lett. 75, 3728–3731 (1995).
[Crossref]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[Crossref]

Niu, K.-Y.

S.-L. Hu, K.-Y. Niu, J. Sun, J. Yang, N.-Q. Zhao, and X.-W. Du, “One-step synthesis of fluorescent carbon nanoparticles by laser irradiation,” J. Mater. Chem. 19, 484–488 (2009).
[Crossref]

Noh, H.

G. Kucsko, P. Maurer, N. Y. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Noireaux, V.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298, 1759–1762 (2002).
[Crossref]

Norris, D.

D. Norris, A. L. Efros, M. Rosen, and M. Bawendi, “Size dependence of exciton fine structure in CdSe quantum dots,” Phys. Rev. B 53, 16347–16354 (1996).
[Crossref]

M. Nirmal, D. Norris, M. Kuno, M. Bawendi, A. L. Efros, and M. Rosen, “Observation of the ‘dark exciton’ in CdSe quantum dots,” Phys. Rev. Lett. 75, 3728–3731 (1995).
[Crossref]

Norris, D. J.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science 298, 1759–1762 (2002).
[Crossref]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B 54, 4843–4856 (1996).
[Crossref]

Novoselov, K.

T. Gokus, R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. Novoselov, A. Geim, A. Ferrari, and A. Hartschuh, “Making graphene luminescent by oxygen plasma treatment,” ACS Nano 3, 3963–3968 (2009).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, “Graphene: materials in the flatland (Nobel lecture),” Angew. Chem. Int. Ed. 50, 6986–7002 (2011).

Nyk, M.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8, 3834–3838 (2008).
[Crossref]

O’Brien, T.

H. I. Bicher, F. W. Hetzel, T. S. Sandhu, S. Frinak, P. Vaupel, M. O’Hara, and T. O’Brien, “Effects of hyperthermia on normal and tumor microenvironment,” Radiology 137, 523–530 (1980).
[Crossref]

O’Hara, M.

H. I. Bicher, F. W. Hetzel, T. S. Sandhu, S. Frinak, P. Vaupel, M. O’Hara, and T. O’Brien, “Effects of hyperthermia on normal and tumor microenvironment,” Radiology 137, 523–530 (1980).
[Crossref]

Ober, R.

B. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. Heine, H. Mattoussi, R. Ober, K. Jensen, and M. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).
[Crossref]

Ohuchi, N.

H. Tada, H. Higuchi, T. M. Wanatabe, and N. Ohuchi, “In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice,” Cancer Res. 67, 1138–1144 (2007).
[Crossref]

Ohulchanskyy, T. Y.

G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging,” ACS Nano 6, 8280–8287 (2012).
[Crossref]

G. Chen, T. Y. Ohulchanskyy, S. Liu, W.-C. Law, F. Wu, M. T. Swihart, H. Ågren, and P. N. Prasad, “Core/Shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications,” ACS Nano 6, 2969–2977 (2012).
[Crossref]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8, 3834–3838 (2008).
[Crossref]

Okamoto, H.

K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126, 12730–12731 (2004).
[Crossref]

Okumura, Y.

N. Venkatachalam, Y. Okumura, K. Soga, R. Fukuda, and T. Tsuji, “Bioimaging of M1 cells using ceramic nanophosphors: synthesis and toxicity assay of Y2O3 nanoparticles,” J. Phys. Conf. Ser. 101, 012002 (2009).

Olson, W. C.

N. Schülke, O. A. Varlamova, G. P. Donovan, D. Ma, J. P. Gardner, D. M. Morrissey, R. R. Arrigale, C. Zhan, A. J. Chodera, K. G. Surowitz, P. J. Maddon, W. D. W. Heston, and W. C. Olson, “The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy,” Proc. Natl. Acad. Sci. USA 100, 12590–12595 (2003).
[Crossref]

Onushchenko, A. A.

A. I. Ekimov, Al. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[Crossref]

Orlowski, J.

J. R. Casey, S. Grinstein, and J. Orlowski, “Sensors and regulators of intracellular pH,” Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).
[Crossref]

Ortgies, D.

I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, and D. García, “1.3  μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window,” Nano Res. 8,649–665 (2015).

Osaki, F.

F. Osaki, T. Kanamori, S. Sando, T. Sera, and Y. Aoyama, “A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region,” J. Am. Chem. Soc. 126, 6520–6521 (2004).
[Crossref]

Ostrowski, A. D.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nano 9, 300–305 (2014).
[Crossref]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled synthesis and single-particle imaging of bright, sub-10  nm lanthanide-doped upconverting nanocrystals,” ACS Nano 6, 2686–2692 (2012).