Abstract

Compressive tomography consists of estimation of high-dimensional objects from lower dimensional measurements. We review compressive tomography using radiation fields, including geometric, wave, and statistical field models. We find coded apertures most appropriate for compressive coding with geometric models, spatial and frequency subsampling most appropriate for wave models, and temporal modulation most appropriate for statistical models. In each case, we show that compressive measurement enables snapshot 3D imaging, eliminating or reducing the need to sacrifice temporal resolution in multidimensional imaging.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compressed sampling strategies for tomography

Yan Kaganovsky, Daheng Li, Andrew Holmgren, HyungJu Jeon, Kenneth P. MacCabe, David G. Politte, Joseph A. O’Sullivan, Lawrence Carin, and David J. Brady
J. Opt. Soc. Am. A 31(7) 1369-1394 (2014)

Coding for compressive focal tomography

David J. Brady and Daniel L. Marks
Appl. Opt. 50(22) 4436-4449 (2011)

Sampling and processing for compressive holography [Invited]

Sehoon Lim, Daniel L. Marks, and David J. Brady
Appl. Opt. 50(34) H75-H86 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).
  2. C. E. Shannon, “Communications in the presence of noise,” Proc. IRE 37, 10–21 (1949).
    [Crossref]
  3. Y. Chen and Y. Chi, “Robust spectral compressed sensing via structured matrix completion,” IEEE Trans. Inf. Theory 60, 6576–6601 (2014).
    [Crossref]
  4. G. Tang, B. Bhaskar, P. Shah, and B. Recht, “Compressed sensing off the grid,” IEEE Trans. Inf. Theory 59, 7465–7490 (2013).
    [Crossref]
  5. A. Wagadarikar, N. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17, 6368–6388 (2009).
    [Crossref]
  6. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011).
    [Crossref]
  7. S. Mallat, A Wavelet Tour of Signal Processing (Elsevier/Academic, 2009).
  8. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer-Verlag, 2010).
  9. A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuits Syst. 24, 652–654 (1977).
    [Crossref]
  10. D. Z. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications (World Scientific, 2000).
  11. M. Harwit and N. Sloane, Hadamard Transform Optics (Academic, 1979).
  12. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
    [Crossref]
  13. E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
    [Crossref]
  14. E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
    [Crossref]
  15. P. Griffiths and J. De Haseth, “Fourier Transform Infrared Spectrometry,” in Chemical Analysis: a Series of Monographs on Analytical Chemistry and Its Applications (Wiley, 2007), Vol. 171.
  16. D. L. Marks, R. A. Stack, and D. J. Brady, “Three-dimensional coherence imaging in the Fresnel domain,” Appl. Opt. 38, 1332–1342 (1999).
    [Crossref]
  17. S. R. Gottesman and E. E. Fenimore, “New family of binary arrays for coded aperture imaging,” Appl. Opt. 28, 4344–4352 (1989).
    [Crossref]
  18. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).
    [Crossref]
  19. D. L. Marks, R. A. Stack, D. J. Brady, and J. van der Gracht, “Three-dimensional tomography using a cubic-phase plate extended depth-of-field system,” Opt. Lett. 24, 253–255 (1999).
    [Crossref]
  20. D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
    [Crossref]
  21. D. J. Brady, “Multiplex sensors and the constant radiance theorem,” Opt. Lett. 27, 16–18 (2002).
    [Crossref]
  22. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
    [Crossref]
  23. D. J. Brady, N. Pitsianis, X. Sun, and P. Potuluri, “Compressive measurement and signal inference,” U.S. patent7,283,231 (Oct.16, 2007).
  24. M. Neifeld and P. Shankar, “Feature-specific imaging,” Appl. Opt. 42, 3379–3389 (2003).
    [Crossref]
  25. D. J. Brady, N. Pitsianis, and X. Sun, “Reference structure tomography,” J. Opt. Soc. Am. A 21, 1140–1147 (2004).
    [Crossref]
  26. S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process. 56, 2346–2356 (2008).
    [Crossref]
  27. R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
    [Crossref]
  28. M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: algorithm and performance bounds,” IEEE Trans. Signal Process. 58, 6140–6155 (2010).
    [Crossref]
  29. Y. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: uncertainty relations and efficient recovery,” IEEE Trans. Signal Process. 58, 3042–3054 (2010).
    [Crossref]
  30. R. Baraniuk and M. Wakin, “Random projections of smooth manifolds,” Found. Comput. Math. 9, 51–77 (2009).
    [Crossref]
  31. S. Gleichman and Y. C. Eldar, “Blind compressed sensing,” IEEE Trans. Inf. Theory 57, 6958–6975 (2011).
    [Crossref]
  32. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 1182–1195 (2007).
    [Crossref]
  33. D. M. Healy and J. B. Weaver, “Adapted wave-form encoding for magnetic-resonance-imaging,” IEEE Eng. Med. Biol. Mag. 14(5), 621–638 (1995).
    [Crossref]
  34. R. Rangayyan, A. P. Dhawan, and R. Gordon, “Algorithms for limited-view computed-tomography—an annotated-bibliography and a challenge,” Appl. Opt. 24, 4000–4012 (1985).
    [Crossref]
  35. O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30, 1129–1142 (2011).
    [Crossref]
  36. M. Süzen, A. Giannoula, and T. Durduran, “Compressed sensing in diffuse optical tomography,” Opt. Express 18, 23676–23690 (2010).
    [Crossref]
  37. D. J. Brady, D. L. Marks, K. P. MacCabe, and J. A. O’Sullivan, “Coded apertures for x-ray scatter imaging,” Appl. Opt. 52, 7745–7754 (2013).
    [Crossref]
  38. D. J. Brady and D. L. Marks, “Coding for compressive focal tomography,” Appl. Opt. 50, 4436–4449 (2011).
    [Crossref]
  39. P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
    [Crossref]
  40. D. Kittle, K. Choi, A. Wagadarikar, and D. J. Brady, “Multiframe image estimation for coded aperture snapshot spectral imagers,” Appl. Opt. 49, 6824–6833 (2010).
    [Crossref]
  41. X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” arXiv:1302.3446 (2013).
  42. A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58, 1256–1259 (1968).
    [Crossref]
  43. A. T. Friberg, “Existence of a radiance function for finite planar sources of arbitrary states of coherence,” J. Opt. Soc. Am. 69, 192–198 (1979).
    [Crossref]
  44. D. C. Youla and H. Webb, “Image restoration by the method of convex projections: part 1 theory,” IEEE Trans. Med. Imag. 1, 81–94 (1982).
    [Crossref]
  45. M. I. Sezan and H. Stark, “Image restoration by the method of convex projections: part 2 applications and numerical results,” IEEE Trans. Med. Imag. 1, 95–101 (1982).
    [Crossref]
  46. M. H. Li, H. Q. Yang, and H. Kudo, “An accurate iterative reconstruction algorithm for sparse objects: application to 3D blood vessel reconstruction from a limited number of projections,” Phys. Med. Biol. 47, 2599–2609 (2002).
    [Crossref]
  47. J. W. Stayman, W. Zbijewski, Y. Otake, A. Uneri, S. Schafer, J. Lee, J. L. Prince, and J. H. Siewerdsen, “Penalized-likelihood reconstruction for sparse data acquisitions with unregistered prior images and compressed sensing penalties,” Proc. SPIE 7961, 79611L (2011).
    [Crossref]
  48. K. Choi, J. Wang, L. Zhu, T. S. Suh, S. Boyd, and L. Xing, “Compressed sensing based cone-beam computed tomography reconstruction with a first-order method,” Med. Phys. 37, 5113–5125 (2010).
    [Crossref]
  49. E. Y. Sidky and X. C. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777–4807 (2008).
    [Crossref]
  50. E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).
  51. E. Hansis, D. Schafer, O. Dossel, and M. Grass, “Evaluation of iterative sparse object reconstruction from few projections for 3-D rotational coronary angiography,” IEEE Trans. Med. Imag. 27, 1548–1555 (2008).
    [Crossref]
  52. G. H. Chen, J. Tang, and S. H. Leng, “Prior image constrained compressed sensing: a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35, 660–663 (2008).
    [Crossref]
  53. J. Song, Q. H. Liu, G. A. Johnson, and C. T. Badea, “Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-CT,” Med. Phys. 34, 4476–4483 (2007).
    [Crossref]
  54. M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 417–424.
  55. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).
  56. M. Golay, “Multislit spectroscopy,” J. Opt. Soc. Am. 39, 437–444 (1949).
    [Crossref]
  57. L. Mertz, Transformations in Optics (Wiley, 1965).
  58. W. E. Smith, R. G. Paxman, and H. H. Barrett, “Image-reconstruction from coded data. 1. Reconstruction algorithms and experimental results,” J. Opt. Soc. Am. A 2, 491–500 (1985).
    [Crossref]
  59. R. G. Paxman, H. H. Barrett, W. E. Smith, and T. D. Milster, “Image-reconstruction from coded data. 2. Code design,” J. Opt. Soc. Am. A 2, 501–509 (1985).
    [Crossref]
  60. J. F. Crouzet, “3D coded aperture imaging, ill-posedness and link with incomplete data Radon transform,” Inverse Probl. Imag. 5, 341–353 (2011).
    [Crossref]
  61. P. Potuluri, M. B. Xu, and D. J. Brady, “Imaging with random 3D reference structures,” Opt. Express 11, 2134–2141 (2003).
    [Crossref]
  62. A. Sinha and D. J. Brady, “Size and shape recognition using measurement statistics and random 3D reference structures,” Opt. Express 11, 2606–2618 (2003).
    [Crossref]
  63. P. K. Agarwal, D. Brady, and J. Matousek, “Segmenting object space by geometric reference structures,” ACM Trans. Sens. Netw. 2, 455–465 (2006).
    [Crossref]
  64. K. Choi and D. J. Brady, “Coded aperture computed tomography,” Proc. SPIE 7468, 74680B (2009).
    [Crossref]
  65. K. MacCabe, K. Krishnamurthy, A. Chawla, D. Marks, E. Samei, and D. Brady, “Pencil beam coded aperture x-ray scatter imaging,” Opt. Express 20, 16310–16320 (2012).
    [Crossref]
  66. W. Carson, M. Chen, M. Rodrigues, R. Calderbank, and L. Carin, “Communications-inspired projection design with application to compressive sensing,” arXiv:1206.1973 (2012).
  67. H. Barrett and K. Myers, Foundations of Image Science (Wiley-Interscience, 2004).
  68. E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969–985 (2007).
    [Crossref]
  69. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Taylor & Francis, 1998).
  70. Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31, 1369–1394 (2014).
    [Crossref]
  71. S. Uttam, N. A. Goodman, M. A. Neifeld, C. Kim, R. John, J. Kim, and D. Brady, “Optically multiplexed imaging with superposition space tracking,” Opt. Express 17, 1691–1713 (2009).
    [Crossref]
  72. R. F. Marcia, C. Kim, C. Eldeniz, J. Kim, D. J. Brady, and R. M. Willett, “Superimposed video disambiguation for increased field of view,” Opt. Express 16, 16352–16363 (2008).
    [Crossref]
  73. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027 (2007).
    [Crossref]
  74. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008).
    [Crossref]
  75. J.-P. Schlomka, A. Harding, U. van Stevendaal, M. Grass, and G. L. Harding, “Coherent scatter computed tomography: a novel medical imaging technique,” Proc. SPIE 5030, 256–265 (2003).
    [Crossref]
  76. K. P. MacCabe, A. D. Holmgren, M. P. Tornai, and D. J. Brady, “Snapshot 2D tomography via coded aperture x-ray scatter imaging,” Appl. Opt. 52, 4582–4589 (2013).
    [Crossref]
  77. J. Delfs and J. P. Schlomka, “Energy-dispersive coherent scatter computed tomography,” Appl. Phys. Lett. 88, 243506 (2006).
    [Crossref]
  78. J. A. Greenberg, K. Krishnamurthy, and D. Brady, “Snapshot molecular imaging using coded energy-sensitive detection,” Opt. Express 21, 25480–25491 (2013).
    [Crossref]
  79. J. Greenberg, K. Krishnamurthy, and D. Brady, “Compressive single-pixel snapshot x-ray diffraction imaging,” Opt. Lett. 39, 111–114 (2014).
    [Crossref]
  80. M. Slaney and A. Kak, Principles of Computerized Tomographic Imaging (SIAM, 1988).
  81. E. Wolf, “Principles and development of diffraction tomography,” in Trends in Optics (Academic, 1996), Vol. 3, pp. 83–110.
  82. D. C. Munson, J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE 71, 917–925 (1983).
    [Crossref]
  83. W. H. Carter, “Computational reconstruction of scattering objects from holograms,” J. Opt. Soc. Am. 60, 306–314 (1970).
    [Crossref]
  84. A. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982).
    [Crossref]
  85. A. Devaney, “Geophysical diffraction tomography,” IEEE Trans. Geosci. Remote Sens. GE-22, 3–13 (1984).
    [Crossref]
  86. K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt. 49, H1–H10 (2010).
    [Crossref]
  87. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
    [Crossref]
  88. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
    [Crossref]
  89. L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and compressed sensing in radar imaging,” Proc. IEEE 98, 1006–1020 (2010).
    [Crossref]
  90. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974–976 (2008).
    [Crossref]
  91. R. Baraniuk and P. Steeghs, “Compressive radar imaging,” in IEEE Radar Conference, April2007, pp. 128–133.
  92. V. M. Patel, G. R. Easley, D. Healy, and R. Chellappa, “Compressed synthetic aperture radar,” IEEE J. Sel. Top. Quantum Electron. 4, 244–254 (2010).
  93. M. A. Herman and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE Trans. Signal Process. 57, 2275–2284 (2009).
    [Crossref]
  94. J. H. Ender, “On compressive sensing applied to radar,” Signal Process. 90, 1402–1414 (2010).
    [Crossref]
  95. Y. Yu, A. P. Petropulu, and V. Poor, “Mimo radar using compressive sampling,” IEEE J. Sel. Top. Quantum Electron. 4, 146–163 (2010).
  96. A. C. Gurbuz, J. H. McClellan, and W. R. Scott, “Compressive sensing for subsurface imaging using ground penetrating radar,” Signal Process. 89, 1959–1972 (2009).
    [Crossref]
  97. A. Budillon, A. Evangelista, and G. Schirinzi, “Three-dimensional SAR focusing from multipass signals using compressive sampling,” IEEE Trans. Geosci. Remote Sens. 49, 488–499 (2011).
    [Crossref]
  98. L. Li, W. Zhang, and F. Li, “Compressive diffraction tomography for weakly scattering,” arXiv:0904.2695 (2009).
  99. Y. Rivenson, A. Stern, and B. Javidi, “Overview of compressive sensing techniques applied in holography,” Appl. Opt. 52, A423–A432 (2013).
    [Crossref]
  100. Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel holography,” J. Display Technol. 6, 506–509 (2010).
    [Crossref]
  101. M. Marim, E. Angelini, J.-C. Olivo-Marin, and M. Atlan, “Off-axis compressed holographic microscopy in low-light conditions,” Opt. Lett. 36, 79–81 (2011).
    [Crossref]
  102. M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Opt. Lett. 35, 871–873 (2010).
    [Crossref]
  103. Y. Liu, L. Tian, J. W. Lee, H. Y. H. Huang, M. S. Triantafyllou, and G. Barbastathis, “Scanning-free compressive holography for object localization with subpixel accuracy,” Opt. Lett. 37, 3357–3359 (2012).
    [Crossref]
  104. R. Horisaki, J. Tanida, A. Stern, and B. Javidi, “Multidimensional imaging using compressive Fresnel holography,” Opt. Lett. 37, 2013–2015 (2012).
    [Crossref]
  105. Y. Rivenson, A. Rot, S. Balber, A. Stern, and J. Rosen, “Recovery of partially occluded objects by applying compressive Fresnel holography,” Opt. Lett. 37, 1757–1759 (2012).
    [Crossref]
  106. C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
    [Crossref]
  107. D. Wehner, High-Resolution Radar, Artech House Radar Library (Artech House, 1995).
  108. M. F. Insana and T. J. Hall, “Parametric ultrasound imaging from backscatter coefficient measurements: image formation and interpretation,” Ultrason. Imaging 12, 245–267 (1990).
    [Crossref]
  109. A. Mrozack, M. Heimbeck, D. L. Marks, J. Richard, H. O. Everitt, and D. J. Brady, “Adaptive millimeter-wave synthetic aperture imaging for compressive sampling of sparse scenes,” Opt. Express 22, 13515–13530 (2014).
    [Crossref]
  110. J. Goodman, Introduction to Fourier Optics, McGraw-Hill Series in Electrical and Computer Engineering (McGraw-Hill, 1996).
  111. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).
  112. A. D. Lanterman, “Statistical radar imaging of diffuse and specular targets using an expectation-maximization algorithm,” Proc. SPIE 4053, 20–31 (2000).
    [Crossref]
  113. T. Schulz, “Penalized maximum-likelihood estimation of covariance matrices with linear structure,” IEEE Trans. Signal Process. 45, 3027–3038 (1997).
    [Crossref]
  114. A. Mrozack, K. Krishnamurthy, G. Lipworth, D. Smith, and D. Brady, “Imaging of diffuse objects with dispersive imagers,” in 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September2013.
  115. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007).
    [Crossref]
  116. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027–1037 (2006).
    [Crossref]
  117. E. Lebed, P. J. Mackenzie, M. V. Sarunic, and F. M. Beg, “Rapid volumetric OCT image acquisition using compressive sampling,” Opt. Express 18, 21003–21012 (2010).
    [Crossref]
  118. E. Candes, “The restricted isometry property and its implications for compressed sensing,” C. R. Math. 346, 589–592 (2008).
    [Crossref]
  119. G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
    [Crossref]
  120. J. Volakis, Antenna Engineering Handbook, 4th ed. (McGraw-Hill, 2007).
  121. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  122. M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).
  123. A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 2008).
  124. S. Basty, M. A. Neifeld, D. Brady, and S. Kraut, “Nonlinear estimation for interferometric imaging,” Opt. Commun. 228, 249–261 (2003).
    [Crossref]
  125. A. A. Wagadarikar, D. L. Marks, K. Choi, R. Horisaki, and D. J. Brady, “Imaging through turbulence using compressive coherence sensing,” Opt. Lett. 35, 838–840 (2010).
    [Crossref]
  126. D. L. Marks, R. A. Stack, and D. J. Brady, “Digital refraction distortion correction with an astigmatic coherence sensor,” Appl. Opt. 41, 6050–6054 (2002).
    [Crossref]
  127. C. Wöhler, 3D Computer Vision (Springer, 2012).
  128. D. L. Marks, R. Stack, A. J. Johnson, D. J. Brady, and D. C. Munson, “Cone-beam tomography with a digital camera,” Appl. Opt. 40, 1795–1805 (2001).
    [Crossref]
  129. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
    [Crossref]
  130. S. Chaudhuri and A. N. Rajagopalan, Depth from Defocus: A Real Aperture Imaging Approach (Springer, 1999).
  131. W. B. Seales and S. Dutta, “Everywhere-in-focus image fusion using controllable cameras,” Proc. SPIE 2905, 227–234 (1996).
    [Crossref]
  132. H. A. Eltoukhy and S. Kavusi, “A computationally efficient algorithm for multi-focus image reconstruction,” Proc. SPIE 5017, 332–341 (2003).
    [Crossref]
  133. S. T. Li, J. T. Y. Kwok, I. W. H. Tsang, and Y. N. Wang, “Fusing images with different focuses using support vector machines,” IEEE Trans. Neural Netw. 15, 1555–1561 (2004).
    [Crossref]
  134. S. T. Li and B. Yang, “Multifocus image fusion using region segmentation and spatial frequency,” Image Vis. Comput. 26, 971–979 (2008).
    [Crossref]
  135. B. Yang and S. T. Li, “Multifocus image fusion and restoration with sparse representation,” IEEE Trans. Instrum. Meas. 59, 884–892 (2010).
    [Crossref]
  136. S. Hong, J. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
    [Crossref]
  137. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Machine Intell. 14, 99–106 (1992).
    [Crossref]
  138. M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
    [Crossref]
  139. A. Ashok and M. A. Neifeld, “Compressive light field imaging,” Proc. SPIE 7690, 76900Q (2010).
  140. S. D. Babacan, R. Ansorge, M. Luessi, P. Ruiz Mataran, R. Molina, and A. K. Katsaggelos, “Compressive light field sensing,” IEEE Trans. Image Process. 21, 4746–4757 (2012).
    [Crossref]
  141. J. Ojeda-Castaneda, L. R. Berriel-Valdos, and E. L. Montes, “Line-spread function relatively insensitive to defocus,” Opt. Lett. 8, 458–460 (1983).
    [Crossref]
  142. W. T. Welford, “Use of annular apertures to increase focal depth,” J. Opt. Soc. Am. 50, 749–753 (1960).
    [Crossref]
  143. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26, 875–877 (2001).
    [Crossref]
  144. A. Greengard, Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31, 181–183 (2006).
    [Crossref]
  145. R. Horisaki, Y. Nakao, T. Toyoda, K. Kagawa, Y. Masaki, and J. Tanida, “A compound-eye imaging system with irregular lens-array arrangement,” Proc. SPIE 7072, 70720G (2008).
    [Crossref]
  146. K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32, 1–13 (2013).
    [Crossref]
  147. A. Kubota, K. Aizawa, and T. Chen, “Reconstructing dense light field from array of multifocus images for novel view synthesis,” IEEE Trans. Electron. Comput. 16, 269–279 (2007).
  148. C. Frese and I. Gheta, “Robust depth estimation by fusion of stereo and focus series acquired with a camera array,” in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems,” September2006, pp. 243–248.
  149. P. M. Shankar, W. C. Hasenplaugh, R. L. Morrison, R. A. Stack, and M. A. Neifeld, “Multiaperture imaging,” Appl. Opt. 45, 2871–2883 (2006).
    [Crossref]
  150. M. Shankar, N. P. Pitsianis, and D. J. Brady, “Compressive video sensors using multichannel imagers,” Appl. Opt. 49, B9–B17 (2010).
    [Crossref]
  151. M. E. Gehm and J. Kinast, “Adaptive spectroscopy: towards adaptive spectral imaging,” Proc. SPIE 6978, 69780I (2008).
  152. P. Llull, X. Yuan, X. Liao, J. Yang, L. Carin, G. Sapiro, and D. J. Brady, “Compressive extended depth of field using image space coding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2014), paper CM2D–3.
  153. X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” arXiv:1402.6932v1 (2014).
  154. C. Zhou, D. Miau, and S. K. Nayar, “Focal sweep camera for space-time refocusing,” (Department of Computer Science, Columbia University, 2012).
  155. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
    [Crossref]
  156. G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2, 3010–3020 (2011).
    [Crossref]
  157. A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
    [Crossref]
  158. Y. Bando, B.-Y. Chen, and T. Nishita, “Motion deblurring from a single image using circular sensor motion,” Comput. Graph. Forum 30, 1869–1878 (2011).
    [Crossref]
  159. M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36, 202–204 (2011).
    [Crossref]
  160. A. Agrawal, S. Quirin, G. Grover, and R. Piestun, “Limits of 3D dipole localization and orientation estimation with application to single-molecule imaging,” in Imaging and Applied Optics (Optical Society of America, 2011), paper CWA4.
  161. D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-Laplacian priors,” in Advances in Neural Information Processing Systems (2009), pp. 1033–1041.
  162. A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput. 7, 1129–1159 (1995).
    [Crossref]
  163. T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” IEEE Trans. Image Process. 7, 370–375 (1998).
    [Crossref]

2014 (4)

2013 (9)

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Y. Rivenson, A. Stern, and B. Javidi, “Overview of compressive sensing techniques applied in holography,” Appl. Opt. 52, A423–A432 (2013).
[Crossref]

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32, 1–13 (2013).
[Crossref]

K. P. MacCabe, A. D. Holmgren, M. P. Tornai, and D. J. Brady, “Snapshot 2D tomography via coded aperture x-ray scatter imaging,” Appl. Opt. 52, 4582–4589 (2013).
[Crossref]

J. A. Greenberg, K. Krishnamurthy, and D. Brady, “Snapshot molecular imaging using coded energy-sensitive detection,” Opt. Express 21, 25480–25491 (2013).
[Crossref]

G. Tang, B. Bhaskar, P. Shah, and B. Recht, “Compressed sensing off the grid,” IEEE Trans. Inf. Theory 59, 7465–7490 (2013).
[Crossref]

D. J. Brady, D. L. Marks, K. P. MacCabe, and J. A. O’Sullivan, “Coded apertures for x-ray scatter imaging,” Appl. Opt. 52, 7745–7754 (2013).
[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref]

2012 (5)

2011 (11)

M. Marim, E. Angelini, J.-C. Olivo-Marin, and M. Atlan, “Off-axis compressed holographic microscopy in low-light conditions,” Opt. Lett. 36, 79–81 (2011).
[Crossref]

A. Budillon, A. Evangelista, and G. Schirinzi, “Three-dimensional SAR focusing from multipass signals using compressive sampling,” IEEE Trans. Geosci. Remote Sens. 49, 488–499 (2011).
[Crossref]

G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2, 3010–3020 (2011).
[Crossref]

Y. Bando, B.-Y. Chen, and T. Nishita, “Motion deblurring from a single image using circular sensor motion,” Comput. Graph. Forum 30, 1869–1878 (2011).
[Crossref]

M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36, 202–204 (2011).
[Crossref]

J. W. Stayman, W. Zbijewski, Y. Otake, A. Uneri, S. Schafer, J. Lee, J. L. Prince, and J. H. Siewerdsen, “Penalized-likelihood reconstruction for sparse data acquisitions with unregistered prior images and compressed sensing penalties,” Proc. SPIE 7961, 79611L (2011).
[Crossref]

J. F. Crouzet, “3D coded aperture imaging, ill-posedness and link with incomplete data Radon transform,” Inverse Probl. Imag. 5, 341–353 (2011).
[Crossref]

D. J. Brady and D. L. Marks, “Coding for compressive focal tomography,” Appl. Opt. 50, 4436–4449 (2011).
[Crossref]

O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30, 1129–1142 (2011).
[Crossref]

S. Gleichman and Y. C. Eldar, “Blind compressed sensing,” IEEE Trans. Inf. Theory 57, 6958–6975 (2011).
[Crossref]

J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011).
[Crossref]

2010 (19)

R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
[Crossref]

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: algorithm and performance bounds,” IEEE Trans. Signal Process. 58, 6140–6155 (2010).
[Crossref]

Y. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: uncertainty relations and efficient recovery,” IEEE Trans. Signal Process. 58, 3042–3054 (2010).
[Crossref]

M. Süzen, A. Giannoula, and T. Durduran, “Compressed sensing in diffuse optical tomography,” Opt. Express 18, 23676–23690 (2010).
[Crossref]

D. Kittle, K. Choi, A. Wagadarikar, and D. J. Brady, “Multiframe image estimation for coded aperture snapshot spectral imagers,” Appl. Opt. 49, 6824–6833 (2010).
[Crossref]

K. Choi, J. Wang, L. Zhu, T. S. Suh, S. Boyd, and L. Xing, “Compressed sensing based cone-beam computed tomography reconstruction with a first-order method,” Med. Phys. 37, 5113–5125 (2010).
[Crossref]

M. Shankar, N. P. Pitsianis, and D. J. Brady, “Compressive video sensors using multichannel imagers,” Appl. Opt. 49, B9–B17 (2010).
[Crossref]

B. Yang and S. T. Li, “Multifocus image fusion and restoration with sparse representation,” IEEE Trans. Instrum. Meas. 59, 884–892 (2010).
[Crossref]

A. Ashok and M. A. Neifeld, “Compressive light field imaging,” Proc. SPIE 7690, 76900Q (2010).

A. A. Wagadarikar, D. L. Marks, K. Choi, R. Horisaki, and D. J. Brady, “Imaging through turbulence using compressive coherence sensing,” Opt. Lett. 35, 838–840 (2010).
[Crossref]

E. Lebed, P. J. Mackenzie, M. V. Sarunic, and F. M. Beg, “Rapid volumetric OCT image acquisition using compressive sampling,” Opt. Express 18, 21003–21012 (2010).
[Crossref]

M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Opt. Lett. 35, 871–873 (2010).
[Crossref]

Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel holography,” J. Display Technol. 6, 506–509 (2010).
[Crossref]

C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
[Crossref]

L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and compressed sensing in radar imaging,” Proc. IEEE 98, 1006–1020 (2010).
[Crossref]

K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt. 49, H1–H10 (2010).
[Crossref]

V. M. Patel, G. R. Easley, D. Healy, and R. Chellappa, “Compressed synthetic aperture radar,” IEEE J. Sel. Top. Quantum Electron. 4, 244–254 (2010).

J. H. Ender, “On compressive sensing applied to radar,” Signal Process. 90, 1402–1414 (2010).
[Crossref]

Y. Yu, A. P. Petropulu, and V. Poor, “Mimo radar using compressive sampling,” IEEE J. Sel. Top. Quantum Electron. 4, 146–163 (2010).

2009 (8)

A. C. Gurbuz, J. H. McClellan, and W. R. Scott, “Compressive sensing for subsurface imaging using ground penetrating radar,” Signal Process. 89, 1959–1972 (2009).
[Crossref]

M. A. Herman and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE Trans. Signal Process. 57, 2275–2284 (2009).
[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
[Crossref]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

S. Uttam, N. A. Goodman, M. A. Neifeld, C. Kim, R. John, J. Kim, and D. Brady, “Optically multiplexed imaging with superposition space tracking,” Opt. Express 17, 1691–1713 (2009).
[Crossref]

K. Choi and D. J. Brady, “Coded aperture computed tomography,” Proc. SPIE 7468, 74680B (2009).
[Crossref]

R. Baraniuk and M. Wakin, “Random projections of smooth manifolds,” Found. Comput. Math. 9, 51–77 (2009).
[Crossref]

A. Wagadarikar, N. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17, 6368–6388 (2009).
[Crossref]

2008 (11)

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process. 56, 2346–2356 (2008).
[Crossref]

R. F. Marcia, C. Kim, C. Eldeniz, J. Kim, D. J. Brady, and R. M. Willett, “Superimposed video disambiguation for increased field of view,” Opt. Express 16, 16352–16363 (2008).
[Crossref]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008).
[Crossref]

E. Y. Sidky and X. C. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777–4807 (2008).
[Crossref]

E. Hansis, D. Schafer, O. Dossel, and M. Grass, “Evaluation of iterative sparse object reconstruction from few projections for 3-D rotational coronary angiography,” IEEE Trans. Med. Imag. 27, 1548–1555 (2008).
[Crossref]

G. H. Chen, J. Tang, and S. H. Leng, “Prior image constrained compressed sensing: a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35, 660–663 (2008).
[Crossref]

R. Horisaki, Y. Nakao, T. Toyoda, K. Kagawa, Y. Masaki, and J. Tanida, “A compound-eye imaging system with irregular lens-array arrangement,” Proc. SPIE 7072, 70720G (2008).
[Crossref]

M. E. Gehm and J. Kinast, “Adaptive spectroscopy: towards adaptive spectral imaging,” Proc. SPIE 6978, 69780I (2008).

W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974–976 (2008).
[Crossref]

E. Candes, “The restricted isometry property and its implications for compressed sensing,” C. R. Math. 346, 589–592 (2008).
[Crossref]

S. T. Li and B. Yang, “Multifocus image fusion using region segmentation and spatial frequency,” Image Vis. Comput. 26, 971–979 (2008).
[Crossref]

2007 (7)

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007).
[Crossref]

A. Kubota, K. Aizawa, and T. Chen, “Reconstructing dense light field from array of multifocus images for novel view synthesis,” IEEE Trans. Electron. Comput. 16, 269–279 (2007).

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
[Crossref]

J. Song, Q. H. Liu, G. A. Johnson, and C. T. Badea, “Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-CT,” Med. Phys. 34, 4476–4483 (2007).
[Crossref]

E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969–985 (2007).
[Crossref]

M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027 (2007).
[Crossref]

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 1182–1195 (2007).
[Crossref]

2006 (11)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
[Crossref]

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

J. Delfs and J. P. Schlomka, “Energy-dispersive coherent scatter computed tomography,” Appl. Phys. Lett. 88, 243506 (2006).
[Crossref]

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

P. K. Agarwal, D. Brady, and J. Matousek, “Segmenting object space by geometric reference structures,” ACM Trans. Sens. Netw. 2, 455–465 (2006).
[Crossref]

P. M. Shankar, W. C. Hasenplaugh, R. L. Morrison, R. A. Stack, and M. A. Neifeld, “Multiaperture imaging,” Appl. Opt. 45, 2871–2883 (2006).
[Crossref]

M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
[Crossref]

A. Greengard, Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31, 181–183 (2006).
[Crossref]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027–1037 (2006).
[Crossref]

2004 (3)

2003 (6)

M. Neifeld and P. Shankar, “Feature-specific imaging,” Appl. Opt. 42, 3379–3389 (2003).
[Crossref]

P. Potuluri, M. B. Xu, and D. J. Brady, “Imaging with random 3D reference structures,” Opt. Express 11, 2134–2141 (2003).
[Crossref]

A. Sinha and D. J. Brady, “Size and shape recognition using measurement statistics and random 3D reference structures,” Opt. Express 11, 2606–2618 (2003).
[Crossref]

J.-P. Schlomka, A. Harding, U. van Stevendaal, M. Grass, and G. L. Harding, “Coherent scatter computed tomography: a novel medical imaging technique,” Proc. SPIE 5030, 256–265 (2003).
[Crossref]

H. A. Eltoukhy and S. Kavusi, “A computationally efficient algorithm for multi-focus image reconstruction,” Proc. SPIE 5017, 332–341 (2003).
[Crossref]

S. Basty, M. A. Neifeld, D. Brady, and S. Kraut, “Nonlinear estimation for interferometric imaging,” Opt. Commun. 228, 249–261 (2003).
[Crossref]

2002 (4)

D. L. Marks, R. A. Stack, and D. J. Brady, “Digital refraction distortion correction with an astigmatic coherence sensor,” Appl. Opt. 41, 6050–6054 (2002).
[Crossref]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

M. H. Li, H. Q. Yang, and H. Kudo, “An accurate iterative reconstruction algorithm for sparse objects: application to 3D blood vessel reconstruction from a limited number of projections,” Phys. Med. Biol. 47, 2599–2609 (2002).
[Crossref]

D. J. Brady, “Multiplex sensors and the constant radiance theorem,” Opt. Lett. 27, 16–18 (2002).
[Crossref]

2001 (2)

2000 (1)

A. D. Lanterman, “Statistical radar imaging of diffuse and specular targets using an expectation-maximization algorithm,” Proc. SPIE 4053, 20–31 (2000).
[Crossref]

1999 (3)

1998 (1)

T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” IEEE Trans. Image Process. 7, 370–375 (1998).
[Crossref]

1997 (1)

T. Schulz, “Penalized maximum-likelihood estimation of covariance matrices with linear structure,” IEEE Trans. Signal Process. 45, 3027–3038 (1997).
[Crossref]

1996 (1)

W. B. Seales and S. Dutta, “Everywhere-in-focus image fusion using controllable cameras,” Proc. SPIE 2905, 227–234 (1996).
[Crossref]

1995 (3)

A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput. 7, 1129–1159 (1995).
[Crossref]

E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).
[Crossref]

D. M. Healy and J. B. Weaver, “Adapted wave-form encoding for magnetic-resonance-imaging,” IEEE Eng. Med. Biol. Mag. 14(5), 621–638 (1995).
[Crossref]

1992 (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Machine Intell. 14, 99–106 (1992).
[Crossref]

1990 (1)

M. F. Insana and T. J. Hall, “Parametric ultrasound imaging from backscatter coefficient measurements: image formation and interpretation,” Ultrason. Imaging 12, 245–267 (1990).
[Crossref]

1989 (1)

1985 (3)

1984 (1)

A. Devaney, “Geophysical diffraction tomography,” IEEE Trans. Geosci. Remote Sens. GE-22, 3–13 (1984).
[Crossref]

1983 (2)

D. C. Munson, J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE 71, 917–925 (1983).
[Crossref]

J. Ojeda-Castaneda, L. R. Berriel-Valdos, and E. L. Montes, “Line-spread function relatively insensitive to defocus,” Opt. Lett. 8, 458–460 (1983).
[Crossref]

1982 (3)

A. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982).
[Crossref]

D. C. Youla and H. Webb, “Image restoration by the method of convex projections: part 1 theory,” IEEE Trans. Med. Imag. 1, 81–94 (1982).
[Crossref]

M. I. Sezan and H. Stark, “Image restoration by the method of convex projections: part 2 applications and numerical results,” IEEE Trans. Med. Imag. 1, 95–101 (1982).
[Crossref]

1979 (1)

1977 (1)

A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuits Syst. 24, 652–654 (1977).
[Crossref]

1970 (1)

1968 (1)

1960 (1)

1949 (2)

C. E. Shannon, “Communications in the presence of noise,” Proc. IRE 37, 10–21 (1949).
[Crossref]

M. Golay, “Multislit spectroscopy,” J. Opt. Soc. Am. 39, 437–444 (1949).
[Crossref]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Machine Intell. 14, 99–106 (1992).
[Crossref]

Agarwal, P. K.

P. K. Agarwal, D. Brady, and J. Matousek, “Segmenting object space by geometric reference structures,” ACM Trans. Sens. Netw. 2, 455–465 (2006).
[Crossref]

Agrawal, A.

A. Agrawal, S. Quirin, G. Grover, and R. Piestun, “Limits of 3D dipole localization and orientation estimation with application to single-molecule imaging,” in Imaging and Applied Optics (Optical Society of America, 2011), paper CWA4.

Ahlgren, U.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Aizawa, K.

A. Kubota, K. Aizawa, and T. Chen, “Reconstructing dense light field from array of multifocus images for novel view synthesis,” IEEE Trans. Electron. Comput. 16, 269–279 (2007).

Angelini, E.

Ansorge, R.

S. D. Babacan, R. Ansorge, M. Luessi, P. Ruiz Mataran, R. Molina, and A. K. Katsaggelos, “Compressive light field sensing,” IEEE Trans. Image Process. 21, 4746–4757 (2012).
[Crossref]

Ashok, A.

A. Ashok and M. A. Neifeld, “Compressive light field imaging,” Proc. SPIE 7690, 76900Q (2010).

Atlan, M.

Babacan, S. D.

S. D. Babacan, R. Ansorge, M. Luessi, P. Ruiz Mataran, R. Molina, and A. K. Katsaggelos, “Compressive light field sensing,” IEEE Trans. Image Process. 21, 4746–4757 (2012).
[Crossref]

Badea, C. T.

J. Song, Q. H. Liu, G. A. Johnson, and C. T. Badea, “Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-CT,” Med. Phys. 34, 4476–4483 (2007).
[Crossref]

Badieirostami, M.

Balber, S.

Baldock, R.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Ballester, C.

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 417–424.

Bando, Y.

Y. Bando, B.-Y. Chen, and T. Nishita, “Motion deblurring from a single image using circular sensor motion,” Comput. Graph. Forum 30, 1869–1878 (2011).
[Crossref]

Baraniuk, R.

R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
[Crossref]

R. Baraniuk and M. Wakin, “Random projections of smooth manifolds,” Found. Comput. Math. 9, 51–77 (2009).
[Crossref]

R. Baraniuk and P. Steeghs, “Compressive radar imaging,” in IEEE Radar Conference, April2007, pp. 128–133.

Baraniuk, R. G.

W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974–976 (2008).
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Barbastathis, G.

Baron, D.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Barrett, H.

H. Barrett and K. Myers, Foundations of Image Science (Wiley-Interscience, 2004).

Barrett, H. H.

Basty, S.

S. Basty, M. A. Neifeld, D. Brady, and S. Kraut, “Nonlinear estimation for interferometric imaging,” Opt. Commun. 228, 249–261 (2003).
[Crossref]

Beg, F. M.

Bell, A. J.

A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput. 7, 1129–1159 (1995).
[Crossref]

Berriel-Valdos, L. R.

Bertalmio, M.

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 417–424.

Bertero, M.

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Taylor & Francis, 1998).

Bhaskar, B.

G. Tang, B. Bhaskar, P. Shah, and B. Recht, “Compressed sensing off the grid,” IEEE Trans. Inf. Theory 59, 7465–7490 (2013).
[Crossref]

Biteen, J. S.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Boccacci, P.

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Taylor & Francis, 1998).

Bolcskei, H.

Y. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: uncertainty relations and efficient recovery,” IEEE Trans. Signal Process. 58, 3042–3054 (2010).
[Crossref]

Boppart, S. A.

Boyd, S.

K. Choi, J. Wang, L. Zhu, T. S. Suh, S. Boyd, and L. Xing, “Compressed sensing based cone-beam computed tomography reconstruction with a first-order method,” Med. Phys. 37, 5113–5125 (2010).
[Crossref]

Brady, D.

J. Greenberg, K. Krishnamurthy, and D. Brady, “Compressive single-pixel snapshot x-ray diffraction imaging,” Opt. Lett. 39, 111–114 (2014).
[Crossref]

J. A. Greenberg, K. Krishnamurthy, and D. Brady, “Snapshot molecular imaging using coded energy-sensitive detection,” Opt. Express 21, 25480–25491 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

K. MacCabe, K. Krishnamurthy, A. Chawla, D. Marks, E. Samei, and D. Brady, “Pencil beam coded aperture x-ray scatter imaging,” Opt. Express 20, 16310–16320 (2012).
[Crossref]

S. Uttam, N. A. Goodman, M. A. Neifeld, C. Kim, R. John, J. Kim, and D. Brady, “Optically multiplexed imaging with superposition space tracking,” Opt. Express 17, 1691–1713 (2009).
[Crossref]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008).
[Crossref]

P. K. Agarwal, D. Brady, and J. Matousek, “Segmenting object space by geometric reference structures,” ACM Trans. Sens. Netw. 2, 455–465 (2006).
[Crossref]

S. Basty, M. A. Neifeld, D. Brady, and S. Kraut, “Nonlinear estimation for interferometric imaging,” Opt. Commun. 228, 249–261 (2003).
[Crossref]

A. Mrozack, K. Krishnamurthy, G. Lipworth, D. Smith, and D. Brady, “Imaging of diffuse objects with dispersive imagers,” in 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September2013.

D. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

Brady, D. J.

A. Mrozack, M. Heimbeck, D. L. Marks, J. Richard, H. O. Everitt, and D. J. Brady, “Adaptive millimeter-wave synthetic aperture imaging for compressive sampling of sparse scenes,” Opt. Express 22, 13515–13530 (2014).
[Crossref]

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31, 1369–1394 (2014).
[Crossref]

K. P. MacCabe, A. D. Holmgren, M. P. Tornai, and D. J. Brady, “Snapshot 2D tomography via coded aperture x-ray scatter imaging,” Appl. Opt. 52, 4582–4589 (2013).
[Crossref]

D. J. Brady, D. L. Marks, K. P. MacCabe, and J. A. O’Sullivan, “Coded apertures for x-ray scatter imaging,” Appl. Opt. 52, 7745–7754 (2013).
[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref]

J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011).
[Crossref]

D. J. Brady and D. L. Marks, “Coding for compressive focal tomography,” Appl. Opt. 50, 4436–4449 (2011).
[Crossref]

D. Kittle, K. Choi, A. Wagadarikar, and D. J. Brady, “Multiframe image estimation for coded aperture snapshot spectral imagers,” Appl. Opt. 49, 6824–6833 (2010).
[Crossref]

C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
[Crossref]

K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt. 49, H1–H10 (2010).
[Crossref]

A. A. Wagadarikar, D. L. Marks, K. Choi, R. Horisaki, and D. J. Brady, “Imaging through turbulence using compressive coherence sensing,” Opt. Lett. 35, 838–840 (2010).
[Crossref]

M. Shankar, N. P. Pitsianis, and D. J. Brady, “Compressive video sensors using multichannel imagers,” Appl. Opt. 49, B9–B17 (2010).
[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
[Crossref]

A. Wagadarikar, N. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17, 6368–6388 (2009).
[Crossref]

K. Choi and D. J. Brady, “Coded aperture computed tomography,” Proc. SPIE 7468, 74680B (2009).
[Crossref]

R. F. Marcia, C. Kim, C. Eldeniz, J. Kim, D. J. Brady, and R. M. Willett, “Superimposed video disambiguation for increased field of view,” Opt. Express 16, 16352–16363 (2008).
[Crossref]

M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027 (2007).
[Crossref]

D. J. Brady, N. Pitsianis, and X. Sun, “Reference structure tomography,” J. Opt. Soc. Am. A 21, 1140–1147 (2004).
[Crossref]

P. Potuluri, M. B. Xu, and D. J. Brady, “Imaging with random 3D reference structures,” Opt. Express 11, 2134–2141 (2003).
[Crossref]

A. Sinha and D. J. Brady, “Size and shape recognition using measurement statistics and random 3D reference structures,” Opt. Express 11, 2606–2618 (2003).
[Crossref]

D. J. Brady, “Multiplex sensors and the constant radiance theorem,” Opt. Lett. 27, 16–18 (2002).
[Crossref]

D. L. Marks, R. A. Stack, and D. J. Brady, “Digital refraction distortion correction with an astigmatic coherence sensor,” Appl. Opt. 41, 6050–6054 (2002).
[Crossref]

D. L. Marks, R. Stack, A. J. Johnson, D. J. Brady, and D. C. Munson, “Cone-beam tomography with a digital camera,” Appl. Opt. 40, 1795–1805 (2001).
[Crossref]

D. L. Marks, R. A. Stack, D. J. Brady, and J. van der Gracht, “Three-dimensional tomography using a cubic-phase plate extended depth-of-field system,” Opt. Lett. 24, 253–255 (1999).
[Crossref]

D. L. Marks, R. A. Stack, and D. J. Brady, “Three-dimensional coherence imaging in the Fresnel domain,” Appl. Opt. 38, 1332–1342 (1999).
[Crossref]

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
[Crossref]

D. J. Brady, N. Pitsianis, X. Sun, and P. Potuluri, “Compressive measurement and signal inference,” U.S. patent7,283,231 (Oct.16, 2007).

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” arXiv:1302.3446 (2013).

P. Llull, X. Yuan, X. Liao, J. Yang, L. Carin, G. Sapiro, and D. J. Brady, “Compressive extended depth of field using image space coding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2014), paper CM2D–3.

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” arXiv:1402.6932v1 (2014).

Brady, R. B.

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
[Crossref]

Brédif, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

Bresler, Y.

O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30, 1129–1142 (2011).
[Crossref]

Brezinski, M. E.

M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).

Budillon, A.

A. Budillon, A. Evangelista, and G. Schirinzi, “Three-dimensional SAR focusing from multipass signals using compressive sampling,” IEEE Trans. Geosci. Remote Sens. 49, 488–499 (2011).
[Crossref]

Calderbank, R.

W. Carson, M. Chen, M. Rodrigues, R. Calderbank, and L. Carin, “Communications-inspired projection design with application to compressive sensing,” arXiv:1206.1973 (2012).

Candes, E.

E. Candes, “The restricted isometry property and its implications for compressed sensing,” C. R. Math. 346, 589–592 (2008).
[Crossref]

E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969–985 (2007).
[Crossref]

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

Candes, E. J.

E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
[Crossref]

Carin, L.

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31, 1369–1394 (2014).
[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref]

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: algorithm and performance bounds,” IEEE Trans. Signal Process. 58, 6140–6155 (2010).
[Crossref]

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process. 56, 2346–2356 (2008).
[Crossref]

W. Carson, M. Chen, M. Rodrigues, R. Calderbank, and L. Carin, “Communications-inspired projection design with application to compressive sensing,” arXiv:1206.1973 (2012).

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” arXiv:1302.3446 (2013).

P. Llull, X. Yuan, X. Liao, J. Yang, L. Carin, G. Sapiro, and D. J. Brady, “Compressive extended depth of field using image space coding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2014), paper CM2D–3.

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” arXiv:1402.6932v1 (2014).

Carney, P. S.

Carson, W.

W. Carson, M. Chen, M. Rodrigues, R. Calderbank, and L. Carin, “Communications-inspired projection design with application to compressive sensing,” arXiv:1206.1973 (2012).

Carter, W. H.

Caselles, V.

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 417–424.

Cathey, W. T.

Cetin, M.

L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and compressed sensing in radar imaging,” Proc. IEEE 98, 1006–1020 (2010).
[Crossref]

Cevher, V.

R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
[Crossref]

Chan, T. F.

T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” IEEE Trans. Image Process. 7, 370–375 (1998).
[Crossref]

Chan, W. L.

Chatterjee, P.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32, 1–13 (2013).
[Crossref]

Chaudhuri, S.

S. Chaudhuri and A. N. Rajagopalan, Depth from Defocus: A Real Aperture Imaging Approach (Springer, 1999).

Chawla, A.

Chellappa, R.

V. M. Patel, G. R. Easley, D. Healy, and R. Chellappa, “Compressed synthetic aperture radar,” IEEE J. Sel. Top. Quantum Electron. 4, 244–254 (2010).

Chen, B.-Y.

Y. Bando, B.-Y. Chen, and T. Nishita, “Motion deblurring from a single image using circular sensor motion,” Comput. Graph. Forum 30, 1869–1878 (2011).
[Crossref]

Chen, G. H.

G. H. Chen, J. Tang, and S. H. Leng, “Prior image constrained compressed sensing: a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35, 660–663 (2008).
[Crossref]

Chen, M.

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: algorithm and performance bounds,” IEEE Trans. Signal Process. 58, 6140–6155 (2010).
[Crossref]

W. Carson, M. Chen, M. Rodrigues, R. Calderbank, and L. Carin, “Communications-inspired projection design with application to compressive sensing,” arXiv:1206.1973 (2012).

Chen, T.

A. Kubota, K. Aizawa, and T. Chen, “Reconstructing dense light field from array of multifocus images for novel view synthesis,” IEEE Trans. Electron. Comput. 16, 269–279 (2007).

Chen, Y.

Y. Chen and Y. Chi, “Robust spectral compressed sensing via structured matrix completion,” IEEE Trans. Inf. Theory 60, 6576–6601 (2014).
[Crossref]

Chi, W.

Chi, Y.

Y. Chen and Y. Chi, “Robust spectral compressed sensing via structured matrix completion,” IEEE Trans. Inf. Theory 60, 6576–6601 (2014).
[Crossref]

Choi, K.

Crouzet, J. F.

J. F. Crouzet, “3D coded aperture imaging, ill-posedness and link with incomplete data Radon transform,” Inverse Probl. Imag. 5, 341–353 (2011).
[Crossref]

Cull, C. F.

Davidson, D.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

De Haseth, J.

P. Griffiths and J. De Haseth, “Fourier Transform Infrared Spectrometry,” in Chemical Analysis: a Series of Monographs on Analytical Chemistry and Its Applications (Wiley, 2007), Vol. 171.

Delfs, J.

J. Delfs and J. P. Schlomka, “Energy-dispersive coherent scatter computed tomography,” Appl. Phys. Lett. 88, 243506 (2006).
[Crossref]

Devaney, A.

A. Devaney, “Geophysical diffraction tomography,” IEEE Trans. Geosci. Remote Sens. GE-22, 3–13 (1984).
[Crossref]

A. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982).
[Crossref]

Dhawan, A. P.

Donoho, D.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 1182–1195 (2007).
[Crossref]

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

Dossel, O.

E. Hansis, D. Schafer, O. Dossel, and M. Grass, “Evaluation of iterative sparse object reconstruction from few projections for 3-D rotational coronary angiography,” IEEE Trans. Med. Imag. 27, 1548–1555 (2008).
[Crossref]

Dowski, E. R.

Driscoll, T.

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Du, D. Z.

D. Z. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications (World Scientific, 2000).

Duarte, M.

R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
[Crossref]

Duarte, M. F.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Dunson, D.

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: algorithm and performance bounds,” IEEE Trans. Signal Process. 58, 6140–6155 (2010).
[Crossref]

Duparré, J.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32, 1–13 (2013).
[Crossref]

Durand, F.

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
[Crossref]

Durduran, T.

Dutta, S.

W. B. Seales and S. Dutta, “Everywhere-in-focus image fusion using controllable cameras,” Proc. SPIE 2905, 227–234 (1996).
[Crossref]

Duval, G.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

Easley, G. R.

V. M. Patel, G. R. Easley, D. Healy, and R. Chellappa, “Compressed synthetic aperture radar,” IEEE J. Sel. Top. Quantum Electron. 4, 244–254 (2010).

Elad, M.

M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer-Verlag, 2010).

Eldar, Y.

Y. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: uncertainty relations and efficient recovery,” IEEE Trans. Signal Process. 58, 3042–3054 (2010).
[Crossref]

Eldar, Y. C.

S. Gleichman and Y. C. Eldar, “Blind compressed sensing,” IEEE Trans. Inf. Theory 57, 6958–6975 (2011).
[Crossref]

Eldeniz, C.

Eltoukhy, H. A.

H. A. Eltoukhy and S. Kavusi, “A computationally efficient algorithm for multi-focus image reconstruction,” Proc. SPIE 5017, 332–341 (2003).
[Crossref]

Ender, J. H.

J. H. Ender, “On compressive sensing applied to radar,” Signal Process. 90, 1402–1414 (2010).
[Crossref]

Ertin, E.

L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and compressed sensing in radar imaging,” Proc. IEEE 98, 1006–1020 (2010).
[Crossref]

Evangelista, A.

A. Budillon, A. Evangelista, and G. Schirinzi, “Three-dimensional SAR focusing from multipass signals using compressive sampling,” IEEE Trans. Geosci. Remote Sens. 49, 488–499 (2011).
[Crossref]

Everitt, H. O.

Fenimore, E. E.

Fergus, R.

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
[Crossref]

D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-Laplacian priors,” in Advances in Neural Information Processing Systems (2009), pp. 1033–1041.

Fiedler, C.

Freeman, W. T.

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
[Crossref]

Frese, C.

C. Frese and I. Gheta, “Robust depth estimation by fusion of stereo and focus series acquired with a camera array,” in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems,” September2006, pp. 243–248.

Friberg, A. T.

Gehm, M. E.

George, N.

Gheta, I.

C. Frese and I. Gheta, “Robust depth estimation by fusion of stereo and focus series acquired with a camera array,” in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems,” September2006, pp. 243–248.

Giannoula, A.

Gleichman, S.

S. Gleichman and Y. C. Eldar, “Blind compressed sensing,” IEEE Trans. Inf. Theory 57, 6958–6975 (2011).
[Crossref]

Golay, M.

Goodman, J.

J. Goodman, Introduction to Fourier Optics, McGraw-Hill Series in Electrical and Computer Engineering (McGraw-Hill, 1996).

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

Goodman, N. A.

Gordon, R.

Gottesman, S. R.

Grass, M.

E. Hansis, D. Schafer, O. Dossel, and M. Grass, “Evaluation of iterative sparse object reconstruction from few projections for 3-D rotational coronary angiography,” IEEE Trans. Med. Imag. 27, 1548–1555 (2008).
[Crossref]

J.-P. Schlomka, A. Harding, U. van Stevendaal, M. Grass, and G. L. Harding, “Coherent scatter computed tomography: a novel medical imaging technique,” Proc. SPIE 5030, 256–265 (2003).
[Crossref]

Greenberg, J.

Greenberg, J. A.

Greengard, A.

Griffiths, P.

P. Griffiths and J. De Haseth, “Fourier Transform Infrared Spectrometry,” in Chemical Analysis: a Series of Monographs on Analytical Chemistry and Its Applications (Wiley, 2007), Vol. 171.

Grover, G.

G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2, 3010–3020 (2011).
[Crossref]

A. Agrawal, S. Quirin, G. Grover, and R. Piestun, “Limits of 3D dipole localization and orientation estimation with application to single-molecule imaging,” in Imaging and Applied Optics (Optical Society of America, 2011), paper CWA4.

Gurbuz, A. C.

A. C. Gurbuz, J. H. McClellan, and W. R. Scott, “Compressive sensing for subsurface imaging using ground penetrating radar,” Signal Process. 89, 1959–1972 (2009).
[Crossref]

Hahn, J.

Hall, T. J.

M. F. Insana and T. J. Hall, “Parametric ultrasound imaging from backscatter coefficient measurements: image formation and interpretation,” Ultrason. Imaging 12, 245–267 (1990).
[Crossref]

Hanrahan, P.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

Hansis, E.

E. Hansis, D. Schafer, O. Dossel, and M. Grass, “Evaluation of iterative sparse object reconstruction from few projections for 3-D rotational coronary angiography,” IEEE Trans. Med. Imag. 27, 1548–1555 (2008).
[Crossref]

Harding, A.

J.-P. Schlomka, A. Harding, U. van Stevendaal, M. Grass, and G. L. Harding, “Coherent scatter computed tomography: a novel medical imaging technique,” Proc. SPIE 5030, 256–265 (2003).
[Crossref]

Harding, G. L.

J.-P. Schlomka, A. Harding, U. van Stevendaal, M. Grass, and G. L. Harding, “Coherent scatter computed tomography: a novel medical imaging technique,” Proc. SPIE 5030, 256–265 (2003).
[Crossref]

Harwit, M.

M. Harwit and N. Sloane, Hadamard Transform Optics (Academic, 1979).

Hasenplaugh, W. C.

Healy, D.

V. M. Patel, G. R. Easley, D. Healy, and R. Chellappa, “Compressed synthetic aperture radar,” IEEE J. Sel. Top. Quantum Electron. 4, 244–254 (2010).

Healy, D. M.

D. M. Healy and J. B. Weaver, “Adapted wave-form encoding for magnetic-resonance-imaging,” IEEE Eng. Med. Biol. Mag. 14(5), 621–638 (1995).
[Crossref]

Hecksher-Sørensen, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Hegde, C.

R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
[Crossref]

Heimbeck, M.

Herman, M. A.

M. A. Herman and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE Trans. Signal Process. 57, 2275–2284 (2009).
[Crossref]

Hill, B.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Holmgren, A.

Holmgren, A. D.

Hong, S.

Horisaki, R.

Horowitz, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

Huang, H. Y. H.

Hunt, J.

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Hwang, F. K.

D. Z. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications (World Scientific, 2000).

Insana, M. F.

M. F. Insana and T. J. Hall, “Parametric ultrasound imaging from backscatter coefficient measurements: image formation and interpretation,” Ultrason. Imaging 12, 245–267 (1990).
[Crossref]

Jang, J.

Javidi, B.

Jenkins, W. K.

D. C. Munson, J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE 71, 917–925 (1983).
[Crossref]

Jeon, H.

Ji, S.

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process. 56, 2346–2356 (2008).
[Crossref]

John, R.

Johnson, A. J.

Johnson, G. A.

J. Song, Q. H. Liu, G. A. Johnson, and C. T. Badea, “Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-CT,” Med. Phys. 34, 4476–4483 (2007).
[Crossref]

Kaganovsky, Y.

Kagawa, K.

R. Horisaki, Y. Nakao, T. Toyoda, K. Kagawa, Y. Masaki, and J. Tanida, “A compound-eye imaging system with irregular lens-array arrangement,” Proc. SPIE 7072, 70720G (2008).
[Crossref]

Kak, A.

M. Slaney and A. Kak, Principles of Computerized Tomographic Imaging (SIAM, 1988).

Kao, C. M.

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

Katsaggelos, A. K.

S. D. Babacan, R. Ansorge, M. Luessi, P. Ruiz Mataran, R. Molina, and A. K. Katsaggelos, “Compressive light field sensing,” IEEE Trans. Image Process. 21, 4746–4757 (2012).
[Crossref]

Kavusi, S.

H. A. Eltoukhy and S. Kavusi, “A computationally efficient algorithm for multi-focus image reconstruction,” Proc. SPIE 5017, 332–341 (2003).
[Crossref]

Kelly, K. F.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Kim, C.

Kim, J.

Kim, J. M.

O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30, 1129–1142 (2011).
[Crossref]

Kinast, J.

M. E. Gehm and J. Kinast, “Adaptive spectroscopy: towards adaptive spectral imaging,” Proc. SPIE 6978, 69780I (2008).

Kittle, D.

Kraut, S.

S. Basty, M. A. Neifeld, D. Brady, and S. Kraut, “Nonlinear estimation for interferometric imaging,” Opt. Commun. 228, 249–261 (2003).
[Crossref]

Krishnamurthy, K.

Krishnan, D.

D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-Laplacian priors,” in Advances in Neural Information Processing Systems (2009), pp. 1033–1041.

Kubota, A.

A. Kubota, K. Aizawa, and T. Chen, “Reconstructing dense light field from array of multifocus images for novel view synthesis,” IEEE Trans. Electron. Comput. 16, 269–279 (2007).

Kudo, H.

M. H. Li, H. Q. Yang, and H. Kudo, “An accurate iterative reconstruction algorithm for sparse objects: application to 3D blood vessel reconstruction from a limited number of projections,” Phys. Med. Biol. 47, 2599–2609 (2002).
[Crossref]

Kuppinger, P.

Y. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: uncertainty relations and efficient recovery,” IEEE Trans. Signal Process. 58, 3042–3054 (2010).
[Crossref]

Kwok, J. T. Y.

S. T. Li, J. T. Y. Kwok, I. W. H. Tsang, and Y. N. Wang, “Fusing images with different focuses using support vector machines,” IEEE Trans. Neural Netw. 15, 1555–1561 (2004).
[Crossref]

Lanterman, A. D.

A. D. Lanterman, “Statistical radar imaging of diffuse and specular targets using an expectation-maximization algorithm,” Proc. SPIE 4053, 20–31 (2000).
[Crossref]

Laska, J. N.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Lebed, E.

Lee, J.

J. W. Stayman, W. Zbijewski, Y. Otake, A. Uneri, S. Schafer, J. Lee, J. L. Prince, and J. H. Siewerdsen, “Penalized-likelihood reconstruction for sparse data acquisitions with unregistered prior images and compressed sensing penalties,” Proc. SPIE 7961, 79611L (2011).
[Crossref]

Lee, J. W.

Lee, O.

O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30, 1129–1142 (2011).
[Crossref]

Lee, S. F.

Lelescu, D.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32, 1–13 (2013).
[Crossref]

Leng, S. H.

G. H. Chen, J. Tang, and S. H. Leng, “Prior image constrained compressed sensing: a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35, 660–663 (2008).
[Crossref]

Levin, A.

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
[Crossref]

Levoy, M.

M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
[Crossref]

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

Lew, M. D.

Li, D.

Li, F.

L. Li, W. Zhang, and F. Li, “Compressive diffraction tomography for weakly scattering,” arXiv:0904.2695 (2009).

Li, L.

L. Li, W. Zhang, and F. Li, “Compressive diffraction tomography for weakly scattering,” arXiv:0904.2695 (2009).

Li, M. H.

M. H. Li, H. Q. Yang, and H. Kudo, “An accurate iterative reconstruction algorithm for sparse objects: application to 3D blood vessel reconstruction from a limited number of projections,” Phys. Med. Biol. 47, 2599–2609 (2002).
[Crossref]

Li, S. T.

B. Yang and S. T. Li, “Multifocus image fusion and restoration with sparse representation,” IEEE Trans. Instrum. Meas. 59, 884–892 (2010).
[Crossref]

S. T. Li and B. Yang, “Multifocus image fusion using region segmentation and spatial frequency,” Image Vis. Comput. 26, 971–979 (2008).
[Crossref]

S. T. Li, J. T. Y. Kwok, I. W. H. Tsang, and Y. N. Wang, “Fusing images with different focuses using support vector machines,” IEEE Trans. Neural Netw. 15, 1555–1561 (2004).
[Crossref]

Liao, X.

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref]

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” arXiv:1402.6932v1 (2014).

P. Llull, X. Yuan, X. Liao, J. Yang, L. Carin, G. Sapiro, and D. J. Brady, “Compressive extended depth of field using image space coding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2014), paper CM2D–3.

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” arXiv:1302.3446 (2013).

Lim, S.

Lipworth, G.

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

A. Mrozack, K. Krishnamurthy, G. Lipworth, D. Smith, and D. Brady, “Imaging of diffuse objects with dispersive imagers,” in 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September2013.

Liu, N.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Liu, Q. H.

J. Song, Q. H. Liu, G. A. Johnson, and C. T. Badea, “Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-CT,” Med. Phys. 34, 4476–4483 (2007).
[Crossref]

Liu, Y.

Llull, P.

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref]

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” arXiv:1302.3446 (2013).

P. Llull, X. Yuan, X. Liao, J. Yang, L. Carin, G. Sapiro, and D. J. Brady, “Compressive extended depth of field using image space coding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2014), paper CM2D–3.

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” arXiv:1402.6932v1 (2014).

Lord, S. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Luessi, M.

S. D. Babacan, R. Ansorge, M. Luessi, P. Ruiz Mataran, R. Molina, and A. K. Katsaggelos, “Compressive light field sensing,” IEEE Trans. Image Process. 21, 4746–4757 (2012).
[Crossref]

Lustig, M.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 1182–1195 (2007).
[Crossref]

MacCabe, K.

MacCabe, K. P.

Mackenzie, P. J.

Mait, J. N.

Mallat, S.

S. Mallat, A Wavelet Tour of Signal Processing (Elsevier/Academic, 2009).

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Marcia, R. F.

Marim, M.

Marim, M. M.

Marks, D.

Marks, D. L.

A. Mrozack, M. Heimbeck, D. L. Marks, J. Richard, H. O. Everitt, and D. J. Brady, “Adaptive millimeter-wave synthetic aperture imaging for compressive sampling of sparse scenes,” Opt. Express 22, 13515–13530 (2014).
[Crossref]

D. J. Brady, D. L. Marks, K. P. MacCabe, and J. A. O’Sullivan, “Coded apertures for x-ray scatter imaging,” Appl. Opt. 52, 7745–7754 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

D. J. Brady and D. L. Marks, “Coding for compressive focal tomography,” Appl. Opt. 50, 4436–4449 (2011).
[Crossref]

K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt. 49, H1–H10 (2010).
[Crossref]

A. A. Wagadarikar, D. L. Marks, K. Choi, R. Horisaki, and D. J. Brady, “Imaging through turbulence using compressive coherence sensing,” Opt. Lett. 35, 838–840 (2010).
[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
[Crossref]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007).
[Crossref]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027–1037 (2006).
[Crossref]

D. L. Marks, R. A. Stack, and D. J. Brady, “Digital refraction distortion correction with an astigmatic coherence sensor,” Appl. Opt. 41, 6050–6054 (2002).
[Crossref]

D. L. Marks, R. Stack, A. J. Johnson, D. J. Brady, and D. C. Munson, “Cone-beam tomography with a digital camera,” Appl. Opt. 40, 1795–1805 (2001).
[Crossref]

D. L. Marks, R. A. Stack, D. J. Brady, and J. van der Gracht, “Three-dimensional tomography using a cubic-phase plate extended depth-of-field system,” Opt. Lett. 24, 253–255 (1999).
[Crossref]

D. L. Marks, R. A. Stack, and D. J. Brady, “Three-dimensional coherence imaging in the Fresnel domain,” Appl. Opt. 38, 1332–1342 (1999).
[Crossref]

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
[Crossref]

Masaki, Y.

R. Horisaki, Y. Nakao, T. Toyoda, K. Kagawa, Y. Masaki, and J. Tanida, “A compound-eye imaging system with irregular lens-array arrangement,” Proc. SPIE 7072, 70720G (2008).
[Crossref]

Matousek, J.

P. K. Agarwal, D. Brady, and J. Matousek, “Segmenting object space by geometric reference structures,” ACM Trans. Sens. Netw. 2, 455–465 (2006).
[Crossref]

Mattheiss, M.

McClellan, J. H.

A. C. Gurbuz, J. H. McClellan, and W. R. Scott, “Compressive sensing for subsurface imaging using ground penetrating radar,” Signal Process. 89, 1959–1972 (2009).
[Crossref]

McMahon, A.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32, 1–13 (2013).
[Crossref]

Mertz, L.

L. Mertz, Transformations in Optics (Wiley, 1965).

Miau, D.

C. Zhou, D. Miau, and S. K. Nayar, “Focal sweep camera for space-time refocusing,” (Department of Computer Science, Columbia University, 2012).

Milster, T. D.

Mittleman, D. M.

Moerner, W.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Moerner, W. E.

Molina, G.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32, 1–13 (2013).
[Crossref]

Molina, R.

S. D. Babacan, R. Ansorge, M. Luessi, P. Ruiz Mataran, R. Molina, and A. K. Katsaggelos, “Compressive light field sensing,” IEEE Trans. Image Process. 21, 4746–4757 (2012).
[Crossref]

Montes, E. L.

Moran, J. M.

A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 2008).

Moravec, M. L.

Morrison, R. L.

Mrozack, A.

A. Mrozack, M. Heimbeck, D. L. Marks, J. Richard, H. O. Everitt, and D. J. Brady, “Adaptive millimeter-wave synthetic aperture imaging for compressive sampling of sparse scenes,” Opt. Express 22, 13515–13530 (2014).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

A. Mrozack, K. Krishnamurthy, G. Lipworth, D. Smith, and D. Brady, “Imaging of diffuse objects with dispersive imagers,” in 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September2013.

Mullis, R.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32, 1–13 (2013).
[Crossref]

Munson, D. C.

D. L. Marks, R. Stack, A. J. Johnson, D. J. Brady, and D. C. Munson, “Cone-beam tomography with a digital camera,” Appl. Opt. 40, 1795–1805 (2001).
[Crossref]

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
[Crossref]

D. C. Munson, J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE 71, 917–925 (1983).
[Crossref]

Myers, K.

H. Barrett and K. Myers, Foundations of Image Science (Wiley-Interscience, 2004).

Nakao, Y.

R. Horisaki, Y. Nakao, T. Toyoda, K. Kagawa, Y. Masaki, and J. Tanida, “A compound-eye imaging system with irregular lens-array arrangement,” Proc. SPIE 7072, 70720G (2008).
[Crossref]

Nayar, S.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32, 1–13 (2013).
[Crossref]

Nayar, S. K.

C. Zhou, D. Miau, and S. K. Nayar, “Focal sweep camera for space-time refocusing,” (Department of Computer Science, Columbia University, 2012).

Neifeld, M.

Neifeld, M. A.

A. Ashok and M. A. Neifeld, “Compressive light field imaging,” Proc. SPIE 7690, 76900Q (2010).

S. Uttam, N. A. Goodman, M. A. Neifeld, C. Kim, R. John, J. Kim, and D. Brady, “Optically multiplexed imaging with superposition space tracking,” Opt. Express 17, 1691–1713 (2009).
[Crossref]

P. M. Shankar, W. C. Hasenplaugh, R. L. Morrison, R. A. Stack, and M. A. Neifeld, “Multiaperture imaging,” Appl. Opt. 45, 2871–2883 (2006).
[Crossref]

S. Basty, M. A. Neifeld, D. Brady, and S. Kraut, “Nonlinear estimation for interferometric imaging,” Opt. Commun. 228, 249–261 (2003).
[Crossref]

Ng, R.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

Nishita, T.

Y. Bando, B.-Y. Chen, and T. Nishita, “Motion deblurring from a single image using circular sensor motion,” Comput. Graph. Forum 30, 1869–1878 (2011).
[Crossref]

O’Brien, J. D.

D. C. Munson, J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE 71, 917–925 (1983).
[Crossref]

O’Sullivan, J. A.

Ojeda-Castaneda, J.

Olivo-Marin, J.-C.

Otake, Y.

J. W. Stayman, W. Zbijewski, Y. Otake, A. Uneri, S. Schafer, J. Lee, J. L. Prince, and J. H. Siewerdsen, “Penalized-likelihood reconstruction for sparse data acquisitions with unregistered prior images and compressed sensing penalties,” Proc. SPIE 7961, 79611L (2011).
[Crossref]

Paisley, J.

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: algorithm and performance bounds,” IEEE Trans. Signal Process. 58, 6140–6155 (2010).
[Crossref]

Pan, X. C.

E. Y. Sidky and X. C. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777–4807 (2008).
[Crossref]

Pan, X. H.

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

Papoulis, A.

A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuits Syst. 24, 652–654 (1977).
[Crossref]

Parker, J. T.

L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and compressed sensing in radar imaging,” Proc. IEEE 98, 1006–1020 (2010).
[Crossref]

Patel, V. M.

V. M. Patel, G. R. Easley, D. Healy, and R. Chellappa, “Compressed synthetic aperture radar,” IEEE J. Sel. Top. Quantum Electron. 4, 244–254 (2010).

Pauly, J. M.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 1182–1195 (2007).
[Crossref]

Pavani, S. R. P.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Paxman, R. G.

Perry, P.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Petropulu, A. P.

Y. Yu, A. P. Petropulu, and V. Poor, “Mimo radar using compressive sampling,” IEEE J. Sel. Top. Quantum Electron. 4, 146–163 (2010).

Piestun, R.

G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2, 3010–3020 (2011).
[Crossref]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

A. Greengard, Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31, 181–183 (2006).
[Crossref]

A. Agrawal, S. Quirin, G. Grover, and R. Piestun, “Limits of 3D dipole localization and orientation estimation with application to single-molecule imaging,” in Imaging and Applied Optics (Optical Society of America, 2011), paper CWA4.

Pitsianis, N.

Pitsianis, N. P.

Politte, D. G.

Poor, V.

Y. Yu, A. P. Petropulu, and V. Poor, “Mimo radar using compressive sampling,” IEEE J. Sel. Top. Quantum Electron. 4, 146–163 (2010).

Potter, L. C.

L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and compressed sensing in radar imaging,” Proc. IEEE 98, 1006–1020 (2010).
[Crossref]

Potuluri, P.

P. Potuluri, M. B. Xu, and D. J. Brady, “Imaging with random 3D reference structures,” Opt. Express 11, 2134–2141 (2003).
[Crossref]

D. J. Brady, N. Pitsianis, X. Sun, and P. Potuluri, “Compressive measurement and signal inference,” U.S. patent7,283,231 (Oct.16, 2007).

Prince, J. L.

J. W. Stayman, W. Zbijewski, Y. Otake, A. Uneri, S. Schafer, J. Lee, J. L. Prince, and J. H. Siewerdsen, “Penalized-likelihood reconstruction for sparse data acquisitions with unregistered prior images and compressed sensing penalties,” Proc. SPIE 7961, 79611L (2011).
[Crossref]

Quirin, S.

G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2, 3010–3020 (2011).
[Crossref]

A. Agrawal, S. Quirin, G. Grover, and R. Piestun, “Limits of 3D dipole localization and orientation estimation with application to single-molecule imaging,” in Imaging and Applied Optics (Optical Society of America, 2011), paper CWA4.

Rajagopalan, A. N.

S. Chaudhuri and A. N. Rajagopalan, Depth from Defocus: A Real Aperture Imaging Approach (Springer, 1999).

Ralston, T. S.

Rangayyan, R.

Recht, B.

G. Tang, B. Bhaskar, P. Shah, and B. Recht, “Compressed sensing off the grid,” IEEE Trans. Inf. Theory 59, 7465–7490 (2013).
[Crossref]

Reynolds, M.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Richard, J.

Rivenson, Y.

Rodrigues, M.

W. Carson, M. Chen, M. Rodrigues, R. Calderbank, and L. Carin, “Communications-inspired projection design with application to compressive sensing,” arXiv:1206.1973 (2012).

Romberg, J.

E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969–985 (2007).
[Crossref]

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

Rosen, J.

Ross, A.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Rot, A.

Ruiz Mataran, P.

S. D. Babacan, R. Ansorge, M. Luessi, P. Ruiz Mataran, R. Molina, and A. K. Katsaggelos, “Compressive light field sensing,” IEEE Trans. Image Process. 21, 4746–4757 (2012).
[Crossref]

Samei, E.

Sapiro, G.

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref]

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” arXiv:1402.6932v1 (2014).

P. Llull, X. Yuan, X. Liao, J. Yang, L. Carin, G. Sapiro, and D. J. Brady, “Compressive extended depth of field using image space coding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2014), paper CM2D–3.

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 417–424.

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” arXiv:1302.3446 (2013).

Sarunic, M. V.

Sarvotham, S.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Schafer, D.

E. Hansis, D. Schafer, O. Dossel, and M. Grass, “Evaluation of iterative sparse object reconstruction from few projections for 3-D rotational coronary angiography,” IEEE Trans. Med. Imag. 27, 1548–1555 (2008).
[Crossref]

Schafer, S.

J. W. Stayman, W. Zbijewski, Y. Otake, A. Uneri, S. Schafer, J. Lee, J. L. Prince, and J. H. Siewerdsen, “Penalized-likelihood reconstruction for sparse data acquisitions with unregistered prior images and compressed sensing penalties,” Proc. SPIE 7961, 79611L (2011).
[Crossref]

Schechner, Y.

Schirinzi, G.

A. Budillon, A. Evangelista, and G. Schirinzi, “Three-dimensional SAR focusing from multipass signals using compressive sampling,” IEEE Trans. Geosci. Remote Sens. 49, 488–499 (2011).
[Crossref]

Schlomka, J. P.

J. Delfs and J. P. Schlomka, “Energy-dispersive coherent scatter computed tomography,” Appl. Phys. Lett. 88, 243506 (2006).
[Crossref]

Schlomka, J.-P.

J.-P. Schlomka, A. Harding, U. van Stevendaal, M. Grass, and G. L. Harding, “Coherent scatter computed tomography: a novel medical imaging technique,” Proc. SPIE 5030, 256–265 (2003).
[Crossref]

Schulz, T.

T. Schulz, “Penalized maximum-likelihood estimation of covariance matrices with linear structure,” IEEE Trans. Signal Process. 45, 3027–3038 (1997).
[Crossref]

Schulz, T. J.

Scott, W. R.

A. C. Gurbuz, J. H. McClellan, and W. R. Scott, “Compressive sensing for subsurface imaging using ground penetrating radar,” Signal Process. 89, 1959–1972 (2009).
[Crossref]

Seales, W. B.

W. B. Seales and S. Dutta, “Everywhere-in-focus image fusion using controllable cameras,” Proc. SPIE 2905, 227–234 (1996).
[Crossref]

Sejnowski, T. J.

A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput. 7, 1129–1159 (1995).
[Crossref]

Sezan, M. I.

M. I. Sezan and H. Stark, “Image restoration by the method of convex projections: part 2 applications and numerical results,” IEEE Trans. Med. Imag. 1, 95–101 (1982).
[Crossref]

Shah, P.

G. Tang, B. Bhaskar, P. Shah, and B. Recht, “Compressed sensing off the grid,” IEEE Trans. Inf. Theory 59, 7465–7490 (2013).
[Crossref]

Shankar, M.

Shankar, P.

Shankar, P. M.

Shannon, C. E.

C. E. Shannon, “Communications in the presence of noise,” Proc. IRE 37, 10–21 (1949).
[Crossref]

Sharpe, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Sidky, E. Y.

E. Y. Sidky and X. C. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777–4807 (2008).
[Crossref]

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

Siewerdsen, J. H.

J. W. Stayman, W. Zbijewski, Y. Otake, A. Uneri, S. Schafer, J. Lee, J. L. Prince, and J. H. Siewerdsen, “Penalized-likelihood reconstruction for sparse data acquisitions with unregistered prior images and compressed sensing penalties,” Proc. SPIE 7961, 79611L (2011).
[Crossref]

Silva, J.

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: algorithm and performance bounds,” IEEE Trans. Signal Process. 58, 6140–6155 (2010).
[Crossref]

Sinha, A.

Slaney, M.

M. Slaney and A. Kak, Principles of Computerized Tomographic Imaging (SIAM, 1988).

Sloane, N.

M. Harwit and N. Sloane, Hadamard Transform Optics (Academic, 1979).

Smith, D.

A. Mrozack, K. Krishnamurthy, G. Lipworth, D. Smith, and D. Brady, “Imaging of diffuse objects with dispersive imagers,” in 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September2013.

Smith, D. R.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

Smith, W. E.

Song, J.

J. Song, Q. H. Liu, G. A. Johnson, and C. T. Badea, “Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-CT,” Med. Phys. 34, 4476–4483 (2007).
[Crossref]

Stack, R.

Stack, R. A.

Stark, H.

M. I. Sezan and H. Stark, “Image restoration by the method of convex projections: part 2 applications and numerical results,” IEEE Trans. Med. Imag. 1, 95–101 (1982).
[Crossref]

Stayman, J. W.

J. W. Stayman, W. Zbijewski, Y. Otake, A. Uneri, S. Schafer, J. Lee, J. L. Prince, and J. H. Siewerdsen, “Penalized-likelihood reconstruction for sparse data acquisitions with unregistered prior images and compressed sensing penalties,” Proc. SPIE 7961, 79611L (2011).
[Crossref]

Steeghs, P.

R. Baraniuk and P. Steeghs, “Compressive radar imaging,” in IEEE Radar Conference, April2007, pp. 128–133.

Stern, A.

Strohmer, T.

M. A. Herman and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE Trans. Signal Process. 57, 2275–2284 (2009).
[Crossref]

Suh, T. S.

K. Choi, J. Wang, L. Zhu, T. S. Suh, S. Boyd, and L. Xing, “Compressed sensing based cone-beam computed tomography reconstruction with a first-order method,” Med. Phys. 37, 5113–5125 (2010).
[Crossref]

Sun, X.

Süzen, M.

Swenson, G. W.

A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 2008).

Takhar, D.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Tang, G.

G. Tang, B. Bhaskar, P. Shah, and B. Recht, “Compressed sensing off the grid,” IEEE Trans. Inf. Theory 59, 7465–7490 (2013).
[Crossref]

Tang, J.

G. H. Chen, J. Tang, and S. H. Leng, “Prior image constrained compressed sensing: a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35, 660–663 (2008).
[Crossref]

Tanida, J.

R. Horisaki, J. Tanida, A. Stern, and B. Javidi, “Multidimensional imaging using compressive Fresnel holography,” Opt. Lett. 37, 2013–2015 (2012).
[Crossref]

R. Horisaki, Y. Nakao, T. Toyoda, K. Kagawa, Y. Masaki, and J. Tanida, “A compound-eye imaging system with irregular lens-array arrangement,” Proc. SPIE 7072, 70720G (2008).
[Crossref]

Tao, T.

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
[Crossref]

Thompson, A. R.

A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 2008).

Thompson, M. A.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Tian, L.

Tornai, M. P.

Toyoda, T.

R. Horisaki, Y. Nakao, T. Toyoda, K. Kagawa, Y. Masaki, and J. Tanida, “A compound-eye imaging system with irregular lens-array arrangement,” Proc. SPIE 7072, 70720G (2008).
[Crossref]

Triantafyllou, M. S.

Tsang, I. W. H.

S. T. Li, J. T. Y. Kwok, I. W. H. Tsang, and Y. N. Wang, “Fusing images with different focuses using support vector machines,” IEEE Trans. Neural Netw. 15, 1555–1561 (2004).
[Crossref]

Twieg, R. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Uneri, A.

J. W. Stayman, W. Zbijewski, Y. Otake, A. Uneri, S. Schafer, J. Lee, J. L. Prince, and J. H. Siewerdsen, “Penalized-likelihood reconstruction for sparse data acquisitions with unregistered prior images and compressed sensing penalties,” Proc. SPIE 7961, 79611L (2011).
[Crossref]

Uttam, S.

van der Gracht, J.

van Stevendaal, U.

J.-P. Schlomka, A. Harding, U. van Stevendaal, M. Grass, and G. L. Harding, “Coherent scatter computed tomography: a novel medical imaging technique,” Proc. SPIE 5030, 256–265 (2003).
[Crossref]

Venkataraman, K.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32, 1–13 (2013).
[Crossref]

Volakis, J.

J. Volakis, Antenna Engineering Handbook, 4th ed. (McGraw-Hill, 2007).

Wagadarikar, A.

Wagadarikar, A. A.

Wakin, M.

R. Baraniuk and M. Wakin, “Random projections of smooth manifolds,” Found. Comput. Math. 9, 51–77 (2009).
[Crossref]

Wakin, M. B.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Walther, A.

Wang, C.

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: algorithm and performance bounds,” IEEE Trans. Signal Process. 58, 6140–6155 (2010).
[Crossref]

Wang, J.

K. Choi, J. Wang, L. Zhu, T. S. Suh, S. Boyd, and L. Xing, “Compressed sensing based cone-beam computed tomography reconstruction with a first-order method,” Med. Phys. 37, 5113–5125 (2010).
[Crossref]

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Machine Intell. 14, 99–106 (1992).
[Crossref]

Wang, Y. N.

S. T. Li, J. T. Y. Kwok, I. W. H. Tsang, and Y. N. Wang, “Fusing images with different focuses using support vector machines,” IEEE Trans. Neural Netw. 15, 1555–1561 (2004).
[Crossref]

Weaver, J. B.

D. M. Healy and J. B. Weaver, “Adapted wave-form encoding for magnetic-resonance-imaging,” IEEE Eng. Med. Biol. Mag. 14(5), 621–638 (1995).
[Crossref]

Webb, H.

D. C. Youla and H. Webb, “Image restoration by the method of convex projections: part 1 theory,” IEEE Trans. Med. Imag. 1, 81–94 (1982).
[Crossref]

Wehner, D.

D. Wehner, High-Resolution Radar, Artech House Radar Library (Artech House, 1995).

Welford, W. T.

Wikner, D. A.

Willett, R.

Willett, R. M.

Wöhler, C.

C. Wöhler, 3D Computer Vision (Springer, 2012).

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

E. Wolf, “Principles and development of diffraction tomography,” in Trends in Optics (Academic, 1996), Vol. 3, pp. 83–110.

Wong, C.-K.

T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” IEEE Trans. Image Process. 7, 370–375 (1998).
[Crossref]

Xing, L.

K. Choi, J. Wang, L. Zhu, T. S. Suh, S. Boyd, and L. Xing, “Compressed sensing based cone-beam computed tomography reconstruction with a first-order method,” Med. Phys. 37, 5113–5125 (2010).
[Crossref]

Xu, M. B.

Xue, Y.

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process. 56, 2346–2356 (2008).
[Crossref]

Yang, B.

B. Yang and S. T. Li, “Multifocus image fusion and restoration with sparse representation,” IEEE Trans. Instrum. Meas. 59, 884–892 (2010).
[Crossref]

S. T. Li and B. Yang, “Multifocus image fusion using region segmentation and spatial frequency,” Image Vis. Comput. 26, 971–979 (2008).
[Crossref]

Yang, H. Q.

M. H. Li, H. Q. Yang, and H. Kudo, “An accurate iterative reconstruction algorithm for sparse objects: application to 3D blood vessel reconstruction from a limited number of projections,” Phys. Med. Biol. 47, 2599–2609 (2002).
[Crossref]

Yang, J.

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref]

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” arXiv:1302.3446 (2013).

P. Llull, X. Yuan, X. Liao, J. Yang, L. Carin, G. Sapiro, and D. J. Brady, “Compressive extended depth of field using image space coding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2014), paper CM2D–3.

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” arXiv:1402.6932v1 (2014).

Ye, J. C.

O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30, 1129–1142 (2011).
[Crossref]

Youla, D. C.

D. C. Youla and H. Webb, “Image restoration by the method of convex projections: part 1 theory,” IEEE Trans. Med. Imag. 1, 81–94 (1982).
[Crossref]

Yu, Y.

Y. Yu, A. P. Petropulu, and V. Poor, “Mimo radar using compressive sampling,” IEEE J. Sel. Top. Quantum Electron. 4, 146–163 (2010).

Yuan, X.

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref]

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” arXiv:1402.6932v1 (2014).

P. Llull, X. Yuan, X. Liao, J. Yang, L. Carin, G. Sapiro, and D. J. Brady, “Compressive extended depth of field using image space coding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2014), paper CM2D–3.

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” arXiv:1302.3446 (2013).

Zbijewski, W.

J. W. Stayman, W. Zbijewski, Y. Otake, A. Uneri, S. Schafer, J. Lee, J. L. Prince, and J. H. Siewerdsen, “Penalized-likelihood reconstruction for sparse data acquisitions with unregistered prior images and compressed sensing penalties,” Proc. SPIE 7961, 79611L (2011).
[Crossref]

Zhang, W.

L. Li, W. Zhang, and F. Li, “Compressive diffraction tomography for weakly scattering,” arXiv:0904.2695 (2009).

Zhou, C.

C. Zhou, D. Miau, and S. K. Nayar, “Focal sweep camera for space-time refocusing,” (Department of Computer Science, Columbia University, 2012).

Zhu, L.

K. Choi, J. Wang, L. Zhu, T. S. Suh, S. Boyd, and L. Xing, “Compressed sensing based cone-beam computed tomography reconstruction with a first-order method,” Med. Phys. 37, 5113–5125 (2010).
[Crossref]

ACM Trans. Graph. (2)

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32, 1–13 (2013).
[Crossref]

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
[Crossref]

ACM Trans. Sens. Netw. (1)

P. K. Agarwal, D. Brady, and J. Matousek, “Segmenting object space by geometric reference structures,” ACM Trans. Sens. Netw. 2, 455–465 (2006).
[Crossref]

Appl. Opt. (17)

K. P. MacCabe, A. D. Holmgren, M. P. Tornai, and D. J. Brady, “Snapshot 2D tomography via coded aperture x-ray scatter imaging,” Appl. Opt. 52, 4582–4589 (2013).
[Crossref]

D. L. Marks, R. A. Stack, and D. J. Brady, “Three-dimensional coherence imaging in the Fresnel domain,” Appl. Opt. 38, 1332–1342 (1999).
[Crossref]

S. R. Gottesman and E. E. Fenimore, “New family of binary arrays for coded aperture imaging,” Appl. Opt. 28, 4344–4352 (1989).
[Crossref]

E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).
[Crossref]

M. Neifeld and P. Shankar, “Feature-specific imaging,” Appl. Opt. 42, 3379–3389 (2003).
[Crossref]

R. Rangayyan, A. P. Dhawan, and R. Gordon, “Algorithms for limited-view computed-tomography—an annotated-bibliography and a challenge,” Appl. Opt. 24, 4000–4012 (1985).
[Crossref]

D. J. Brady, D. L. Marks, K. P. MacCabe, and J. A. O’Sullivan, “Coded apertures for x-ray scatter imaging,” Appl. Opt. 52, 7745–7754 (2013).
[Crossref]

D. J. Brady and D. L. Marks, “Coding for compressive focal tomography,” Appl. Opt. 50, 4436–4449 (2011).
[Crossref]

D. Kittle, K. Choi, A. Wagadarikar, and D. J. Brady, “Multiframe image estimation for coded aperture snapshot spectral imagers,” Appl. Opt. 49, 6824–6833 (2010).
[Crossref]

P. M. Shankar, W. C. Hasenplaugh, R. L. Morrison, R. A. Stack, and M. A. Neifeld, “Multiaperture imaging,” Appl. Opt. 45, 2871–2883 (2006).
[Crossref]

M. Shankar, N. P. Pitsianis, and D. J. Brady, “Compressive video sensors using multichannel imagers,” Appl. Opt. 49, B9–B17 (2010).
[Crossref]

D. L. Marks, R. A. Stack, and D. J. Brady, “Digital refraction distortion correction with an astigmatic coherence sensor,” Appl. Opt. 41, 6050–6054 (2002).
[Crossref]

D. L. Marks, R. Stack, A. J. Johnson, D. J. Brady, and D. C. Munson, “Cone-beam tomography with a digital camera,” Appl. Opt. 40, 1795–1805 (2001).
[Crossref]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008).
[Crossref]

K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt. 49, H1–H10 (2010).
[Crossref]

Y. Rivenson, A. Stern, and B. Javidi, “Overview of compressive sensing techniques applied in holography,” Appl. Opt. 52, A423–A432 (2013).
[Crossref]

C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
[Crossref]

Appl. Phys. Lett. (1)

J. Delfs and J. P. Schlomka, “Energy-dispersive coherent scatter computed tomography,” Appl. Phys. Lett. 88, 243506 (2006).
[Crossref]

Biomed. Opt. Express (1)

C. R. Math. (1)

E. Candes, “The restricted isometry property and its implications for compressed sensing,” C. R. Math. 346, 589–592 (2008).
[Crossref]

Comput. Graph. Forum (1)

Y. Bando, B.-Y. Chen, and T. Nishita, “Motion deblurring from a single image using circular sensor motion,” Comput. Graph. Forum 30, 1869–1878 (2011).
[Crossref]

Computer (1)

M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
[Crossref]

Found. Comput. Math. (1)

R. Baraniuk and M. Wakin, “Random projections of smooth manifolds,” Found. Comput. Math. 9, 51–77 (2009).
[Crossref]

IEEE Eng. Med. Biol. Mag. (1)

D. M. Healy and J. B. Weaver, “Adapted wave-form encoding for magnetic-resonance-imaging,” IEEE Eng. Med. Biol. Mag. 14(5), 621–638 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

V. M. Patel, G. R. Easley, D. Healy, and R. Chellappa, “Compressed synthetic aperture radar,” IEEE J. Sel. Top. Quantum Electron. 4, 244–254 (2010).

Y. Yu, A. P. Petropulu, and V. Poor, “Mimo radar using compressive sampling,” IEEE J. Sel. Top. Quantum Electron. 4, 146–163 (2010).

IEEE Trans. Circuits Syst. (1)

A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuits Syst. 24, 652–654 (1977).
[Crossref]

IEEE Trans. Electron. Comput. (1)

A. Kubota, K. Aizawa, and T. Chen, “Reconstructing dense light field from array of multifocus images for novel view synthesis,” IEEE Trans. Electron. Comput. 16, 269–279 (2007).

IEEE Trans. Geosci. Remote Sens. (2)

A. Devaney, “Geophysical diffraction tomography,” IEEE Trans. Geosci. Remote Sens. GE-22, 3–13 (1984).
[Crossref]

A. Budillon, A. Evangelista, and G. Schirinzi, “Three-dimensional SAR focusing from multipass signals using compressive sampling,” IEEE Trans. Geosci. Remote Sens. 49, 488–499 (2011).
[Crossref]

IEEE Trans. Image Process. (2)

S. D. Babacan, R. Ansorge, M. Luessi, P. Ruiz Mataran, R. Molina, and A. K. Katsaggelos, “Compressive light field sensing,” IEEE Trans. Image Process. 21, 4746–4757 (2012).
[Crossref]

T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” IEEE Trans. Image Process. 7, 370–375 (1998).
[Crossref]

IEEE Trans. Inf. Theory (7)

Y. Chen and Y. Chi, “Robust spectral compressed sensing via structured matrix completion,” IEEE Trans. Inf. Theory 60, 6576–6601 (2014).
[Crossref]

G. Tang, B. Bhaskar, P. Shah, and B. Recht, “Compressed sensing off the grid,” IEEE Trans. Inf. Theory 59, 7465–7490 (2013).
[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
[Crossref]

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

S. Gleichman and Y. C. Eldar, “Blind compressed sensing,” IEEE Trans. Inf. Theory 57, 6958–6975 (2011).
[Crossref]

R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Trans. Inf. Theory 56, 1982–2001 (2010).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

B. Yang and S. T. Li, “Multifocus image fusion and restoration with sparse representation,” IEEE Trans. Instrum. Meas. 59, 884–892 (2010).
[Crossref]

IEEE Trans. Med. Imag. (4)

O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag. 30, 1129–1142 (2011).
[Crossref]

D. C. Youla and H. Webb, “Image restoration by the method of convex projections: part 1 theory,” IEEE Trans. Med. Imag. 1, 81–94 (1982).
[Crossref]

M. I. Sezan and H. Stark, “Image restoration by the method of convex projections: part 2 applications and numerical results,” IEEE Trans. Med. Imag. 1, 95–101 (1982).
[Crossref]

E. Hansis, D. Schafer, O. Dossel, and M. Grass, “Evaluation of iterative sparse object reconstruction from few projections for 3-D rotational coronary angiography,” IEEE Trans. Med. Imag. 27, 1548–1555 (2008).
[Crossref]

IEEE Trans. Neural Netw. (1)

S. T. Li, J. T. Y. Kwok, I. W. H. Tsang, and Y. N. Wang, “Fusing images with different focuses using support vector machines,” IEEE Trans. Neural Netw. 15, 1555–1561 (2004).
[Crossref]

IEEE Trans. Pattern Anal. Machine Intell. (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Machine Intell. 14, 99–106 (1992).
[Crossref]

IEEE Trans. Signal Process. (5)

T. Schulz, “Penalized maximum-likelihood estimation of covariance matrices with linear structure,” IEEE Trans. Signal Process. 45, 3027–3038 (1997).
[Crossref]

M. A. Herman and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE Trans. Signal Process. 57, 2275–2284 (2009).
[Crossref]

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process. 56, 2346–2356 (2008).
[Crossref]

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: algorithm and performance bounds,” IEEE Trans. Signal Process. 58, 6140–6155 (2010).
[Crossref]

Y. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: uncertainty relations and efficient recovery,” IEEE Trans. Signal Process. 58, 3042–3054 (2010).
[Crossref]

Image Vis. Comput. (1)

S. T. Li and B. Yang, “Multifocus image fusion using region segmentation and spatial frequency,” Image Vis. Comput. 26, 971–979 (2008).
[Crossref]

Inverse Probl. (1)

E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969–985 (2007).
[Crossref]

Inverse Probl. Imag. (1)

J. F. Crouzet, “3D coded aperture imaging, ill-posedness and link with incomplete data Radon transform,” Inverse Probl. Imag. 5, 341–353 (2011).
[Crossref]

J. Display Technol. (1)

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (7)

J. X-Ray Sci. Technol. (1)

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

Magn. Reson. Med. (1)

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 1182–1195 (2007).
[Crossref]

Med. Phys. (3)

G. H. Chen, J. Tang, and S. H. Leng, “Prior image constrained compressed sensing: a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35, 660–663 (2008).
[Crossref]

J. Song, Q. H. Liu, G. A. Johnson, and C. T. Badea, “Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-CT,” Med. Phys. 34, 4476–4483 (2007).
[Crossref]

K. Choi, J. Wang, L. Zhu, T. S. Suh, S. Boyd, and L. Xing, “Compressed sensing based cone-beam computed tomography reconstruction with a first-order method,” Med. Phys. 37, 5113–5125 (2010).
[Crossref]

Neural Comput. (1)

A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput. 7, 1129–1159 (1995).
[Crossref]

Opt. Commun. (1)

S. Basty, M. A. Neifeld, D. Brady, and S. Kraut, “Nonlinear estimation for interferometric imaging,” Opt. Commun. 228, 249–261 (2003).
[Crossref]

Opt. Express (15)

S. Hong, J. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
[Crossref]

E. Lebed, P. J. Mackenzie, M. V. Sarunic, and F. M. Beg, “Rapid volumetric OCT image acquisition using compressive sampling,” Opt. Express 18, 21003–21012 (2010).
[Crossref]

A. Mrozack, M. Heimbeck, D. L. Marks, J. Richard, H. O. Everitt, and D. J. Brady, “Adaptive millimeter-wave synthetic aperture imaging for compressive sampling of sparse scenes,” Opt. Express 22, 13515–13530 (2014).
[Crossref]

S. Uttam, N. A. Goodman, M. A. Neifeld, C. Kim, R. John, J. Kim, and D. Brady, “Optically multiplexed imaging with superposition space tracking,” Opt. Express 17, 1691–1713 (2009).
[Crossref]

R. F. Marcia, C. Kim, C. Eldeniz, J. Kim, D. J. Brady, and R. M. Willett, “Superimposed video disambiguation for increased field of view,” Opt. Express 16, 16352–16363 (2008).
[Crossref]

M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027 (2007).
[Crossref]

J. A. Greenberg, K. Krishnamurthy, and D. Brady, “Snapshot molecular imaging using coded energy-sensitive detection,” Opt. Express 21, 25480–25491 (2013).
[Crossref]

P. Potuluri, M. B. Xu, and D. J. Brady, “Imaging with random 3D reference structures,” Opt. Express 11, 2134–2141 (2003).
[Crossref]

A. Sinha and D. J. Brady, “Size and shape recognition using measurement statistics and random 3D reference structures,” Opt. Express 11, 2606–2618 (2003).
[Crossref]

K. MacCabe, K. Krishnamurthy, A. Chawla, D. Marks, E. Samei, and D. Brady, “Pencil beam coded aperture x-ray scatter imaging,” Opt. Express 20, 16310–16320 (2012).
[Crossref]

M. Süzen, A. Giannoula, and T. Durduran, “Compressed sensing in diffuse optical tomography,” Opt. Express 18, 23676–23690 (2010).
[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526–10545 (2013).
[Crossref]

A. Wagadarikar, N. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17, 6368–6388 (2009).
[Crossref]

J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011).
[Crossref]

Opt. Lett. (14)

D. L. Marks, R. A. Stack, D. J. Brady, and J. van der Gracht, “Three-dimensional tomography using a cubic-phase plate extended depth-of-field system,” Opt. Lett. 24, 253–255 (1999).
[Crossref]

D. J. Brady, “Multiplex sensors and the constant radiance theorem,” Opt. Lett. 27, 16–18 (2002).
[Crossref]

J. Greenberg, K. Krishnamurthy, and D. Brady, “Compressive single-pixel snapshot x-ray diffraction imaging,” Opt. Lett. 39, 111–114 (2014).
[Crossref]

M. Marim, E. Angelini, J.-C. Olivo-Marin, and M. Atlan, “Off-axis compressed holographic microscopy in low-light conditions,” Opt. Lett. 36, 79–81 (2011).
[Crossref]

M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Opt. Lett. 35, 871–873 (2010).
[Crossref]

Y. Liu, L. Tian, J. W. Lee, H. Y. H. Huang, M. S. Triantafyllou, and G. Barbastathis, “Scanning-free compressive holography for object localization with subpixel accuracy,” Opt. Lett. 37, 3357–3359 (2012).
[Crossref]

R. Horisaki, J. Tanida, A. Stern, and B. Javidi, “Multidimensional imaging using compressive Fresnel holography,” Opt. Lett. 37, 2013–2015 (2012).
[Crossref]

Y. Rivenson, A. Rot, S. Balber, A. Stern, and J. Rosen, “Recovery of partially occluded objects by applying compressive Fresnel holography,” Opt. Lett. 37, 1757–1759 (2012).
[Crossref]

W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974–976 (2008).
[Crossref]

A. A. Wagadarikar, D. L. Marks, K. Choi, R. Horisaki, and D. J. Brady, “Imaging through turbulence using compressive coherence sensing,” Opt. Lett. 35, 838–840 (2010).
[Crossref]

W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26, 875–877 (2001).
[Crossref]

A. Greengard, Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31, 181–183 (2006).
[Crossref]

J. Ojeda-Castaneda, L. R. Berriel-Valdos, and E. L. Montes, “Line-spread function relatively insensitive to defocus,” Opt. Lett. 8, 458–460 (1983).
[Crossref]

M. D. Lew, S. F. Lee, M. Badieirostami, and W. E. Moerner, “Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects,” Opt. Lett. 36, 202–204 (2011).
[Crossref]

Phys. Med. Biol. (2)

E. Y. Sidky and X. C. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777–4807 (2008).
[Crossref]

M. H. Li, H. Q. Yang, and H. Kudo, “An accurate iterative reconstruction algorithm for sparse objects: application to 3D blood vessel reconstruction from a limited number of projections,” Phys. Med. Biol. 47, 2599–2609 (2002).
[Crossref]

Proc. IEEE (2)

L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and compressed sensing in radar imaging,” Proc. IEEE 98, 1006–1020 (2010).
[Crossref]

D. C. Munson, J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE 71, 917–925 (1983).
[Crossref]

Proc. IRE (1)

C. E. Shannon, “Communications in the presence of noise,” Proc. IRE 37, 10–21 (1949).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009).
[Crossref]

Proc. SPIE (10)

M. E. Gehm and J. Kinast, “Adaptive spectroscopy: towards adaptive spectral imaging,” Proc. SPIE 6978, 69780I (2008).

A. Ashok and M. A. Neifeld, “Compressive light field imaging,” Proc. SPIE 7690, 76900Q (2010).

R. Horisaki, Y. Nakao, T. Toyoda, K. Kagawa, Y. Masaki, and J. Tanida, “A compound-eye imaging system with irregular lens-array arrangement,” Proc. SPIE 7072, 70720G (2008).
[Crossref]

W. B. Seales and S. Dutta, “Everywhere-in-focus image fusion using controllable cameras,” Proc. SPIE 2905, 227–234 (1996).
[Crossref]

H. A. Eltoukhy and S. Kavusi, “A computationally efficient algorithm for multi-focus image reconstruction,” Proc. SPIE 5017, 332–341 (2003).
[Crossref]

J.-P. Schlomka, A. Harding, U. van Stevendaal, M. Grass, and G. L. Harding, “Coherent scatter computed tomography: a novel medical imaging technique,” Proc. SPIE 5030, 256–265 (2003).
[Crossref]

A. D. Lanterman, “Statistical radar imaging of diffuse and specular targets using an expectation-maximization algorithm,” Proc. SPIE 4053, 20–31 (2000).
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

J. W. Stayman, W. Zbijewski, Y. Otake, A. Uneri, S. Schafer, J. Lee, J. L. Prince, and J. H. Siewerdsen, “Penalized-likelihood reconstruction for sparse data acquisitions with unregistered prior images and compressed sensing penalties,” Proc. SPIE 7961, 79611L (2011).
[Crossref]

K. Choi and D. J. Brady, “Coded aperture computed tomography,” Proc. SPIE 7468, 74680B (2009).
[Crossref]

Science (3)

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, “Visible cone-beam tomography with a lensless interferometric camera,” Science 284, 2164–2166 (1999).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[Crossref]

Signal Process. (2)

J. H. Ender, “On compressive sensing applied to radar,” Signal Process. 90, 1402–1414 (2010).
[Crossref]

A. C. Gurbuz, J. H. McClellan, and W. R. Scott, “Compressive sensing for subsurface imaging using ground penetrating radar,” Signal Process. 89, 1959–1972 (2009).
[Crossref]

Ultrason. Imag. (1)

A. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982).
[Crossref]

Ultrason. Imaging (1)

M. F. Insana and T. J. Hall, “Parametric ultrasound imaging from backscatter coefficient measurements: image formation and interpretation,” Ultrason. Imaging 12, 245–267 (1990).
[Crossref]

Other (34)

J. Goodman, Introduction to Fourier Optics, McGraw-Hill Series in Electrical and Computer Engineering (McGraw-Hill, 1996).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

A. Mrozack, K. Krishnamurthy, G. Lipworth, D. Smith, and D. Brady, “Imaging of diffuse objects with dispersive imagers,” in 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September2013.

L. Li, W. Zhang, and F. Li, “Compressive diffraction tomography for weakly scattering,” arXiv:0904.2695 (2009).

D. Wehner, High-Resolution Radar, Artech House Radar Library (Artech House, 1995).

R. Baraniuk and P. Steeghs, “Compressive radar imaging,” in IEEE Radar Conference, April2007, pp. 128–133.

S. Chaudhuri and A. N. Rajagopalan, Depth from Defocus: A Real Aperture Imaging Approach (Springer, 1999).

C. Wöhler, 3D Computer Vision (Springer, 2012).

J. Volakis, Antenna Engineering Handbook, 4th ed. (McGraw-Hill, 2007).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).

A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, 2008).

P. Llull, X. Yuan, X. Liao, J. Yang, L. Carin, G. Sapiro, and D. J. Brady, “Compressive extended depth of field using image space coding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2014), paper CM2D–3.

X. Yuan, P. Llull, X. Liao, J. Yang, D. J. Brady, G. Sapiro, and L. Carin, “Low-cost compressive sensing for color video and depth,” arXiv:1402.6932v1 (2014).

C. Zhou, D. Miau, and S. K. Nayar, “Focal sweep camera for space-time refocusing,” (Department of Computer Science, Columbia University, 2012).

C. Frese and I. Gheta, “Robust depth estimation by fusion of stereo and focus series acquired with a camera array,” in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems,” September2006, pp. 243–248.

P. Griffiths and J. De Haseth, “Fourier Transform Infrared Spectrometry,” in Chemical Analysis: a Series of Monographs on Analytical Chemistry and Its Applications (Wiley, 2007), Vol. 171.

D. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

D. Z. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications (World Scientific, 2000).

M. Harwit and N. Sloane, Hadamard Transform Optics (Academic, 1979).

S. Mallat, A Wavelet Tour of Signal Processing (Elsevier/Academic, 2009).

M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer-Verlag, 2010).

D. J. Brady, N. Pitsianis, X. Sun, and P. Potuluri, “Compressive measurement and signal inference,” U.S. patent7,283,231 (Oct.16, 2007).

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” arXiv:1302.3446 (2013).

W. Carson, M. Chen, M. Rodrigues, R. Calderbank, and L. Carin, “Communications-inspired projection design with application to compressive sensing,” arXiv:1206.1973 (2012).

H. Barrett and K. Myers, Foundations of Image Science (Wiley-Interscience, 2004).

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Taylor & Francis, 1998).

M. Slaney and A. Kak, Principles of Computerized Tomographic Imaging (SIAM, 1988).

E. Wolf, “Principles and development of diffraction tomography,” in Trends in Optics (Academic, 1996), Vol. 3, pp. 83–110.

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 417–424.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

L. Mertz, Transformations in Optics (Wiley, 1965).

A. Agrawal, S. Quirin, G. Grover, and R. Piestun, “Limits of 3D dipole localization and orientation estimation with application to single-molecule imaging,” in Imaging and Applied Optics (Optical Society of America, 2011), paper CWA4.

D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-Laplacian priors,” in Advances in Neural Information Processing Systems (2009), pp. 1033–1041.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (37)

Figure 1
Figure 1

Interaction and coding models for geometric tomography.

Figure 2
Figure 2

Tikhonov regularized reconstruction from (a) full Radon data, (b) limited angle data, (c) random projections, and (d) periodically subsampled projections, and (e)–(h) show truncated SVD reconstructions using the first 256 singular vectors and Tikhonov regularization for the corresponding upper row images.

Figure 3
Figure 3

Singular value spectra for the Radon sampling strategies of Fig. 2.

Figure 4
Figure 4

Representative singular vectors for limited angle Radon observations.

Figure 5
Figure 5

Representative singular vectors for randomly distributed Radon observations.

Figure 6
Figure 6

Representative singular vectors for the fully sampled 2D Radon transformation.

Figure 7
Figure 7

Representative singular vectors for periodically sampled Radon observations.

Figure 8
Figure 8

Total variation constrained reconstruction of (a) randomly sampled projections and (b) periodic in angle projections.

Figure 9
Figure 9

Multiplexed illumination using a coded aperture for source separation.

Figure 10
Figure 10

Multiplexed detection of scatter from a single illumination ray.

Figure 11
Figure 11

Curves of integration through f(z,θ) for x=±2,±1,±0.25 and 0 for d=0.1 and d=1. The range of z is [0, 1] and the range of θ is [π/2,π/2].

Figure 12
Figure 12

Coded-aperture modulation for scatter tomography.

Figure 13
Figure 13

One-dimensional coded apertures, top to bottom: sinusoid code, binary sinusoid code, random gray-scale code, random binary code, and tiled MURA of length 5. The horizontal axis is x.

Figure 14
Figure 14

(a) Singular values and (b) PSFs for each coded aperture in Fig. 13. For clarity, each curve has been normalized according to its peak value.

Figure 15
Figure 15

Coherent scatter reconstruction results for the pencil beam system in Ref. [65] with NaCl and Al vials simultaneously in the beam. (a) Spatial scattering density f(z,q) integrated over q with NaCl and Al vials in the beam. (b) Scattering density f(q) for NaCl at z=59.3cm. (c) Scattering density f(q) for Al at z=52cm. These results show the capability of the coded-aperture system to measure tomographic electron density and momentum transfer distributions.

Figure 16
Figure 16

(a) Photo and (b) reconstructed density image of the plastic “DUKE” letters measured in the fan beam experiment of Ref. [76]. These results demonstrate snapshot 2D tomography.

Figure 17
Figure 17

Results for the pencil beam system of Ref. [78], employing a linear array of energy-sensitive detectors. (a) The background-subtracted scatter measurements for 10 mm HDPE, (b) the reconstructed f(z,q), (c) spatial correlation map with the known sample form factor, and (d) recovered momentum transfer profile at the location of peak density, compared with the known form factor. These results demonstrate the ability of energy sensitivity to increase the measurement dimensionality.

Figure 18
Figure 18

(a) Simple setup for diffraction tomography and (b) the corresponding spatial frequency space. The transverse resolution is dominated by acceptance angle θ, and the axial resolution is dominated by wavelength range Δk.

Figure 19
Figure 19

Basic holographic recording geometry. A Mach–Zehnder interferometer allows for a reference beam to interfere with a reference beam for coherent detection using an incoherent detector. The illumination of the object is assumed to be a plane wave, and the reference beam is often assumed to be a tilted plane wave to allow for easy filtering. Adapted from “Recording a hologram” (https://en.wikipedia.org/wiki/Holography/) in Wikipedia, Bob Mellish. CC BY-SA 3.0.

Figure 20
Figure 20

(a) Absolute value and (b) angle of a holography sensing matrix.

Figure 21
Figure 21

(a) Object composed of point scatterers, (b) the backpropagation of the measured field, and (c) the compressed sensing reconstruction of the object.

Figure 22
Figure 22

(a) Object composed of point scatterers, (b) the backpropagation of the a single speckle realization measured field, (c) the average of the fields from 100 backpropagated speckle realizations, (d) the preconditioning estimate from the incoherent estimation model from 100 speckle realizations, and (e) the compressive reconstruction from the preconditioned model from 100 speckle realizations.

Figure 23
Figure 23

Schematics of (a) a SAR system and (b) an ISAM system for sampling a full band volume by sweeping frequency and moving the detector. SAR systems use RF hardware and measure a coherent field directly. ISAM measures the field through an interferometer.

Figure 24
Figure 24

Reconstructions of point sources using a synthetic aperture imager centered at 1 THz with a 77 GHz bandwidth. The beam is focused by a. 25 NA lens. The Rayleigh range for the configuration is 1.5 cm. (a) is the original image, (b) an OCT approximation reconstruction, (c) a transpose model estimate, and (d) a full inverse with l1 regularization.

Figure 25
Figure 25

Reconstructions of point sources using a synthetic-aperture imager centered at 1 THz with a 77 GHz bandwidth. The beam is focused by a 0.25 NA lens. 50% of the lateral samples are discarded, making the estimation a compressed sensing problem. The Rayleigh range for the configuration is 1.5 cm. (a) is the original image, (b) an OCT approximation reconstruction, (c) a transpose model estimate, and (d) a full inverse with l1 regularization.

Figure 26
Figure 26

(a) Leaky-wave antenna illuminating an object and (b) a metaimager illuminating an object. The leaky-wave antenna has a periodic excitation that results in a single spatial frequency, and therefore a narrow beam, to be illuminated from the antenna. The metaimager has a complicated excitation that creates a chaotic beam pattern. Since the excitation is due to resonant elements, the beam pattern changes with frequency in a complicated fashion as opposed to just sweeping the beam pattern.

Figure 27
Figure 27

(a) Absolute value and (b) phase of the fields from the metaimager at one plane a distance of 85 cm from the source.

Figure 28
Figure 28

(a) Sample image of point scatterers and (b) reconstruction from the metaimager.

Figure 29
Figure 29

Blur kernels for an F/5, 5 mm conventional camera focused at a distance of 1.27 m.

Figure 30
Figure 30

Swept blur kernels for an F/5, 5 mm conventional camera sweeping the object volume for an object located at 1.27 m. Note the invariance of the kernels as a function of depth.

Figure 31
Figure 31

Horizontal linear translation focus kernel shapes hs2,z0 as a function of object distance z0.

Figure 32
Figure 32

Circular translation swept-focus kernel shapes hs3,z0 as a function of object distance zo.

Figure 33
Figure 33

Discriminability of focal sweep kernel candidates relative to the true kernel located a distance zo=333mm away from the camera. Curves for hs1,zo, hs2,zo, and hs3,zo are plotted in red, green, and blue, respectively.

Figure 34
Figure 34

Simulated objects for the image translation focal tomography method. Each object is assumed planar and is located a different distance away from the camera. Subimages 1–4 are, respectively, modeled at distances 25 m, 1.27 m, 22 cm, and 15 cm away from the lens. The camera is focused on subimage 2.

Figure 35
Figure 35

Left: simulated images captured by the camera when focused on subimage 2 (upper right image). Right: the same images after deconvolution with their respective kernels. The noise has been amplified, and the high-frequency details are lost.

Figure 36
Figure 36

Measurements and deconvolution results for various focal sweeping strategies. (a) Target object for comparison. Each subimage is modeled from the corresponding focal distances shown in Fig. 34. (b)–(d) Images simulated with the focal sweep camera convolved with hs1,hs2, and hs3. The corresponding kernels from the known zo values are shown in the lower-right corners. (e)–(g) Deconvolution results from the respective images.

Figure 37
Figure 37

PSNR plots versus candidate kernel number for the three different swept focus kernels. Each subplot corresponds to its subimage. The candidate kernel numbers are of the order of their descending distances zo. Both hs2,zo and hs3,zo prove more accurate for ranging than hs1,zo, as can be seen by their more pronounced peaks.

Equations (61)

Equations on this page are rendered with MathJax. Learn more.

g=Hf+n,
g(y)=f(x)h(x,y)dx+n(y),
g(y,t)=f(x)h(x,y,t)dx.
g˜(y)=g(y,t)C(y,t)dt=C(y,t)f(x)h(x,y,t)dxdt,
g(y)=f(x)C(x)h(x,y)dx.
tTtg(t)Cj(t)dt=ifi(t)Ci(t)Cj(t)dt=fj(t).
g=Ioerayf(x)dx,
g(x,k)=B(x=xαk,k)f(x=xαk,k,k)dα,
g(x)=t(x,x)f(x)dx,
g(x)=f(z,θ=tan1(x/(z+d)))dz,
g(x)=t(xzz+d)f(z,θ=tan1(x/(z+d)))dz,
ψs(r,k)=f(r)ψo(r,k)G(rr)dr,
(2+ko2)G(rr)=δ(rr).
g^(u)f^(uuo)G^(u),
G^(u)1|u|2ko2.
g(x,zd)f^(ux,uzko)ux2+uz2ko2exp[j(uxx+uzzd)]duxduz.
g(x,zd)f^(ux,ko2ux2ko)ko2ux2exp[jko2ux2zd]dux+f^(ux,ko2ux2ko)ko2ux2exp[jko2ux2zd]dux.
g(x)=zminzmaxF1[F[f(x)]exp[jzko2ux2]]dz+n,
gi=F1QiFfi,
Qi=diag[vec[Si]],
vec[Si]m,n=exp[jziko2uxm2],
g=igi+n,
H=[F1Q1F,F1Q2F,,F1QNzF],
f=[f1f2fNz],
g=Hf+n,
f^=argminf˜gHf˜2+τf˜1,
f^=argminf˜gHf˜2+τf˜TV.
xCN(0,Rx),
Rx=diag[f].
g=Hx+n,
gCN(0,HRxH+n).
x^i=H(HH)1gi,
=Hgi.
xiCN(0,HHRxHH+σ2HH),
s=1Mi=1M|xi|2,
diag[E[xx]],
diag[HHRxHH+σ2HH],
snp|hp,hn|2fp+σ2hn2,
s=Bf+σ2w,
bn,p=|hn,hp|2,
wn=hn2,
B˜=(BB+εI)1BB,
s˜=(BB+εI)1B(sσ2w).
f^=argminf˜B˜f˜s˜+τf˜1.
g(x,k)=(W0W[z]exp[(xx)2W[z]2jkzjk(xx)22R[z]+jtan1[zzR]])2f(x,z)dxdz,
g(rTX,rRX,k)=Rψo(rrTX,k)ψr(rrRX,k)f(r)dr
ψo(r,k)ψo(ϕ,θ,ro)exp[jk(rro)].
kxfs=kxwg2πp.
m(rTX)=α(r)ψwg(r),
α(r)ω2ω2ωo2(r)+jωωo(r)2Q,
ψTX(r)rAm(rA)G(rrA),
g(x,y,zo)=f(x,y,z,t)hzo(xx,yy,zzo)px(x,y)pt(t)dxdydzdt,
hzo(x,y,z)=1w02+σ2(zo,z)eπ(x2+y2w02+σ2(zo,z)).
σ(zo,z)=Az2λ|1F1zo1z|,
hs1,zo(x,y,z)=0ΔThzo(x,y,zνt)dt,
gz0(x,y)=f(x,y,z,t)hs1,z0(xx,yy,z)px(x,y)pt(t)dxdydzdt.
g^zo(u,v,w)=sinc(Δu,Δv)sinc(Δtw)f^(u,v,z,w)h^s1,zo(u,v,z).
Dij=1Nu,v(σi(u,v)σj(u,v)log(σi(u,v)σj(u,v)))1,
hs2,zo(x,y,z)=0ΔThzo(xη(t),y,zνt)dt.
g^zo(u,v,w)=sinc(Δu)sinc(ΔTw)f^(αu,v,z,αu+w)h^s2,zo(u,v,z).
hs3,zo(x,y,z)=0ΔThzo(xη(t),yξ(t),zνt)dt.

Metrics