Abstract

Random fiber lasers blend together attractive features of traditional random lasers, such as low cost and simplicity of fabrication, with high-performance characteristics of conventional fiber lasers, such as good directionality and high efficiency. Low coherence of random lasers is important for speckle-free imaging applications. The random fiber laser with distributed feedback proposed in 2010 led to a quickly developing class of light sources that utilize inherent optical fiber disorder in the form of the Rayleigh scattering and distributed Raman gain. The random fiber laser is an interesting and practically important example of a photonic device based on exploitation of optical medium disorder. We provide an overview of recent advances in this field, including high-power and high-efficiency generation, spectral and statistical properties of random fiber lasers, nonlinear kinetic theory of such systems, and emerging applications in telecommunications and distributed sensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Narrow-band generation in random distributed feedback fiber laser

Srikanth Sugavanam, Nikita Tarasov, Xuewen Shu, and Dmitry V. Churkin
Opt. Express 21(14) 16466-16472 (2013)

Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser

Dmitry V. Churkin, Atalla E. El-Taher, Ilya D. Vatnik, Juan Diego Ania-Castañón, Paul Harper, Eugeny V. Podivilov, Sergey A. Babin, and Sergei K. Turitsyn
Opt. Express 20(10) 11178-11188 (2012)

High-efficiency cascaded Raman fiber laser with random distributed feedback

S. A. Babin, I. D. Vatnik, A. Yu. Laptev, M. M. Bubnov, and E. M. Dianov
Opt. Express 22(21) 24929-24934 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2001).
  2. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref]
  3. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [Crossref]
  4. R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic, 2009).
  5. S. Akiba, “Distributed feedback lasers,” in Encyclopedic Handbook of Integrated Optics, K. Iga and Y. Kokubun, eds. (CRC Press, 2010), pp. 41–53.
  6. J. Shi, S. ul Alam, and M. Ibsen, “Highly efficient Raman distributed feedback fibre lasers,” Opt. Express 20, 5082–5091 (2012).
    [Crossref]
  7. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
    [Crossref]
  8. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  9. E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008).
  10. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [Crossref]
  11. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
    [Crossref]
  12. B. L. Ellerbroek, “First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. A 11, 783–805 (1994).
    [Crossref]
  13. G. Keiser, Optical Fiber Communications (Wiley, 2003).
  14. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
    [Crossref]
  15. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
    [Crossref]
  16. V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode,” Opt. Express 22, 8190–8204 (2014).
    [Crossref]
  17. R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “A laser with a non-resonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
    [Crossref]
  18. N. M. Lawandy, R. Balachandran, A. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
    [Crossref]
  19. V. Markushev, N. É. Ter-Gabriélyan, C. M. Briskina, V. Belan, and V. Zolin, “Stimulated emission kinetics of neodymium powder lasers,” Sov. J. Quantum Electron. 20, 773–777 (1990).
    [Crossref]
  20. H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [Crossref]
  21. Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. Lett. 35, 1425–1427 (2010).
    [Crossref]
  22. Q. Baudouin, N. Mercadier, V. Guarrera, W. Guerin, and R. Kaiser, “A cold-atom random laser,” Nat. Phys. 9, 357–360 (2013).
    [Crossref]
  23. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. 38, 10497–10535 (2005).
  24. H. Cao, “Lasing in random media,” Waves Random Media 13, R1–R39 (2003).
    [Crossref]
  25. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
    [Crossref]
  26. S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
    [Crossref]
  27. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
    [Crossref]
  28. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
    [Crossref]
  29. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express 20, 28033 (2012).
    [Crossref]
  30. Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).
  31. I. D. Vatnik, D. V. Churkin, E. V. Podivilov, and S. A. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
    [Crossref]
  32. H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
    [Crossref]
  33. Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).
  34. H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirrors reflectivity in forward-pumped random fiber laser,” Opt. Express 23, 1421–1427 (2015).
    [Crossref]
  35. S. Babin, I. Vatnik, A. Y. Laptev, M. Bubnov, and E. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22, 24929–24934 (2014).
    [Crossref]
  36. M. Fan, Z. Wang, H. Wu, W. Sun, and L. Zhang, “Low-threshold, high-efficiency Random fiber laser with linear output,” IEEE Photon. Technol. Lett. 27, 319–322 (2015).
    [Crossref]
  37. A. Lanin, D. Churkin, K. Golant, and S. Turitsyn, “Raman gain and random distributed feedback generation in nitrogen doped silica core fiber,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).
  38. S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “Random fiber laser directly pumped by a high-power laser diode,” Opt. Lett. 38, 3301–3303 (2013).
    [Crossref]
  39. S. I. Kablukov, E. I. Dontsova, E. A. Zlobina, I. N. Nemov, A. A. Vlasov, and S. A. Babin, “An LD-pumped Raman fiber laser operating below 1  μm,” Laser Phys. Lett. 10, 085103 (2013).
    [Crossref]
  40. T. Yao and J. Nilsson, “835  nm fiber Raman laser pulse pumped by a multimode laser diode at 806  nm,” J. Opt. Soc. Am. B 31, 882–888 (2014).
    [Crossref]
  41. I. Vatnik, D. Churkin, E. Podivilov, and S. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
    [Crossref]
  42. A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19, 14152–14159 (2011).
    [Crossref]
  43. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Spectral width optimization in random DFB fiber laser,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).
  44. S. V. Smirnov and D. V. Churkin, “Modeling of spectral and statistical properties of a random distributed feedback fiber laser,” Opt. Express 21, 21236–21241 (2013).
    [Crossref]
  45. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2  μm,” Opt. Express 19, 18486–18494 (2011).
    [Crossref]
  46. D. V. Churkin, I. D. Vatnik, S. K. Turitsyn, and S. A. Babin, “Random distributed feedback Raman fiber laser operating in a 1.2  μm wavelength range,” Laser Phys. 21, 1525–1529 (2011).
    [Crossref]
  47. H. Wu, Z. N. Wang, D. V. Churkin, I. D. Vatnik, M. Q. Fan, and Y. J. Rao, “Random distributed feedback Raman fiber laser with polarized pumping,” Laser Phys. Lett. 12, 015101 (2015).
    [Crossref]
  48. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castanon, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20, 11178–11188 (2012).
    [Crossref]
  49. S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21, 16466–16472 (2013).
    [Crossref]
  50. A. R. Sarmani, R. Zamiri, M. H. A. Bakar, B. Z. Azmi, A. W. Zaidan, and M. A. Mahdi, “Tunable Raman fiber laser induced by Rayleigh back-scattering in an ultra-long cavity,” J. Eur. Opt. Soc. 6, 11043 (2011).
    [Crossref]
  51. Y. Y. Zhu, W. L. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
    [Crossref]
  52. X. Du, H. Zhang, X. Wang, and P. Zhou, “Tunable random distributed feedback fiber laser operating at 1  μm,” Appl. Opt. 54, 908–911 (2015).
    [Crossref]
  53. S. A. Babin, D. V. Churkin, A. Ismagulov, S. Kablukov, E. Podivilov, M. Rybakov, and A. Vlasov, “All-fiber widely tunable Raman fiber laser with controlled output spectrum,” Opt. Express 15, 8438–8443 (2007).
    [Crossref]
  54. K. Yeo, M. Mahdi, H. Mohamad, S. Hitam, and M. Mokhtar, “Widely tunable Raman ring laser using highly nonlinear fiber,” Laser Phys. 19, 2200–2203 (2009).
    [Crossref]
  55. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
    [Crossref]
  56. A. El-Taher, M. Alcon-Camas, S. Babin, P. Harper, J. D. Ania-Castanón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35, 1100–1102 (2010).
    [Crossref]
  57. A. Pinto, O. Frazão, J. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99, 391–395 (2010).
    [Crossref]
  58. A. Pinto, O. Frazão, J. Santos, and M. Lopez-Amo, “Multiwavelength Raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities,” J. Lightwave Technol. 29, 1482–1488 (2011).
    [Crossref]
  59. A. Pinto, M. Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser,” Opt. Express 19, 11906–11915 (2011).
    [Crossref]
  60. S. Sugavanam, Z. Yan, V. Kamynin, A. Kurkov, L. Zhang, and D. Churkin, “Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter,” Opt. Express 22, 2839–2844 (2014).
    [Crossref]
  61. H. Tang, W. Zhang, Y. Rao, Y. Zhu, and Z. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
    [Crossref]
  62. M. Bravo Acha, V. DeMiguel-Soto, A. Ortigosa, and M. Lopez-Amo, “Fully switchable multi-wavelength fiber laser based interrogator system for remote and versatile fiber optic sensors multiplexing structures,” Proc. SPIE 9157, 91576P (2014).
  63. Y. Zhu, W. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
    [Crossref]
  64. V. DeMiguel-Soto, M. Bravo, and M. Lopez-Amo, “Fully switchable multiwavelength fiber laser assisted by a random mirror,” Opt. Lett. 39, 2020–2023 (2014).
    [Crossref]
  65. L. Chen and Y. Ding, “Random distributed feedback fiber laser pumped by an ytterbium doped fiber laser,” Optik 125, 3663–3665 (2014).
    [Crossref]
  66. H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-power random distributed feedback Raman fiber laser operating at 1.2-μm,” Chin. Opt. Lett. 12, 073501 (2014).
    [Crossref]
  67. W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Y. Wang, Z. Nan, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20, 14400–14405 (2012).
    [Crossref]
  68. W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21, 8544–8549 (2013).
    [Crossref]
  69. X.-H. Jia, Y.-J. Rao, C.-X. Yuan, J. Li, X.-D. Yan, Z.-N. Wang, W.-L. Zhang, H. Wu, Y.-Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express 21, 24611–24619 (2013).
    [Crossref]
  70. Z. Wang, H. Wu, M. Fan, Y. Rao, X. Jia, and W. Zhang, “Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity,” Opt. Express 21, 20090–20095 (2013).
    [Crossref]
  71. S. A. Babin, E. I. Dontsova, I. D. Vatnik, and S. I. Kablukov, “Second harmonic generation of a random fiber laser with Raman gain,” Proc. SPIE 9347, 934710 (2015).
  72. M. Pang, X. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38, 1866–1868 (2013).
    [Crossref]
  73. M. Pang, X. Bao, L. Chen, Z. Qin, Y. Lu, and P. Lu, “Frequency stabilized coherent Brillouin random fiber laser: theory and experiments,” Opt. Express 21, 27155–27168 (2013).
    [Crossref]
  74. M. Pang, S. Xie, X. Bao, D.-P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett. 37, 3129–3131 (2012).
    [Crossref]
  75. A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett. 23, 1805–1807 (1998).
    [Crossref]
  76. B. Saxena, Z. Ou, X. Bao, and L. Chen, “Low frequency-noise random fiber laser with bi-directional SBS and Rayleigh feedback,” IEEE Photon. Technol. Lett. 27, 490–493 (2015).
    [Crossref]
  77. B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13, 1352–1354 (2001).
    [Crossref]
  78. K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27, 155–157 (2002).
    [Crossref]
  79. A. Zamzuri, M. Md Ali, A. Ahmad, R. Mohamad, and M. Mahdi, “Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity,” Opt. Lett. 31, 918–920 (2006).
    [Crossref]
  80. H. Martins, M. B. Marques, and O. Frazão, “Comparison of Brillouin-Raman comb fiber laser in two different configurations,” Laser Phys. 21, 1925–1931 (2011).
  81. R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115  nm,” Appl. Phys. B 111, 169–172 (2013).
    [Crossref]
  82. R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8, 139–143 (2011).
    [Crossref]
  83. R. S. Shargh, M. Al-Mansoori, S. Anas, R. Sahbudin, A. Zamzuri, and M. Mahdi, “Improvement of comb lines quality employing double-pass architecture in Brillouin-Raman laser,” Laser Phys. Lett. 8, 823–827 (2011).
    [Crossref]
  84. Z. Wang, H. Wu, M. Fan, Y. Li, Y. Gong, and Y. Rao, “Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering,” Opt. Express 21, 29358–29363 (2013).
    [Crossref]
  85. H. Wu, Z. Wang, X. Jia, P. Li, M. Fan, Y. Li, and Y. Zhu, “Flat amplitude multiwavelength Brillouin Raman random fiber laser with a half-open cavity,” Appl. Phys. B 112, 467–471 (2013).
    [Crossref]
  86. H. Ahmad, M. Zulkifli, M. Jemangin, and S. Harun, “Distributed feedback multimode Brillouin-Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
    [Crossref]
  87. T. Zhu, X. Bao, and L. Chen, “A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering,” Opt. Commun. 285, 1371–1374 (2012).
    [Crossref]
  88. T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, “Experimental study on stimulated Rayleigh scattering in optical fibers,” Opt. Express 18, 22958–22963 (2010).
    [Crossref]
  89. M. Abu Bakar, F. M. Adikan, and M. Mahdi, “Rayleigh-based Raman fiber laser with passive erbium-doped fiber for secondary pumping effect in remote L-band erbium-doped fiber amplifier,” IEEE Photon. J. 4, 1042–1050 (2012).
    [Crossref]
  90. P. Zhang, T. Wang, Q. Jia, X. Liu, M. Kong, S. Tong, and H. Jiang, “A novel fiber laser based on Rayleigh scattering feedback with a half-opened cavity,” Proc. SPIE 906, 890617 (2013).
  91. L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24, 115101 (2014).
    [Crossref]
  92. W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode Fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
    [Crossref]
  93. C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20, 902405 (2014).
  94. G. Mamdoohi, A. R. Sarmani, A. F. Abas, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi, “20  GHz spacing multi-wavelength generation of Brillouin-Raman fiber laser in a hybrid linear cavity,” Opt. Express 21, 18724–18732 (2013).
    [Crossref]
  95. C. Huang, X. Dong, S. Zhang, N. Zhang, and P. Shum, “Cascaded random fiber laser based on hybrid Brillouin-erbium fiber gains,” IEEE Photon. Technol. Lett. 26, 1287–1290 (2014).
    [Crossref]
  96. A. Al-Alimi, M. Yaacob, and A. Abas, “Half-linear cavity multiwavelength Brillouin-erbium fiber laser,” J. Eur. Opt. Soc. Rapid Pub. 9, 14051 (2014).
    [Crossref]
  97. O. Shapira and B. Fischer, “Localization of light in a random-grating array in a single-mode fiber,” J. Opt. Soc. Am. B 22, 2542–2552 (2005).
    [Crossref]
  98. Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B 86, 054204 (2012).
  99. M. Gagné and R. Kashyap, “Random fiber Bragg grating Raman fiber laser,” Opt. Lett. 39, 2755–2758 (2014).
    [Crossref]
  100. S. Derevyanko, “Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index,” Opt. Lett. 33, 2404–2406 (2008).
    [Crossref]
  101. C. J. S. de Matos, L. D. S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
    [Crossref]
  102. Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
    [Crossref]
  103. Z. Hu, B. Miao, T. Wang, Q. Fu, D. Zhang, H. Ming, and Q. Zhang, “Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser,” Opt. Lett. 38, 4644–4647 (2013).
    [Crossref]
  104. Z. Hu, P. Gao, K. Xie, Y. Liang, and H. Jiang, “Wavelength control of random polymer fiber laser based on adaptive disorder,” Opt. Lett. 39, 6911–6914 (2014).
    [Crossref]
  105. Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
    [Crossref]
  106. M. Bravo, M. Fernandez-Vallejo, and M. Lopez-Amo, “Internal modulation of a random fiber laser,” Opt. Lett. 38, 1542–1544 (2013).
    [Crossref]
  107. H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “Random distributed feedback Raman fiber laser with short cavity and its temporal properties,” IEEE Photon. Technol. Lett. 26, 1605–1608 (2014).
    [Crossref]
  108. A. Lanin, S. Sergeyev, D. Nasiev, D. Churkin, and S. Turitsyn, “On-off and multistate intermittencies in cascaded random distributed feedback fibre laser,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).
  109. G. Ravet, A. Fotiadi, M. Blondel, and P. Megret, “Passive Q-switching in all-fibre Raman laser with distributed Rayleigh feedback,” Electron. Lett. 40, 528–529 (2004).
    [Crossref]
  110. A. A. Fotiadi, P. Mégret, and M. Blondel, “Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror,” Opt. Lett. 29, 1078–1080 (2004).
    [Crossref]
  111. S. Chernikov, Y. Zhu, J. Taylor, and V. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997).
    [Crossref]
  112. Y. Tang, X. Li, and Q. J. Wang, “High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering,” Opt. Lett. 38, 5474–5477 (2013).
    [Crossref]
  113. O. Gorbunov, S. Sugavanam, and D. Churkin, “Intensity dynamics and statistical properties of random distributed feedback fiber laser,” Opt. Lett. 40, 1783–1786 (2015).
    [Crossref]
  114. E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7, 783–786 (2013).
    [Crossref]
  115. A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
    [Crossref]
  116. M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasi-solitons, dispersive waves, and extreme events,” Phys. Rev. A 91, 023823 (2015).
    [Crossref]
  117. D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
    [Crossref]
  118. D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett. 36, 3617–3619 (2011).
    [Crossref]
  119. S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett. 37, 500–502 (2012).
    [Crossref]
  120. C. Lecaplain, P. Grelu, J. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
    [Crossref]
  121. K. Hammani, A. Picozzi, and C. Finot, “Extreme statistics in Raman fiber amplifiers: from analytical description to experiments,” Opt. Commun. 284, 2594–2603 (2011).
    [Crossref]
  122. N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15, 060201 (2013).
    [Crossref]
  123. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
    [Crossref]
  124. J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8, 755–764 (2014).
    [Crossref]
  125. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent CW fiber lasers,” Opt. Lett. 35, 3288–3290 (2010).
    [Crossref]
  126. S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett. 36, 790–792 (2011).
    [Crossref]
  127. D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285, 2154–2160 (2012).
    [Crossref]
  128. A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21, 8177–8182 (2013).
    [Crossref]
  129. S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113, 113902 (2014).
    [Crossref]
  130. O. Gorbunov, S. Sugavanam, and D. Churkin, “Revealing statistical properties of quasi-CW fibre lasers in bandwidth-limited measurements,” Opt. Express 22, 28071–28076 (2014).
    [Crossref]
  131. S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19, 8394–8405 (2011).
    [Crossref]
  132. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24, 1729–1738 (2007).
    [Crossref]
  133. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31, 3007–3009 (2006).
    [Crossref]
  134. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33, 633–635 (2008).
    [Crossref]
  135. I. D. Vatnik and D. V. Churkin, “Modeling of the spectrum in a random distributed feedback fiber laser within the power balance modes,” Proc. SPIE 9135, 91351Z (2014).
  136. C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
    [Crossref]
  137. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
    [Crossref]
  138. D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
    [Crossref]
  139. V. E. Zakharov, V. S. L’Vov, and G. Falkovich, Kolmogorov Spectra of Turbulence 1. Wave Turbulence (Springer, 1992).
  140. S. Nazarenko, Wave Turbulence, Vol. 825 of Lecture Notes in Physics (Springer, 2011).
  141. I. Kolokolov, V. Lebedev, E. Podivilov, and S. Vergeles, “Theory of a random fiber laser,” J. Exp. Theor. Phys. 119, 1134–1139 (2014).
    [Crossref]
  142. X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express 21, 6572–6577 (2013).
    [Crossref]
  143. J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express 20, 27376–27381 (2012).
    [Crossref]
  144. S. Babin, D. Churkin, A. Fotiadi, S. Kablukov, O. Medvedkov, and E. Podivilov, “Relative intensity noise in cascaded-Raman fiber lasers,” IEEE Photon. Technol. Lett. 17, 2553–2555 (2005).
    [Crossref]
  145. B. Saxena, X. Bao, and L. Chen, “Suppression of thermal frequency noise in erbium-doped fiber random lasers,” Opt. Lett. 39, 1038–1041 (2014).
    [Crossref]
  146. Y. Li, P. Lu, X. Bao, and Z. Ou, “Random spaced index modulation for a narrow linewidth tunable fiber laser with low intensity noise,” Opt. Lett. 39, 2294–2297 (2014).
    [Crossref]
  147. Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20, 17695–17700 (2012).
    [Crossref]
  148. M. Fernandez-Vallejo, M. Bravo, and M. Lopez-Amo, “Ultra-long laser systems for remote fiber Bragg gratings arrays interrogation,” IEEE Photon. Technol. Lett. 25, 1362–1364 (2013).
    [Crossref]
  149. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol. 30, 1168–1172 (2012).
    [Crossref]
  150. H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B 104, 957–960 (2011).
    [Crossref]
  151. H. Martins, M. B. Marques, and O. Frazão, “300  km-ultralong Raman fiber lasers using a distributed mirror for sensing applications,” Opt. Express 19, 18149–18154 (2011).
    [Crossref]
  152. S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
    [Crossref]
  153. T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230  km) FBG sensor system,” Proc. SPIE 7004, 70046C (2008).
  154. X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE 8421, 842127 (2012).
  155. X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, X.-D. Yan, J. Li, H. Wu, Y.-Y. Zhu, and F. Peng, “Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application,” Opt. Express 21, 21208–21217 (2013).
    [Crossref]
  156. Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39, 5866–5869 (2014).
    [Crossref]
  157. S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “980-nm random fiber laser directly pumped by a high-power 938-nm laser diode,” Proc. SPIE 8961, 89612F (2014).
  158. Y. Tang and J. Xu, “A random Q-switched fiber laser,” Sci. Rep. 5, 9338 (2015).
    [Crossref]
  159. H. Martins, M. Marques, and O. Frazão, “Intensity vibration sensor based on Raman fiber laser using a distributed mirror combined with Bragg grating structures,” Appl. Phys. B 114, 455–459 (2014).
    [Crossref]
  160. J. Nuño and J. D. Ania-Castañón, “Cavity and random ultralong fibre laser amplification in BOTDAs: a comparison,” Laser Phys. 24, 065107 (2014).
    [Crossref]
  161. Y.-J. Rao, X.-H. Jia, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, J. Li, X.-D. Yan, H. Wu, Y.-Y. Zhu, and F. Peng, “154.4  km BOTDA based on hybrid distributed Raman amplifications,” Proc. SPIE 9157, 91575P (2014).
  162. P. Rosa, M. Tan, S. Le, I. Phillips, J. D. Ania-Castanon, S. Sygletos, and P. Harper, “Unrepeatered DP-QPSK transmission over 352.8  km SMF using random DFB fibre laser amplification,” IEEE Photon. Technol. Lett. 27, 1189–1192 (2015).
  163. M. Tan, P. Rosa, I. Phillips, and P. Harper, “Extended reach of 116  Gb/s DP-QPSK transmission using random DFB fiber laser based Raman amplification and bidirectional second-order pumping,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4E.
  164. J. Nuño and J. D. Ania-Castañón, “Fiber Sagnac interferometers with ultralong and random distributed feedback Raman laser amplification,” Opt. Lasers Eng. 54, 21–26 (2014).
    [Crossref]
  165. M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, “Comparative study of ring and random cavities for fiber lasers,” Appl. Opt. 53, 3501–3507 (2014).
    [Crossref]

2015 (14)

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirrors reflectivity in forward-pumped random fiber laser,” Opt. Express 23, 1421–1427 (2015).
[Crossref]

M. Fan, Z. Wang, H. Wu, W. Sun, and L. Zhang, “Low-threshold, high-efficiency Random fiber laser with linear output,” IEEE Photon. Technol. Lett. 27, 319–322 (2015).
[Crossref]

H. Wu, Z. N. Wang, D. V. Churkin, I. D. Vatnik, M. Q. Fan, and Y. J. Rao, “Random distributed feedback Raman fiber laser with polarized pumping,” Laser Phys. Lett. 12, 015101 (2015).
[Crossref]

X. Du, H. Zhang, X. Wang, and P. Zhou, “Tunable random distributed feedback fiber laser operating at 1  μm,” Appl. Opt. 54, 908–911 (2015).
[Crossref]

S. A. Babin, E. I. Dontsova, I. D. Vatnik, and S. I. Kablukov, “Second harmonic generation of a random fiber laser with Raman gain,” Proc. SPIE 9347, 934710 (2015).

B. Saxena, Z. Ou, X. Bao, and L. Chen, “Low frequency-noise random fiber laser with bi-directional SBS and Rayleigh feedback,” IEEE Photon. Technol. Lett. 27, 490–493 (2015).
[Crossref]

W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode Fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
[Crossref]

Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
[Crossref]

O. Gorbunov, S. Sugavanam, and D. Churkin, “Intensity dynamics and statistical properties of random distributed feedback fiber laser,” Opt. Lett. 40, 1783–1786 (2015).
[Crossref]

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasi-solitons, dispersive waves, and extreme events,” Phys. Rev. A 91, 023823 (2015).
[Crossref]

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref]

Y. Tang and J. Xu, “A random Q-switched fiber laser,” Sci. Rep. 5, 9338 (2015).
[Crossref]

P. Rosa, M. Tan, S. Le, I. Phillips, J. D. Ania-Castanon, S. Sygletos, and P. Harper, “Unrepeatered DP-QPSK transmission over 352.8  km SMF using random DFB fibre laser amplification,” IEEE Photon. Technol. Lett. 27, 1189–1192 (2015).

2014 (36)

J. Nuño and J. D. Ania-Castañón, “Fiber Sagnac interferometers with ultralong and random distributed feedback Raman laser amplification,” Opt. Lasers Eng. 54, 21–26 (2014).
[Crossref]

M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, “Comparative study of ring and random cavities for fiber lasers,” Appl. Opt. 53, 3501–3507 (2014).
[Crossref]

H. Martins, M. Marques, and O. Frazão, “Intensity vibration sensor based on Raman fiber laser using a distributed mirror combined with Bragg grating structures,” Appl. Phys. B 114, 455–459 (2014).
[Crossref]

J. Nuño and J. D. Ania-Castañón, “Cavity and random ultralong fibre laser amplification in BOTDAs: a comparison,” Laser Phys. 24, 065107 (2014).
[Crossref]

Y.-J. Rao, X.-H. Jia, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, J. Li, X.-D. Yan, H. Wu, Y.-Y. Zhu, and F. Peng, “154.4  km BOTDA based on hybrid distributed Raman amplifications,” Proc. SPIE 9157, 91575P (2014).

Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39, 5866–5869 (2014).
[Crossref]

S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “980-nm random fiber laser directly pumped by a high-power 938-nm laser diode,” Proc. SPIE 8961, 89612F (2014).

I. D. Vatnik and D. V. Churkin, “Modeling of the spectrum in a random distributed feedback fiber laser within the power balance modes,” Proc. SPIE 9135, 91351Z (2014).

B. Saxena, X. Bao, and L. Chen, “Suppression of thermal frequency noise in erbium-doped fiber random lasers,” Opt. Lett. 39, 1038–1041 (2014).
[Crossref]

Y. Li, P. Lu, X. Bao, and Z. Ou, “Random spaced index modulation for a narrow linewidth tunable fiber laser with low intensity noise,” Opt. Lett. 39, 2294–2297 (2014).
[Crossref]

I. Kolokolov, V. Lebedev, E. Podivilov, and S. Vergeles, “Theory of a random fiber laser,” J. Exp. Theor. Phys. 119, 1134–1139 (2014).
[Crossref]

S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113, 113902 (2014).
[Crossref]

O. Gorbunov, S. Sugavanam, and D. Churkin, “Revealing statistical properties of quasi-CW fibre lasers in bandwidth-limited measurements,” Opt. Express 22, 28071–28076 (2014).
[Crossref]

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8, 755–764 (2014).
[Crossref]

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

Z. Hu, P. Gao, K. Xie, Y. Liang, and H. Jiang, “Wavelength control of random polymer fiber laser based on adaptive disorder,” Opt. Lett. 39, 6911–6914 (2014).
[Crossref]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “Random distributed feedback Raman fiber laser with short cavity and its temporal properties,” IEEE Photon. Technol. Lett. 26, 1605–1608 (2014).
[Crossref]

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20, 902405 (2014).

C. Huang, X. Dong, S. Zhang, N. Zhang, and P. Shum, “Cascaded random fiber laser based on hybrid Brillouin-erbium fiber gains,” IEEE Photon. Technol. Lett. 26, 1287–1290 (2014).
[Crossref]

A. Al-Alimi, M. Yaacob, and A. Abas, “Half-linear cavity multiwavelength Brillouin-erbium fiber laser,” J. Eur. Opt. Soc. Rapid Pub. 9, 14051 (2014).
[Crossref]

M. Gagné and R. Kashyap, “Random fiber Bragg grating Raman fiber laser,” Opt. Lett. 39, 2755–2758 (2014).
[Crossref]

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24, 115101 (2014).
[Crossref]

V. DeMiguel-Soto, M. Bravo, and M. Lopez-Amo, “Fully switchable multiwavelength fiber laser assisted by a random mirror,” Opt. Lett. 39, 2020–2023 (2014).
[Crossref]

L. Chen and Y. Ding, “Random distributed feedback fiber laser pumped by an ytterbium doped fiber laser,” Optik 125, 3663–3665 (2014).
[Crossref]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-power random distributed feedback Raman fiber laser operating at 1.2-μm,” Chin. Opt. Lett. 12, 073501 (2014).
[Crossref]

S. Sugavanam, Z. Yan, V. Kamynin, A. Kurkov, L. Zhang, and D. Churkin, “Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter,” Opt. Express 22, 2839–2844 (2014).
[Crossref]

H. Tang, W. Zhang, Y. Rao, Y. Zhu, and Z. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[Crossref]

M. Bravo Acha, V. DeMiguel-Soto, A. Ortigosa, and M. Lopez-Amo, “Fully switchable multi-wavelength fiber laser based interrogator system for remote and versatile fiber optic sensors multiplexing structures,” Proc. SPIE 9157, 91576P (2014).

S. Babin, I. Vatnik, A. Y. Laptev, M. Bubnov, and E. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22, 24929–24934 (2014).
[Crossref]

T. Yao and J. Nilsson, “835  nm fiber Raman laser pulse pumped by a multimode laser diode at 806  nm,” J. Opt. Soc. Am. B 31, 882–888 (2014).
[Crossref]

I. Vatnik, D. Churkin, E. Podivilov, and S. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
[Crossref]

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

I. D. Vatnik, D. V. Churkin, E. V. Podivilov, and S. A. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
[Crossref]

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
[Crossref]

V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode,” Opt. Express 22, 8190–8204 (2014).
[Crossref]

2013 (29)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Q. Baudouin, N. Mercadier, V. Guarrera, W. Guerin, and R. Kaiser, “A cold-atom random laser,” Nat. Phys. 9, 357–360 (2013).
[Crossref]

S. V. Smirnov and D. V. Churkin, “Modeling of spectral and statistical properties of a random distributed feedback fiber laser,” Opt. Express 21, 21236–21241 (2013).
[Crossref]

S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “Random fiber laser directly pumped by a high-power laser diode,” Opt. Lett. 38, 3301–3303 (2013).
[Crossref]

S. I. Kablukov, E. I. Dontsova, E. A. Zlobina, I. N. Nemov, A. A. Vlasov, and S. A. Babin, “An LD-pumped Raman fiber laser operating below 1  μm,” Laser Phys. Lett. 10, 085103 (2013).
[Crossref]

Y. Zhu, W. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
[Crossref]

Y. Y. Zhu, W. L. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
[Crossref]

S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21, 16466–16472 (2013).
[Crossref]

M. Pang, X. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38, 1866–1868 (2013).
[Crossref]

M. Pang, X. Bao, L. Chen, Z. Qin, Y. Lu, and P. Lu, “Frequency stabilized coherent Brillouin random fiber laser: theory and experiments,” Opt. Express 21, 27155–27168 (2013).
[Crossref]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21, 8544–8549 (2013).
[Crossref]

X.-H. Jia, Y.-J. Rao, C.-X. Yuan, J. Li, X.-D. Yan, Z.-N. Wang, W.-L. Zhang, H. Wu, Y.-Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express 21, 24611–24619 (2013).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, X. Jia, and W. Zhang, “Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity,” Opt. Express 21, 20090–20095 (2013).
[Crossref]

R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115  nm,” Appl. Phys. B 111, 169–172 (2013).
[Crossref]

P. Zhang, T. Wang, Q. Jia, X. Liu, M. Kong, S. Tong, and H. Jiang, “A novel fiber laser based on Rayleigh scattering feedback with a half-opened cavity,” Proc. SPIE 906, 890617 (2013).

Z. Wang, H. Wu, M. Fan, Y. Li, Y. Gong, and Y. Rao, “Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering,” Opt. Express 21, 29358–29363 (2013).
[Crossref]

H. Wu, Z. Wang, X. Jia, P. Li, M. Fan, Y. Li, and Y. Zhu, “Flat amplitude multiwavelength Brillouin Raman random fiber laser with a half-open cavity,” Appl. Phys. B 112, 467–471 (2013).
[Crossref]

H. Ahmad, M. Zulkifli, M. Jemangin, and S. Harun, “Distributed feedback multimode Brillouin-Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
[Crossref]

G. Mamdoohi, A. R. Sarmani, A. F. Abas, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi, “20  GHz spacing multi-wavelength generation of Brillouin-Raman fiber laser in a hybrid linear cavity,” Opt. Express 21, 18724–18732 (2013).
[Crossref]

Z. Hu, B. Miao, T. Wang, Q. Fu, D. Zhang, H. Ming, and Q. Zhang, “Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser,” Opt. Lett. 38, 4644–4647 (2013).
[Crossref]

M. Bravo, M. Fernandez-Vallejo, and M. Lopez-Amo, “Internal modulation of a random fiber laser,” Opt. Lett. 38, 1542–1544 (2013).
[Crossref]

Y. Tang, X. Li, and Q. J. Wang, “High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering,” Opt. Lett. 38, 5474–5477 (2013).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15, 060201 (2013).
[Crossref]

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21, 8177–8182 (2013).
[Crossref]

X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express 21, 6572–6577 (2013).
[Crossref]

M. Fernandez-Vallejo, M. Bravo, and M. Lopez-Amo, “Ultra-long laser systems for remote fiber Bragg gratings arrays interrogation,” IEEE Photon. Technol. Lett. 25, 1362–1364 (2013).
[Crossref]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, X.-D. Yan, J. Li, H. Wu, Y.-Y. Zhu, and F. Peng, “Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application,” Opt. Express 21, 21208–21217 (2013).
[Crossref]

2012 (16)

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol. 30, 1168–1172 (2012).
[Crossref]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20, 17695–17700 (2012).
[Crossref]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE 8421, 842127 (2012).

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express 20, 27376–27381 (2012).
[Crossref]

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285, 2154–2160 (2012).
[Crossref]

S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett. 37, 500–502 (2012).
[Crossref]

C. Lecaplain, P. Grelu, J. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B 86, 054204 (2012).

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

T. Zhu, X. Bao, and L. Chen, “A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering,” Opt. Commun. 285, 1371–1374 (2012).
[Crossref]

M. Abu Bakar, F. M. Adikan, and M. Mahdi, “Rayleigh-based Raman fiber laser with passive erbium-doped fiber for secondary pumping effect in remote L-band erbium-doped fiber amplifier,” IEEE Photon. J. 4, 1042–1050 (2012).
[Crossref]

M. Pang, S. Xie, X. Bao, D.-P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett. 37, 3129–3131 (2012).
[Crossref]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Y. Wang, Z. Nan, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20, 14400–14405 (2012).
[Crossref]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castanon, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20, 11178–11188 (2012).
[Crossref]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express 20, 28033 (2012).
[Crossref]

J. Shi, S. ul Alam, and M. Ibsen, “Highly efficient Raman distributed feedback fibre lasers,” Opt. Express 20, 5082–5091 (2012).
[Crossref]

2011 (17)

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
[Crossref]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2  μm,” Opt. Express 19, 18486–18494 (2011).
[Crossref]

D. V. Churkin, I. D. Vatnik, S. K. Turitsyn, and S. A. Babin, “Random distributed feedback Raman fiber laser operating in a 1.2  μm wavelength range,” Laser Phys. 21, 1525–1529 (2011).
[Crossref]

A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19, 14152–14159 (2011).
[Crossref]

A. R. Sarmani, R. Zamiri, M. H. A. Bakar, B. Z. Azmi, A. W. Zaidan, and M. A. Mahdi, “Tunable Raman fiber laser induced by Rayleigh back-scattering in an ultra-long cavity,” J. Eur. Opt. Soc. 6, 11043 (2011).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[Crossref]

A. Pinto, O. Frazão, J. Santos, and M. Lopez-Amo, “Multiwavelength Raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities,” J. Lightwave Technol. 29, 1482–1488 (2011).
[Crossref]

A. Pinto, M. Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser,” Opt. Express 19, 11906–11915 (2011).
[Crossref]

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8, 139–143 (2011).
[Crossref]

R. S. Shargh, M. Al-Mansoori, S. Anas, R. Sahbudin, A. Zamzuri, and M. Mahdi, “Improvement of comb lines quality employing double-pass architecture in Brillouin-Raman laser,” Laser Phys. Lett. 8, 823–827 (2011).
[Crossref]

H. Martins, M. B. Marques, and O. Frazão, “Comparison of Brillouin-Raman comb fiber laser in two different configurations,” Laser Phys. 21, 1925–1931 (2011).

K. Hammani, A. Picozzi, and C. Finot, “Extreme statistics in Raman fiber amplifiers: from analytical description to experiments,” Opt. Commun. 284, 2594–2603 (2011).
[Crossref]

D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett. 36, 3617–3619 (2011).
[Crossref]

S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett. 36, 790–792 (2011).
[Crossref]

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19, 8394–8405 (2011).
[Crossref]

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B 104, 957–960 (2011).
[Crossref]

H. Martins, M. B. Marques, and O. Frazão, “300  km-ultralong Raman fiber lasers using a distributed mirror for sensing applications,” Opt. Express 19, 18149–18154 (2011).
[Crossref]

2010 (7)

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent CW fiber lasers,” Opt. Lett. 35, 3288–3290 (2010).
[Crossref]

T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, “Experimental study on stimulated Rayleigh scattering in optical fibers,” Opt. Express 18, 22958–22963 (2010).
[Crossref]

A. El-Taher, M. Alcon-Camas, S. Babin, P. Harper, J. D. Ania-Castanón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35, 1100–1102 (2010).
[Crossref]

A. Pinto, O. Frazão, J. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99, 391–395 (2010).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[Crossref]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. Lett. 35, 1425–1427 (2010).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[Crossref]

2009 (2)

K. Yeo, M. Mahdi, H. Mohamad, S. Hitam, and M. Mokhtar, “Widely tunable Raman ring laser using highly nonlinear fiber,” Laser Phys. 19, 2200–2203 (2009).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[Crossref]

2008 (4)

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230  km) FBG sensor system,” Proc. SPIE 7004, 70046C (2008).

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33, 633–635 (2008).
[Crossref]

S. Derevyanko, “Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index,” Opt. Lett. 33, 2404–2406 (2008).
[Crossref]

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

2007 (4)

2006 (2)

2005 (3)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. 38, 10497–10535 (2005).

S. Babin, D. Churkin, A. Fotiadi, S. Kablukov, O. Medvedkov, and E. Podivilov, “Relative intensity noise in cascaded-Raman fiber lasers,” IEEE Photon. Technol. Lett. 17, 2553–2555 (2005).
[Crossref]

O. Shapira and B. Fischer, “Localization of light in a random-grating array in a single-mode fiber,” J. Opt. Soc. Am. B 22, 2542–2552 (2005).
[Crossref]

2004 (3)

G. Ravet, A. Fotiadi, M. Blondel, and P. Megret, “Passive Q-switching in all-fibre Raman laser with distributed Rayleigh feedback,” Electron. Lett. 40, 528–529 (2004).
[Crossref]

A. A. Fotiadi, P. Mégret, and M. Blondel, “Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror,” Opt. Lett. 29, 1078–1080 (2004).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

2003 (3)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[Crossref]

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

H. Cao, “Lasing in random media,” Waves Random Media 13, R1–R39 (2003).
[Crossref]

2002 (1)

2001 (1)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13, 1352–1354 (2001).
[Crossref]

1999 (1)

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

1998 (1)

1997 (3)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[Crossref]

S. Chernikov, Y. Zhu, J. Taylor, and V. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997).
[Crossref]

1994 (2)

1991 (1)

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[Crossref]

1990 (1)

V. Markushev, N. É. Ter-Gabriélyan, C. M. Briskina, V. Belan, and V. Zolin, “Stimulated emission kinetics of neodymium powder lasers,” Sov. J. Quantum Electron. 20, 773–777 (1990).
[Crossref]

1966 (1)

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “A laser with a non-resonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
[Crossref]

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

Abas, A.

A. Al-Alimi, M. Yaacob, and A. Abas, “Half-linear cavity multiwavelength Brillouin-erbium fiber laser,” J. Eur. Opt. Soc. Rapid Pub. 9, 14051 (2014).
[Crossref]

Abas, A. F.

Abu Bakar, M.

M. Abu Bakar, F. M. Adikan, and M. Mahdi, “Rayleigh-based Raman fiber laser with passive erbium-doped fiber for secondary pumping effect in remote L-band erbium-doped fiber amplifier,” IEEE Photon. J. 4, 1042–1050 (2012).
[Crossref]

Abu Bakar, M. H.

Adikan, F. M.

M. Abu Bakar, F. M. Adikan, and M. Mahdi, “Rayleigh-based Raman fiber laser with passive erbium-doped fiber for secondary pumping effect in remote L-band erbium-doped fiber amplifier,” IEEE Photon. J. 4, 1042–1050 (2012).
[Crossref]

Adikan, F. R. M.

Ahmad, A.

Ahmad, H.

H. Ahmad, M. Zulkifli, M. Jemangin, and S. Harun, “Distributed feedback multimode Brillouin-Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
[Crossref]

Akhmediev, N.

N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15, 060201 (2013).
[Crossref]

C. Lecaplain, P. Grelu, J. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

Akiba, S.

S. Akiba, “Distributed feedback lasers,” in Encyclopedic Handbook of Integrated Optics, K. Iga and Y. Kokubun, eds. (CRC Press, 2010), pp. 41–53.

Akkus, O.

Al-Alimi, A.

A. Al-Alimi, M. Yaacob, and A. Abas, “Half-linear cavity multiwavelength Brillouin-erbium fiber laser,” J. Eur. Opt. Soc. Rapid Pub. 9, 14051 (2014).
[Crossref]

Alcon-Camas, M.

Al-Mansoori, M.

R. S. Shargh, M. Al-Mansoori, S. Anas, R. Sahbudin, A. Zamzuri, and M. Mahdi, “Improvement of comb lines quality employing double-pass architecture in Brillouin-Raman laser,” Laser Phys. Lett. 8, 823–827 (2011).
[Crossref]

Al-Mansoori, M. H.

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8, 139–143 (2011).
[Crossref]

Ambartsumyan, R.

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “A laser with a non-resonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
[Crossref]

Anas, S.

R. S. Shargh, M. Al-Mansoori, S. Anas, R. Sahbudin, A. Zamzuri, and M. Mahdi, “Improvement of comb lines quality employing double-pass architecture in Brillouin-Raman laser,” Laser Phys. Lett. 8, 823–827 (2011).
[Crossref]

Anas, S. B. A.

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8, 139–143 (2011).
[Crossref]

Ania-Castanon, J. D.

P. Rosa, M. Tan, S. Le, I. Phillips, J. D. Ania-Castanon, S. Sygletos, and P. Harper, “Unrepeatered DP-QPSK transmission over 352.8  km SMF using random DFB fibre laser amplification,” IEEE Photon. Technol. Lett. 27, 1189–1192 (2015).

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castanon, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20, 11178–11188 (2012).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[Crossref]

Ania-Castanón, J. D.

Ania-Castañón, J. D.

J. Nuño and J. D. Ania-Castañón, “Fiber Sagnac interferometers with ultralong and random distributed feedback Raman laser amplification,” Opt. Lasers Eng. 54, 21–26 (2014).
[Crossref]

J. Nuño and J. D. Ania-Castañón, “Cavity and random ultralong fibre laser amplification in BOTDAs: a comparison,” Laser Phys. 24, 065107 (2014).
[Crossref]

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express 20, 27376–27381 (2012).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[Crossref]

Arecchi, F.

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Assanto, G.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

Azmi, B. Z.

A. R. Sarmani, R. Zamiri, M. H. A. Bakar, B. Z. Azmi, A. W. Zaidan, and M. A. Mahdi, “Tunable Raman fiber laser induced by Rayleigh back-scattering in an ultra-long cavity,” J. Eur. Opt. Soc. 6, 11043 (2011).
[Crossref]

Babin, S.

I. Vatnik, D. Churkin, E. Podivilov, and S. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

S. Babin, I. Vatnik, A. Y. Laptev, M. Bubnov, and E. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22, 24929–24934 (2014).
[Crossref]

A. El-Taher, M. Alcon-Camas, S. Babin, P. Harper, J. D. Ania-Castanón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35, 1100–1102 (2010).
[Crossref]

S. Babin, D. Churkin, A. Fotiadi, S. Kablukov, O. Medvedkov, and E. Podivilov, “Relative intensity noise in cascaded-Raman fiber lasers,” IEEE Photon. Technol. Lett. 17, 2553–2555 (2005).
[Crossref]

Babin, S. A.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref]

S. A. Babin, E. I. Dontsova, I. D. Vatnik, and S. I. Kablukov, “Second harmonic generation of a random fiber laser with Raman gain,” Proc. SPIE 9347, 934710 (2015).

I. D. Vatnik, D. V. Churkin, E. V. Podivilov, and S. A. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
[Crossref]

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “980-nm random fiber laser directly pumped by a high-power 938-nm laser diode,” Proc. SPIE 8961, 89612F (2014).

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21, 8177–8182 (2013).
[Crossref]

S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “Random fiber laser directly pumped by a high-power laser diode,” Opt. Lett. 38, 3301–3303 (2013).
[Crossref]

S. I. Kablukov, E. I. Dontsova, E. A. Zlobina, I. N. Nemov, A. A. Vlasov, and S. A. Babin, “An LD-pumped Raman fiber laser operating below 1  μm,” Laser Phys. Lett. 10, 085103 (2013).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castanon, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20, 11178–11188 (2012).
[Crossref]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express 20, 28033 (2012).
[Crossref]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
[Crossref]

D. V. Churkin, I. D. Vatnik, S. K. Turitsyn, and S. A. Babin, “Random distributed feedback Raman fiber laser operating in a 1.2  μm wavelength range,” Laser Phys. 21, 1525–1529 (2011).
[Crossref]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2  μm,” Opt. Express 19, 18486–18494 (2011).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33, 633–635 (2008).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24, 1729–1738 (2007).
[Crossref]

S. A. Babin, D. V. Churkin, A. Ismagulov, S. Kablukov, E. Podivilov, M. Rybakov, and A. Vlasov, “All-fiber widely tunable Raman fiber laser with controlled output spectrum,” Opt. Express 15, 8438–8443 (2007).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31, 3007–3009 (2006).
[Crossref]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Spectral width optimization in random DFB fiber laser,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

Bakar, A. A. A.

Bakar, M. H. A.

A. R. Sarmani, R. Zamiri, M. H. A. Bakar, B. Z. Azmi, A. W. Zaidan, and M. A. Mahdi, “Tunable Raman fiber laser induced by Rayleigh back-scattering in an ultra-long cavity,” J. Eur. Opt. Soc. 6, 11043 (2011).
[Crossref]

Balachandran, R.

N. M. Lawandy, R. Balachandran, A. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Bao, X.

Basov, N.

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “A laser with a non-resonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
[Crossref]

Baudouin, Q.

Q. Baudouin, N. Mercadier, V. Guarrera, W. Guerin, and R. Kaiser, “A cold-atom random laser,” Nat. Phys. 9, 357–360 (2013).
[Crossref]

Bednyakova, A. E.

Belan, V.

V. Markushev, N. É. Ter-Gabriélyan, C. M. Briskina, V. Belan, and V. Zolin, “Stimulated emission kinetics of neodymium powder lasers,” Sov. J. Quantum Electron. 20, 773–777 (1990).
[Crossref]

Bliokh, Y.

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B 86, 054204 (2012).

Blondel, M.

G. Ravet, A. Fotiadi, M. Blondel, and P. Megret, “Passive Q-switching in all-fibre Raman laser with distributed Rayleigh feedback,” Electron. Lett. 40, 528–529 (2004).
[Crossref]

A. A. Fotiadi, P. Mégret, and M. Blondel, “Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror,” Opt. Lett. 29, 1078–1080 (2004).
[Crossref]

Bortolozzo, U.

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[Crossref]

Bravo, M.

Bravo Acha, M.

M. Bravo Acha, V. DeMiguel-Soto, A. Ortigosa, and M. Lopez-Amo, “Fully switchable multi-wavelength fiber laser based interrogator system for remote and versatile fiber optic sensors multiplexing structures,” Proc. SPIE 9157, 91576P (2014).

Briskina, C. M.

V. Markushev, N. É. Ter-Gabriélyan, C. M. Briskina, V. Belan, and V. Zolin, “Stimulated emission kinetics of neodymium powder lasers,” Sov. J. Quantum Electron. 20, 773–777 (1990).
[Crossref]

Brito-Silva, A. M.

C. J. S. de Matos, L. D. S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

Bubnov, M.

Cao, H.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. 38, 10497–10535 (2005).

H. Cao, “Lasing in random media,” Waves Random Media 13, R1–R39 (2003).
[Crossref]

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Chaikina, E. I.

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B 86, 054204 (2012).

Chang, J.-S.

Chang, R.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Chen, L.

B. Saxena, Z. Ou, X. Bao, and L. Chen, “Low frequency-noise random fiber laser with bi-directional SBS and Rayleigh feedback,” IEEE Photon. Technol. Lett. 27, 490–493 (2015).
[Crossref]

L. Chen and Y. Ding, “Random distributed feedback fiber laser pumped by an ytterbium doped fiber laser,” Optik 125, 3663–3665 (2014).
[Crossref]

B. Saxena, X. Bao, and L. Chen, “Suppression of thermal frequency noise in erbium-doped fiber random lasers,” Opt. Lett. 39, 1038–1041 (2014).
[Crossref]

R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115  nm,” Appl. Phys. B 111, 169–172 (2013).
[Crossref]

M. Pang, X. Bao, L. Chen, Z. Qin, Y. Lu, and P. Lu, “Frequency stabilized coherent Brillouin random fiber laser: theory and experiments,” Opt. Express 21, 27155–27168 (2013).
[Crossref]

M. Pang, X. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38, 1866–1868 (2013).
[Crossref]

M. Pang, S. Xie, X. Bao, D.-P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett. 37, 3129–3131 (2012).
[Crossref]

T. Zhu, X. Bao, and L. Chen, “A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering,” Opt. Commun. 285, 1371–1374 (2012).
[Crossref]

T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, “Experimental study on stimulated Rayleigh scattering in optical fibers,” Opt. Express 18, 22958–22963 (2010).
[Crossref]

Chen, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Chernikov, S.

Christodoulides, D.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

Christodoulides, D. N.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

Churkin, D.

O. Gorbunov, S. Sugavanam, and D. Churkin, “Intensity dynamics and statistical properties of random distributed feedback fiber laser,” Opt. Lett. 40, 1783–1786 (2015).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

S. Sugavanam, Z. Yan, V. Kamynin, A. Kurkov, L. Zhang, and D. Churkin, “Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter,” Opt. Express 22, 2839–2844 (2014).
[Crossref]

I. Vatnik, D. Churkin, E. Podivilov, and S. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
[Crossref]

O. Gorbunov, S. Sugavanam, and D. Churkin, “Revealing statistical properties of quasi-CW fibre lasers in bandwidth-limited measurements,” Opt. Express 22, 28071–28076 (2014).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[Crossref]

S. Babin, D. Churkin, A. Fotiadi, S. Kablukov, O. Medvedkov, and E. Podivilov, “Relative intensity noise in cascaded-Raman fiber lasers,” IEEE Photon. Technol. Lett. 17, 2553–2555 (2005).
[Crossref]

A. Lanin, D. Churkin, K. Golant, and S. Turitsyn, “Raman gain and random distributed feedback generation in nitrogen doped silica core fiber,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

A. Lanin, S. Sergeyev, D. Nasiev, D. Churkin, and S. Turitsyn, “On-off and multistate intermittencies in cascaded random distributed feedback fibre laser,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

Churkin, D. V.

H. Wu, Z. N. Wang, D. V. Churkin, I. D. Vatnik, M. Q. Fan, and Y. J. Rao, “Random distributed feedback Raman fiber laser with polarized pumping,” Laser Phys. Lett. 12, 015101 (2015).
[Crossref]

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref]

I. D. Vatnik and D. V. Churkin, “Modeling of the spectrum in a random distributed feedback fiber laser within the power balance modes,” Proc. SPIE 9135, 91351Z (2014).

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

I. D. Vatnik, D. V. Churkin, E. V. Podivilov, and S. A. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
[Crossref]

S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21, 16466–16472 (2013).
[Crossref]

S. V. Smirnov and D. V. Churkin, “Modeling of spectral and statistical properties of a random distributed feedback fiber laser,” Opt. Express 21, 21236–21241 (2013).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21, 8177–8182 (2013).
[Crossref]

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285, 2154–2160 (2012).
[Crossref]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castanon, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20, 11178–11188 (2012).
[Crossref]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express 20, 28033 (2012).
[Crossref]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2  μm,” Opt. Express 19, 18486–18494 (2011).
[Crossref]

D. V. Churkin, I. D. Vatnik, S. K. Turitsyn, and S. A. Babin, “Random distributed feedback Raman fiber laser operating in a 1.2  μm wavelength range,” Laser Phys. 21, 1525–1529 (2011).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[Crossref]

D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett. 36, 3617–3619 (2011).
[Crossref]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent CW fiber lasers,” Opt. Lett. 35, 3288–3290 (2010).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33, 633–635 (2008).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24, 1729–1738 (2007).
[Crossref]

S. A. Babin, D. V. Churkin, A. Ismagulov, S. Kablukov, E. Podivilov, M. Rybakov, and A. Vlasov, “All-fiber widely tunable Raman fiber laser with controlled output spectrum,” Opt. Express 15, 8438–8443 (2007).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31, 3007–3009 (2006).
[Crossref]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Spectral width optimization in random DFB fiber laser,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

Conforti, M.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasi-solitons, dispersive waves, and extreme events,” Phys. Rev. A 91, 023823 (2015).
[Crossref]

Dalloz, N.

de Araújo, C. B.

C. J. S. de Matos, L. D. S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

de Matos, C. J. S.

C. J. S. de Matos, L. D. S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

DeMiguel-Soto, V.

M. Bravo Acha, V. DeMiguel-Soto, A. Ortigosa, and M. Lopez-Amo, “Fully switchable multi-wavelength fiber laser based interrogator system for remote and versatile fiber optic sensors multiplexing structures,” Proc. SPIE 9157, 91576P (2014).

V. DeMiguel-Soto, M. Bravo, and M. Lopez-Amo, “Fully switchable multiwavelength fiber laser assisted by a random mirror,” Opt. Lett. 39, 2020–2023 (2014).
[Crossref]

Derevyanko, S.

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[Crossref]

Dianov, E.

Dias, F.

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8, 755–764 (2014).
[Crossref]

Ding, Y.

L. Chen and Y. Ding, “Random distributed feedback fiber laser pumped by an ytterbium doped fiber laser,” Optik 125, 3663–3665 (2014).
[Crossref]

R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115  nm,” Appl. Phys. B 111, 169–172 (2013).
[Crossref]

Dong, X.

C. Huang, X. Dong, S. Zhang, N. Zhang, and P. Shum, “Cascaded random fiber laser based on hybrid Brillouin-erbium fiber gains,” IEEE Photon. Technol. Lett. 26, 1287–1290 (2014).
[Crossref]

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20, 902405 (2014).

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24, 115101 (2014).
[Crossref]

Dong, Y.

Dontsova, E. I.

S. A. Babin, E. I. Dontsova, I. D. Vatnik, and S. I. Kablukov, “Second harmonic generation of a random fiber laser with Raman gain,” Proc. SPIE 9347, 934710 (2015).

S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “980-nm random fiber laser directly pumped by a high-power 938-nm laser diode,” Proc. SPIE 8961, 89612F (2014).

S. I. Kablukov, E. I. Dontsova, E. A. Zlobina, I. N. Nemov, A. A. Vlasov, and S. A. Babin, “An LD-pumped Raman fiber laser operating below 1  μm,” Laser Phys. Lett. 10, 085103 (2013).
[Crossref]

S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “Random fiber laser directly pumped by a high-power laser diode,” Opt. Lett. 38, 3301–3303 (2013).
[Crossref]

Drachev, V.

Du, X.

Dudley, J.

N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15, 060201 (2013).
[Crossref]

Dudley, J. M.

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8, 755–764 (2014).
[Crossref]

Ellerbroek, B. L.

El-Taher, A.

El-Taher, A. E.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castanon, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20, 11178–11188 (2012).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[Crossref]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[Crossref]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

Erkintalo, M.

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8, 755–764 (2014).
[Crossref]

Etchegoin, P.

E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008).

Falkovich, G.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

V. E. Zakharov, V. S. L’Vov, and G. Falkovich, Kolmogorov Spectra of Turbulence 1. Wave Turbulence (Springer, 1992).

Fan, M.

M. Fan, Z. Wang, H. Wu, W. Sun, and L. Zhang, “Low-threshold, high-efficiency Random fiber laser with linear output,” IEEE Photon. Technol. Lett. 27, 319–322 (2015).
[Crossref]

H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirrors reflectivity in forward-pumped random fiber laser,” Opt. Express 23, 1421–1427 (2015).
[Crossref]

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

Z. Wang, H. Wu, M. Fan, Y. Rao, X. Jia, and W. Zhang, “Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity,” Opt. Express 21, 20090–20095 (2013).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Li, Y. Gong, and Y. Rao, “Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering,” Opt. Express 21, 29358–29363 (2013).
[Crossref]

H. Wu, Z. Wang, X. Jia, P. Li, M. Fan, Y. Li, and Y. Zhu, “Flat amplitude multiwavelength Brillouin Raman random fiber laser with a half-open cavity,” Appl. Phys. B 112, 467–471 (2013).
[Crossref]

Fan, M. Q.

H. Wu, Z. N. Wang, D. V. Churkin, I. D. Vatnik, M. Q. Fan, and Y. J. Rao, “Random distributed feedback Raman fiber laser with polarized pumping,” Laser Phys. Lett. 12, 015101 (2015).
[Crossref]

Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39, 5866–5869 (2014).
[Crossref]

Fatome, J.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasi-solitons, dispersive waves, and extreme events,” Phys. Rev. A 91, 023823 (2015).
[Crossref]

Fedoruk, M. P.

Fernandez-Vallejo, M.

Finot, C.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasi-solitons, dispersive waves, and extreme events,” Phys. Rev. A 91, 023823 (2015).
[Crossref]

K. Hammani, A. Picozzi, and C. Finot, “Extreme statistics in Raman fiber amplifiers: from analytical description to experiments,” Opt. Commun. 284, 2594–2603 (2011).
[Crossref]

Fischer, B.

Fotiadi, A.

S. Babin, D. Churkin, A. Fotiadi, S. Kablukov, O. Medvedkov, and E. Podivilov, “Relative intensity noise in cascaded-Raman fiber lasers,” IEEE Photon. Technol. Lett. 17, 2553–2555 (2005).
[Crossref]

G. Ravet, A. Fotiadi, M. Blondel, and P. Megret, “Passive Q-switching in all-fibre Raman laser with distributed Rayleigh feedback,” Electron. Lett. 40, 528–529 (2004).
[Crossref]

Fotiadi, A. A.

Frazão, O.

H. Martins, M. Marques, and O. Frazão, “Intensity vibration sensor based on Raman fiber laser using a distributed mirror combined with Bragg grating structures,” Appl. Phys. B 114, 455–459 (2014).
[Crossref]

H. Martins, M. B. Marques, and O. Frazão, “300  km-ultralong Raman fiber lasers using a distributed mirror for sensing applications,” Opt. Express 19, 18149–18154 (2011).
[Crossref]

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B 104, 957–960 (2011).
[Crossref]

H. Martins, M. B. Marques, and O. Frazão, “Comparison of Brillouin-Raman comb fiber laser in two different configurations,” Laser Phys. 21, 1925–1931 (2011).

A. Pinto, O. Frazão, J. Santos, and M. Lopez-Amo, “Multiwavelength Raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities,” J. Lightwave Technol. 29, 1482–1488 (2011).
[Crossref]

A. Pinto, O. Frazão, J. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99, 391–395 (2010).
[Crossref]

Freilikher, V.

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B 86, 054204 (2012).

Fu, Q.

Z. Hu, B. Miao, T. Wang, Q. Fu, D. Zhang, H. Ming, and Q. Zhang, “Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser,” Opt. Lett. 38, 4644–4647 (2013).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Gagné, M.

Gámez, M. A. M.

C. J. S. de Matos, L. D. S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

Gao, J.

Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
[Crossref]

Gao, P.

Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
[Crossref]

Z. Hu, P. Gao, K. Xie, Y. Liang, and H. Jiang, “Wavelength control of random polymer fiber laser based on adaptive disorder,” Opt. Lett. 39, 6911–6914 (2014).
[Crossref]

Gapontsev, V.

Garnier, J.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

Genty, G.

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8, 755–764 (2014).
[Crossref]

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[Crossref]

Golant, K.

A. Lanin, D. Churkin, K. Golant, and S. Turitsyn, “Raman gain and random distributed feedback generation in nitrogen doped silica core fiber,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

Gomes, A.

N. M. Lawandy, R. Balachandran, A. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Gomes, A. S. L.

C. J. S. de Matos, L. D. S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

Gong, Y.

Gorbunov, O.

Gorbunov, O. A.

Grelu, P.

C. Lecaplain, P. Grelu, J. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

Guarrera, V.

Q. Baudouin, N. Mercadier, V. Guarrera, W. Guerin, and R. Kaiser, “A cold-atom random laser,” Nat. Phys. 9, 357–360 (2013).
[Crossref]

Guerin, W.

Q. Baudouin, N. Mercadier, V. Guarrera, W. Guerin, and R. Kaiser, “A cold-atom random laser,” Nat. Phys. 9, 357–360 (2013).
[Crossref]

Haelterman, M.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasi-solitons, dispersive waves, and extreme events,” Phys. Rev. A 91, 023823 (2015).
[Crossref]

Hammani, K.

K. Hammani, A. Picozzi, and C. Finot, “Extreme statistics in Raman fiber amplifiers: from analytical description to experiments,” Opt. Commun. 284, 2594–2603 (2011).
[Crossref]

Hansson, T.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

Harper, P.

P. Rosa, M. Tan, S. Le, I. Phillips, J. D. Ania-Castanon, S. Sygletos, and P. Harper, “Unrepeatered DP-QPSK transmission over 352.8  km SMF using random DFB fibre laser amplification,” IEEE Photon. Technol. Lett. 27, 1189–1192 (2015).

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castanon, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20, 11178–11188 (2012).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[Crossref]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[Crossref]

A. El-Taher, M. Alcon-Camas, S. Babin, P. Harper, J. D. Ania-Castanón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35, 1100–1102 (2010).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[Crossref]

M. Tan, P. Rosa, I. Phillips, and P. Harper, “Extended reach of 116  Gb/s DP-QPSK transmission using random DFB fiber laser based Raman amplification and bidirectional second-order pumping,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4E.

Harun, S.

H. Ahmad, M. Zulkifli, M. Jemangin, and S. Harun, “Distributed feedback multimode Brillouin-Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
[Crossref]

Hitam, S.

K. Yeo, M. Mahdi, H. Mohamad, S. Hitam, and M. Mokhtar, “Widely tunable Raman ring laser using highly nonlinear fiber,” Laser Phys. 19, 2200–2203 (2009).
[Crossref]

Ho, S.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Hu, Z.

Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
[Crossref]

Z. Hu, P. Gao, K. Xie, Y. Liang, and H. Jiang, “Wavelength control of random polymer fiber laser based on adaptive disorder,” Opt. Lett. 39, 6911–6914 (2014).
[Crossref]

Z. Hu, B. Miao, T. Wang, Q. Fu, D. Zhang, H. Ming, and Q. Zhang, “Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser,” Opt. Lett. 38, 4644–4647 (2013).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Huang, C.

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24, 115101 (2014).
[Crossref]

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20, 902405 (2014).

C. Huang, X. Dong, S. Zhang, N. Zhang, and P. Shum, “Cascaded random fiber laser based on hybrid Brillouin-erbium fiber gains,” IEEE Photon. Technol. Lett. 26, 1287–1290 (2014).
[Crossref]

Ibsen, M.

Iida, H.

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230  km) FBG sensor system,” Proc. SPIE 7004, 70046C (2008).

IJzerman, W. L.

Iki, Y.

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230  km) FBG sensor system,” Proc. SPIE 7004, 70046C (2008).

Ismagulov, A.

Ismagulov, A. E.

Jalali, B.

D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Jemangin, M.

H. Ahmad, M. Zulkifli, M. Jemangin, and S. Harun, “Distributed feedback multimode Brillouin-Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
[Crossref]

Jia, Q.

P. Zhang, T. Wang, Q. Jia, X. Liu, M. Kong, S. Tong, and H. Jiang, “A novel fiber laser based on Rayleigh scattering feedback with a half-opened cavity,” Proc. SPIE 906, 890617 (2013).

Jia, X.

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

H. Wu, Z. Wang, X. Jia, P. Li, M. Fan, Y. Li, and Y. Zhu, “Flat amplitude multiwavelength Brillouin Raman random fiber laser with a half-open cavity,” Appl. Phys. B 112, 467–471 (2013).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, X. Jia, and W. Zhang, “Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity,” Opt. Express 21, 20090–20095 (2013).
[Crossref]

Jia, X. H.

Jia, X.-H.

Jiang, H.

Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
[Crossref]

Z. Hu, P. Gao, K. Xie, Y. Liang, and H. Jiang, “Wavelength control of random polymer fiber laser based on adaptive disorder,” Opt. Lett. 39, 6911–6914 (2014).
[Crossref]

P. Zhang, T. Wang, Q. Jia, X. Liu, M. Kong, S. Tong, and H. Jiang, “A novel fiber laser based on Rayleigh scattering feedback with a half-opened cavity,” Proc. SPIE 906, 890617 (2013).

Jiang, Y.

Y. Zhu, W. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
[Crossref]

Y. Y. Zhu, W. L. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
[Crossref]

X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express 21, 6572–6577 (2013).
[Crossref]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20, 17695–17700 (2012).
[Crossref]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE 8421, 842127 (2012).

Kablukov, S.

S. A. Babin, D. V. Churkin, A. Ismagulov, S. Kablukov, E. Podivilov, M. Rybakov, and A. Vlasov, “All-fiber widely tunable Raman fiber laser with controlled output spectrum,” Opt. Express 15, 8438–8443 (2007).
[Crossref]

S. Babin, D. Churkin, A. Fotiadi, S. Kablukov, O. Medvedkov, and E. Podivilov, “Relative intensity noise in cascaded-Raman fiber lasers,” IEEE Photon. Technol. Lett. 17, 2553–2555 (2005).
[Crossref]

Kablukov, S. I.

S. A. Babin, E. I. Dontsova, I. D. Vatnik, and S. I. Kablukov, “Second harmonic generation of a random fiber laser with Raman gain,” Proc. SPIE 9347, 934710 (2015).

S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “980-nm random fiber laser directly pumped by a high-power 938-nm laser diode,” Proc. SPIE 8961, 89612F (2014).

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21, 8177–8182 (2013).
[Crossref]

S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “Random fiber laser directly pumped by a high-power laser diode,” Opt. Lett. 38, 3301–3303 (2013).
[Crossref]

S. I. Kablukov, E. I. Dontsova, E. A. Zlobina, I. N. Nemov, A. A. Vlasov, and S. A. Babin, “An LD-pumped Raman fiber laser operating below 1  μm,” Laser Phys. Lett. 10, 085103 (2013).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33, 633–635 (2008).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24, 1729–1738 (2007).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31, 3007–3009 (2006).
[Crossref]

Kaiser, R.

Q. Baudouin, N. Mercadier, V. Guarrera, W. Guerin, and R. Kaiser, “A cold-atom random laser,” Nat. Phys. 9, 357–360 (2013).
[Crossref]

Kamynin, V.

Karalekas, V.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[Crossref]

Kashyap, R.

Keiser, G.

G. Keiser, Optical Fiber Communications (Wiley, 2003).

Kibler, B.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasi-solitons, dispersive waves, and extreme events,” Phys. Rev. A 91, 023823 (2015).
[Crossref]

Kim, P.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27, 155–157 (2002).
[Crossref]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13, 1352–1354 (2001).
[Crossref]

Kim, Y. L.

Kiyan, R. V.

Kobelke, J.

Kolokolov, I.

I. Kolokolov, V. Lebedev, E. Podivilov, and S. Vergeles, “Theory of a random fiber laser,” J. Exp. Theor. Phys. 119, 1134–1139 (2014).
[Crossref]

Kolokolov, I. V.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref]

Kong, M.

P. Zhang, T. Wang, Q. Jia, X. Liu, M. Kong, S. Tong, and H. Jiang, “A novel fiber laser based on Rayleigh scattering feedback with a half-opened cavity,” Proc. SPIE 906, 890617 (2013).

Koonath, P.

D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Kryukov, P.

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “A laser with a non-resonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
[Crossref]

Kurkov, A.

Kurkov, A. S.

L’Vov, V. S.

V. E. Zakharov, V. S. L’Vov, and G. Falkovich, Kolmogorov Spectra of Turbulence 1. Wave Turbulence (Springer, 1992).

Lagendijk, A.

Lanin, A.

A. Lanin, D. Churkin, K. Golant, and S. Turitsyn, “Raman gain and random distributed feedback generation in nitrogen doped silica core fiber,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

A. Lanin, S. Sergeyev, D. Nasiev, D. Churkin, and S. Turitsyn, “On-off and multistate intermittencies in cascaded random distributed feedback fibre laser,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

Laptev, A. Y.

Latkin, A. I.

Lawandy, N. M.

N. M. Lawandy, R. Balachandran, A. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Le, S.

P. Rosa, M. Tan, S. Le, I. Phillips, J. D. Ania-Castanon, S. Sygletos, and P. Harper, “Unrepeatered DP-QPSK transmission over 352.8  km SMF using random DFB fibre laser amplification,” IEEE Photon. Technol. Lett. 27, 1189–1192 (2015).

Le Ru, E.

E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008).

Lebedev, V.

I. Kolokolov, V. Lebedev, E. Podivilov, and S. Vergeles, “Theory of a random fiber laser,” J. Exp. Theor. Phys. 119, 1134–1139 (2014).
[Crossref]

Lebedev, V. V.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref]

Lecaplain, C.

C. Lecaplain, P. Grelu, J. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

Lederer, F.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

Lee, J.-H.

Letokhov, V.

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “A laser with a non-resonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
[Crossref]

Leung, V. Y. F.

Li, J.

Li, P.

H. Wu, Z. Wang, X. Jia, P. Li, M. Fan, Y. Li, and Y. Zhu, “Flat amplitude multiwavelength Brillouin Raman random fiber laser with a half-open cavity,” Appl. Phys. B 112, 467–471 (2013).
[Crossref]

Li, P. Y.

Li, S. W.

W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode Fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
[Crossref]

Li, X.

Li, Y.

Liang, H.

Liang, Y.

Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
[Crossref]

Z. Hu, P. Gao, K. Xie, Y. Liang, and H. Jiang, “Wavelength control of random polymer fiber laser based on adaptive disorder,” Opt. Lett. 39, 6911–6914 (2014).
[Crossref]

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Liu, J.

Liu, X.

P. Zhang, T. Wang, Q. Jia, X. Liu, M. Kong, S. Tong, and H. Jiang, “A novel fiber laser based on Rayleigh scattering feedback with a half-opened cavity,” Proc. SPIE 906, 890617 (2013).

Lizárraga, N.

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B 86, 054204 (2012).

Lopez-Amo, M.

M. Bravo Acha, V. DeMiguel-Soto, A. Ortigosa, and M. Lopez-Amo, “Fully switchable multi-wavelength fiber laser based interrogator system for remote and versatile fiber optic sensors multiplexing structures,” Proc. SPIE 9157, 91576P (2014).

V. DeMiguel-Soto, M. Bravo, and M. Lopez-Amo, “Fully switchable multiwavelength fiber laser assisted by a random mirror,” Opt. Lett. 39, 2020–2023 (2014).
[Crossref]

M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, “Comparative study of ring and random cavities for fiber lasers,” Appl. Opt. 53, 3501–3507 (2014).
[Crossref]

M. Fernandez-Vallejo, M. Bravo, and M. Lopez-Amo, “Ultra-long laser systems for remote fiber Bragg gratings arrays interrogation,” IEEE Photon. Technol. Lett. 25, 1362–1364 (2013).
[Crossref]

M. Bravo, M. Fernandez-Vallejo, and M. Lopez-Amo, “Internal modulation of a random fiber laser,” Opt. Lett. 38, 1542–1544 (2013).
[Crossref]

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol. 30, 1168–1172 (2012).
[Crossref]

A. Pinto, M. Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser,” Opt. Express 19, 11906–11915 (2011).
[Crossref]

A. Pinto, O. Frazão, J. Santos, and M. Lopez-Amo, “Multiwavelength Raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities,” J. Lightwave Technol. 29, 1482–1488 (2011).
[Crossref]

A. Pinto, O. Frazão, J. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99, 391–395 (2010).
[Crossref]

Lu, P.

Lu, Y.

Luo, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Ma, R.

W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode Fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
[Crossref]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2001).

Mahdi, M.

M. Abu Bakar, F. M. Adikan, and M. Mahdi, “Rayleigh-based Raman fiber laser with passive erbium-doped fiber for secondary pumping effect in remote L-band erbium-doped fiber amplifier,” IEEE Photon. J. 4, 1042–1050 (2012).
[Crossref]

R. S. Shargh, M. Al-Mansoori, S. Anas, R. Sahbudin, A. Zamzuri, and M. Mahdi, “Improvement of comb lines quality employing double-pass architecture in Brillouin-Raman laser,” Laser Phys. Lett. 8, 823–827 (2011).
[Crossref]

K. Yeo, M. Mahdi, H. Mohamad, S. Hitam, and M. Mokhtar, “Widely tunable Raman ring laser using highly nonlinear fiber,” Laser Phys. 19, 2200–2203 (2009).
[Crossref]

A. Zamzuri, M. Md Ali, A. Ahmad, R. Mohamad, and M. Mahdi, “Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity,” Opt. Lett. 31, 918–920 (2006).
[Crossref]

Mahdi, M. A.

G. Mamdoohi, A. R. Sarmani, A. F. Abas, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi, “20  GHz spacing multi-wavelength generation of Brillouin-Raman fiber laser in a hybrid linear cavity,” Opt. Express 21, 18724–18732 (2013).
[Crossref]

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8, 139–143 (2011).
[Crossref]

A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19, 14152–14159 (2011).
[Crossref]

A. R. Sarmani, R. Zamiri, M. H. A. Bakar, B. Z. Azmi, A. W. Zaidan, and M. A. Mahdi, “Tunable Raman fiber laser induced by Rayleigh back-scattering in an ultra-long cavity,” J. Eur. Opt. Soc. 6, 11043 (2011).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mamdoohi, G.

Markushev, V.

V. Markushev, N. É. Ter-Gabriélyan, C. M. Briskina, V. Belan, and V. Zolin, “Stimulated emission kinetics of neodymium powder lasers,” Sov. J. Quantum Electron. 20, 773–777 (1990).
[Crossref]

Marques, M.

H. Martins, M. Marques, and O. Frazão, “Intensity vibration sensor based on Raman fiber laser using a distributed mirror combined with Bragg grating structures,” Appl. Phys. B 114, 455–459 (2014).
[Crossref]

Marques, M. B.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B 104, 957–960 (2011).
[Crossref]

H. Martins, M. B. Marques, and O. Frazão, “300  km-ultralong Raman fiber lasers using a distributed mirror for sensing applications,” Opt. Express 19, 18149–18154 (2011).
[Crossref]

H. Martins, M. B. Marques, and O. Frazão, “Comparison of Brillouin-Raman comb fiber laser in two different configurations,” Laser Phys. 21, 1925–1931 (2011).

Martins, H.

H. Martins, M. Marques, and O. Frazão, “Intensity vibration sensor based on Raman fiber laser using a distributed mirror combined with Bragg grating structures,” Appl. Phys. B 114, 455–459 (2014).
[Crossref]

H. Martins, M. B. Marques, and O. Frazão, “300  km-ultralong Raman fiber lasers using a distributed mirror for sensing applications,” Opt. Express 19, 18149–18154 (2011).
[Crossref]

H. Martins, M. B. Marques, and O. Frazão, “Comparison of Brillouin-Raman comb fiber laser in two different configurations,” Laser Phys. 21, 1925–1931 (2011).

Martins, H. F.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B 104, 957–960 (2011).
[Crossref]

Md Ali, M.

Medvedkov, O.

S. Babin, D. Churkin, A. Fotiadi, S. Kablukov, O. Medvedkov, and E. Podivilov, “Relative intensity noise in cascaded-Raman fiber lasers,” IEEE Photon. Technol. Lett. 17, 2553–2555 (2005).
[Crossref]

Megret, P.

G. Ravet, A. Fotiadi, M. Blondel, and P. Megret, “Passive Q-switching in all-fibre Raman laser with distributed Rayleigh feedback,” Electron. Lett. 40, 528–529 (2004).
[Crossref]

Mégret, P.

Méndez, E. R.

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B 86, 054204 (2012).

Menezes, L. D. S.

C. J. S. de Matos, L. D. S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

Mercadier, N.

Q. Baudouin, N. Mercadier, V. Guarrera, W. Guerin, and R. Kaiser, “A cold-atom random laser,” Nat. Phys. 9, 357–360 (2013).
[Crossref]

Mezentsev, V. K.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[Crossref]

Miao, B.

Z. Hu, B. Miao, T. Wang, Q. Fu, D. Zhang, H. Ming, and Q. Zhang, “Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser,” Opt. Lett. 38, 4644–4647 (2013).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Michel, C.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasi-solitons, dispersive waves, and extreme events,” Phys. Rev. A 91, 023823 (2015).
[Crossref]

Millot, G.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasi-solitons, dispersive waves, and extreme events,” Phys. Rev. A 91, 023823 (2015).
[Crossref]

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

Min, B.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27, 155–157 (2002).
[Crossref]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13, 1352–1354 (2001).
[Crossref]

Ming, H.

Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
[Crossref]

Z. Hu, B. Miao, T. Wang, Q. Fu, D. Zhang, H. Ming, and Q. Zhang, “Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser,” Opt. Lett. 38, 4644–4647 (2013).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Miyagi, K.

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230  km) FBG sensor system,” Proc. SPIE 7004, 70046C (2008).

Mohamad, H.

K. Yeo, M. Mahdi, H. Mohamad, S. Hitam, and M. Mokhtar, “Widely tunable Raman ring laser using highly nonlinear fiber,” Laser Phys. 19, 2200–2203 (2009).
[Crossref]

Mohamad, R.

Mokhtar, M.

Montina, A.

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Mosk, A. P.

Mussot, A.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasi-solitons, dispersive waves, and extreme events,” Phys. Rev. A 91, 023823 (2015).
[Crossref]

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[Crossref]

Nakamura, K.

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230  km) FBG sensor system,” Proc. SPIE 7004, 70046C (2008).

Nan, Z.

Nasiev, D.

A. Lanin, S. Sergeyev, D. Nasiev, D. Churkin, and S. Turitsyn, “On-off and multistate intermittencies in cascaded random distributed feedback fibre laser,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

Nazarenko, S.

S. Nazarenko, Wave Turbulence, Vol. 825 of Lecture Notes in Physics (Springer, 2011).

Nemov, I. N.

S. I. Kablukov, E. I. Dontsova, E. A. Zlobina, I. N. Nemov, A. A. Vlasov, and S. A. Babin, “An LD-pumped Raman fiber laser operating below 1  μm,” Laser Phys. Lett. 10, 085103 (2013).
[Crossref]

Nikulin, M.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

Nikulin, M. A.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref]

Nilsson, J.

Nori, F.

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B 86, 054204 (2012).

Nuño, J.

J. Nuño and J. D. Ania-Castañón, “Cavity and random ultralong fibre laser amplification in BOTDAs: a comparison,” Laser Phys. 24, 065107 (2014).
[Crossref]

J. Nuño and J. D. Ania-Castañón, “Fiber Sagnac interferometers with ultralong and random distributed feedback Raman laser amplification,” Opt. Lasers Eng. 54, 21–26 (2014).
[Crossref]

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express 20, 27376–27381 (2012).
[Crossref]

Onorato, M.

S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113, 113902 (2014).
[Crossref]

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Ortigosa, A.

M. Bravo Acha, V. DeMiguel-Soto, A. Ortigosa, and M. Lopez-Amo, “Fully switchable multi-wavelength fiber laser based interrogator system for remote and versatile fiber optic sensors multiplexing structures,” Proc. SPIE 9157, 91576P (2014).

Ou, Z.

B. Saxena, Z. Ou, X. Bao, and L. Chen, “Low frequency-noise random fiber laser with bi-directional SBS and Rayleigh feedback,” IEEE Photon. Technol. Lett. 27, 490–493 (2015).
[Crossref]

Y. Li, P. Lu, X. Bao, and Z. Ou, “Random spaced index modulation for a narrow linewidth tunable fiber laser with low intensity noise,” Opt. Lett. 39, 2294–2297 (2014).
[Crossref]

Pang, M.

Park, K.-D.

Park, N.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27, 155–157 (2002).
[Crossref]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13, 1352–1354 (2001).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Peng, F.

Phillips, I.

P. Rosa, M. Tan, S. Le, I. Phillips, J. D. Ania-Castanon, S. Sygletos, and P. Harper, “Unrepeatered DP-QPSK transmission over 352.8  km SMF using random DFB fibre laser amplification,” IEEE Photon. Technol. Lett. 27, 1189–1192 (2015).

M. Tan, P. Rosa, I. Phillips, and P. Harper, “Extended reach of 116  Gb/s DP-QPSK transmission using random DFB fiber laser based Raman amplification and bidirectional second-order pumping,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4E.

Picozzi, A.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasi-solitons, dispersive waves, and extreme events,” Phys. Rev. A 91, 023823 (2015).
[Crossref]

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

K. Hammani, A. Picozzi, and C. Finot, “Extreme statistics in Raman fiber amplifiers: from analytical description to experiments,” Opt. Commun. 284, 2594–2603 (2011).
[Crossref]

Pinto, A.

Pinto, A. M. R.

Pitois, S.

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasi-solitons, dispersive waves, and extreme events,” Phys. Rev. A 91, 023823 (2015).
[Crossref]

Podivilov, E.

I. Vatnik, D. Churkin, E. Podivilov, and S. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

I. Kolokolov, V. Lebedev, E. Podivilov, and S. Vergeles, “Theory of a random fiber laser,” J. Exp. Theor. Phys. 119, 1134–1139 (2014).
[Crossref]

S. A. Babin, D. V. Churkin, A. Ismagulov, S. Kablukov, E. Podivilov, M. Rybakov, and A. Vlasov, “All-fiber widely tunable Raman fiber laser with controlled output spectrum,” Opt. Express 15, 8438–8443 (2007).
[Crossref]

S. Babin, D. Churkin, A. Fotiadi, S. Kablukov, O. Medvedkov, and E. Podivilov, “Relative intensity noise in cascaded-Raman fiber lasers,” IEEE Photon. Technol. Lett. 17, 2553–2555 (2005).
[Crossref]

Podivilov, E. V.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref]

I. D. Vatnik, D. V. Churkin, E. V. Podivilov, and S. A. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
[Crossref]

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castanon, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20, 11178–11188 (2012).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[Crossref]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[Crossref]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent CW fiber lasers,” Opt. Lett. 35, 3288–3290 (2010).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33, 633–635 (2008).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24, 1729–1738 (2007).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31, 3007–3009 (2006).
[Crossref]

Politko, M. O.

Qin, Z.

Randoux, S.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113, 113902 (2014).
[Crossref]

S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett. 37, 500–502 (2012).
[Crossref]

S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett. 36, 790–792 (2011).
[Crossref]

Rao, Y.

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirrors reflectivity in forward-pumped random fiber laser,” Opt. Express 23, 1421–1427 (2015).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

H. Tang, W. Zhang, Y. Rao, Y. Zhu, and Z. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, X. Jia, and W. Zhang, “Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity,” Opt. Express 21, 20090–20095 (2013).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Li, Y. Gong, and Y. Rao, “Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering,” Opt. Express 21, 29358–29363 (2013).
[Crossref]

Rao, Y. J.

Rao, Y.-J.

Ravet, G.

G. Ravet, A. Fotiadi, M. Blondel, and P. Megret, “Passive Q-switching in all-fibre Raman laser with distributed Rayleigh feedback,” Electron. Lett. 40, 528–529 (2004).
[Crossref]

Redding, B.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Residori, S.

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Ropers, C.

D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Rosa, P.

P. Rosa, M. Tan, S. Le, I. Phillips, J. D. Ania-Castanon, S. Sygletos, and P. Harper, “Unrepeatered DP-QPSK transmission over 352.8  km SMF using random DFB fibre laser amplification,” IEEE Photon. Technol. Lett. 27, 1189–1192 (2015).

M. Tan, P. Rosa, I. Phillips, and P. Harper, “Extended reach of 116  Gb/s DP-QPSK transmission using random DFB fiber laser based Raman amplification and bidirectional second-order pumping,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4E.

Rota-Rodrigo, S.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

Rybakov, M.

Sahbudin, R.

R. S. Shargh, M. Al-Mansoori, S. Anas, R. Sahbudin, A. Zamzuri, and M. Mahdi, “Improvement of comb lines quality employing double-pass architecture in Brillouin-Raman laser,” Laser Phys. Lett. 8, 823–827 (2011).
[Crossref]

Sahbudin, R. K. Z.

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8, 139–143 (2011).
[Crossref]

Saitoh, T.

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230  km) FBG sensor system,” Proc. SPIE 7004, 70046C (2008).

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[Crossref]

Santos, J.

A. Pinto, O. Frazão, J. Santos, and M. Lopez-Amo, “Multiwavelength Raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities,” J. Lightwave Technol. 29, 1482–1488 (2011).
[Crossref]

A. Pinto, O. Frazão, J. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99, 391–395 (2010).
[Crossref]

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Sarmani, A. R.

Sauvain, E.

N. M. Lawandy, R. Balachandran, A. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Saxena, B.

B. Saxena, Z. Ou, X. Bao, and L. Chen, “Low frequency-noise random fiber laser with bi-directional SBS and Rayleigh feedback,” IEEE Photon. Technol. Lett. 27, 490–493 (2015).
[Crossref]

B. Saxena, X. Bao, and L. Chen, “Suppression of thermal frequency noise in erbium-doped fiber random lasers,” Opt. Lett. 39, 1038–1041 (2014).
[Crossref]

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

Schuster, K.

Seelig, E.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Segev, M.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

Sergeyev, S.

A. Lanin, S. Sergeyev, D. Nasiev, D. Churkin, and S. Turitsyn, “On-off and multistate intermittencies in cascaded random distributed feedback fibre laser,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

Shalaev, V. M.

Shapira, O.

Shargh, R. S.

R. S. Shargh, M. Al-Mansoori, S. Anas, R. Sahbudin, A. Zamzuri, and M. Mahdi, “Improvement of comb lines quality employing double-pass architecture in Brillouin-Raman laser,” Laser Phys. Lett. 8, 823–827 (2011).
[Crossref]

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8, 139–143 (2011).
[Crossref]

Shi, F.

Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
[Crossref]

Shi, J.

Sholokhov, E.

Shu, X.

S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21, 16466–16472 (2013).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

Shum, P.

C. Huang, X. Dong, S. Zhang, N. Zhang, and P. Shum, “Cascaded random fiber laser based on hybrid Brillouin-erbium fiber gains,” IEEE Photon. Technol. Lett. 26, 1287–1290 (2014).
[Crossref]

Shum, P. P.

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20, 902405 (2014).

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24, 115101 (2014).
[Crossref]

Silberberg, Y.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

Smirnov, S. V.

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Solli, D.

N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15, 060201 (2013).
[Crossref]

D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Song, Q.

Soto-Crespo, J.

C. Lecaplain, P. Grelu, J. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

Stegeman, G. I.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

Su, H.

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24, 115101 (2014).
[Crossref]

Sugavanam, S.

Sun, W.

M. Fan, Z. Wang, H. Wu, W. Sun, and L. Zhang, “Low-threshold, high-efficiency Random fiber laser with linear output,” IEEE Photon. Technol. Lett. 27, 319–322 (2015).
[Crossref]

Sun, X.

Suret, P.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113, 113902 (2014).
[Crossref]

S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett. 37, 500–502 (2012).
[Crossref]

S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett. 36, 790–792 (2011).
[Crossref]

Sygletos, S.

P. Rosa, M. Tan, S. Le, I. Phillips, J. D. Ania-Castanon, S. Sygletos, and P. Harper, “Unrepeatered DP-QPSK transmission over 352.8  km SMF using random DFB fibre laser amplification,” IEEE Photon. Technol. Lett. 27, 1189–1192 (2015).

Takahashi, Y.

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230  km) FBG sensor system,” Proc. SPIE 7004, 70046C (2008).

Tan, M.

P. Rosa, M. Tan, S. Le, I. Phillips, J. D. Ania-Castanon, S. Sygletos, and P. Harper, “Unrepeatered DP-QPSK transmission over 352.8  km SMF using random DFB fibre laser amplification,” IEEE Photon. Technol. Lett. 27, 1189–1192 (2015).

M. Tan, P. Rosa, I. Phillips, and P. Harper, “Extended reach of 116  Gb/s DP-QPSK transmission using random DFB fiber laser based Raman amplification and bidirectional second-order pumping,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4E.

Tang, H.

H. Tang, W. Zhang, Y. Rao, Y. Zhu, and Z. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[Crossref]

Tang, Y.

Tarasov, N.

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21, 16466–16472 (2013).
[Crossref]

Taylor, J.

Teng, R.

R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115  nm,” Appl. Phys. B 111, 169–172 (2013).
[Crossref]

Terekhov, I. S.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref]

Ter-Gabriélyan, N. É.

V. Markushev, N. É. Ter-Gabriélyan, C. M. Briskina, V. Belan, and V. Zolin, “Stimulated emission kinetics of neodymium powder lasers,” Sov. J. Quantum Electron. 20, 773–777 (1990).
[Crossref]

Tong, S.

P. Zhang, T. Wang, Q. Jia, X. Liu, M. Kong, S. Tong, and H. Jiang, “A novel fiber laser based on Rayleigh scattering feedback with a half-opened cavity,” Proc. SPIE 906, 890617 (2013).

Townes, C. H.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

Tukker, T. W.

Turitsyn, S.

N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15, 060201 (2013).
[Crossref]

A. Lanin, S. Sergeyev, D. Nasiev, D. Churkin, and S. Turitsyn, “On-off and multistate intermittencies in cascaded random distributed feedback fibre laser,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

A. Lanin, D. Churkin, K. Golant, and S. Turitsyn, “Raman gain and random distributed feedback generation in nitrogen doped silica core fiber,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

Turitsyn, S. K.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref]

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castanon, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20, 11178–11188 (2012).
[Crossref]

D. V. Churkin, I. D. Vatnik, S. K. Turitsyn, and S. A. Babin, “Random distributed feedback Raman fiber laser operating in a 1.2  μm wavelength range,” Laser Phys. 21, 1525–1529 (2011).
[Crossref]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2  μm,” Opt. Express 19, 18486–18494 (2011).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[Crossref]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
[Crossref]

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19, 8394–8405 (2011).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[Crossref]

A. El-Taher, M. Alcon-Camas, S. Babin, P. Harper, J. D. Ania-Castanón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35, 1100–1102 (2010).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[Crossref]

Turitsyna, E. G.

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

ul Alam, S.

Vatnik, I.

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

S. Babin, I. Vatnik, A. Y. Laptev, M. Bubnov, and E. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22, 24929–24934 (2014).
[Crossref]

I. Vatnik, D. Churkin, E. Podivilov, and S. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
[Crossref]

Vatnik, I. D.

H. Wu, Z. N. Wang, D. V. Churkin, I. D. Vatnik, M. Q. Fan, and Y. J. Rao, “Random distributed feedback Raman fiber laser with polarized pumping,” Laser Phys. Lett. 12, 015101 (2015).
[Crossref]

S. A. Babin, E. I. Dontsova, I. D. Vatnik, and S. I. Kablukov, “Second harmonic generation of a random fiber laser with Raman gain,” Proc. SPIE 9347, 934710 (2015).

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref]

I. D. Vatnik and D. V. Churkin, “Modeling of the spectrum in a random distributed feedback fiber laser within the power balance modes,” Proc. SPIE 9135, 91351Z (2014).

I. D. Vatnik, D. V. Churkin, E. V. Podivilov, and S. A. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
[Crossref]

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express 20, 28033 (2012).
[Crossref]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castanon, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20, 11178–11188 (2012).
[Crossref]

D. V. Churkin, I. D. Vatnik, S. K. Turitsyn, and S. A. Babin, “Random distributed feedback Raman fiber laser operating in a 1.2  μm wavelength range,” Laser Phys. 21, 1525–1529 (2011).
[Crossref]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2  μm,” Opt. Express 19, 18486–18494 (2011).
[Crossref]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Spectral width optimization in random DFB fiber laser,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

Vergeles, S.

I. Kolokolov, V. Lebedev, E. Podivilov, and S. Vergeles, “Theory of a random fiber laser,” J. Exp. Theor. Phys. 119, 1134–1139 (2014).
[Crossref]

Vergeles, S. S.

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref]

Vlasov, A.

Vlasov, A. A.

S. I. Kablukov, E. I. Dontsova, E. A. Zlobina, I. N. Nemov, A. A. Vlasov, and S. A. Babin, “An LD-pumped Raman fiber laser operating below 1  μm,” Laser Phys. Lett. 10, 085103 (2013).
[Crossref]

Vos, W. L.

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[Crossref]

Walczak, P.

S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113, 113902 (2014).
[Crossref]

Wang, L.

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24, 115101 (2014).
[Crossref]

Wang, P.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Wang, Q.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Wang, Q. J.

Wang, T.

Z. Hu, B. Miao, T. Wang, Q. Fu, D. Zhang, H. Ming, and Q. Zhang, “Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser,” Opt. Lett. 38, 4644–4647 (2013).
[Crossref]

P. Zhang, T. Wang, Q. Jia, X. Liu, M. Kong, S. Tong, and H. Jiang, “A novel fiber laser based on Rayleigh scattering feedback with a half-opened cavity,” Proc. SPIE 906, 890617 (2013).

Wang, X.

X. Du, H. Zhang, X. Wang, and P. Zhou, “Tunable random distributed feedback fiber laser operating at 1  μm,” Appl. Opt. 54, 908–911 (2015).
[Crossref]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-power random distributed feedback Raman fiber laser operating at 1.2-μm,” Chin. Opt. Lett. 12, 073501 (2014).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “Random distributed feedback Raman fiber laser with short cavity and its temporal properties,” IEEE Photon. Technol. Lett. 26, 1605–1608 (2014).
[Crossref]

Wang, Z.

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirrors reflectivity in forward-pumped random fiber laser,” Opt. Express 23, 1421–1427 (2015).
[Crossref]

M. Fan, Z. Wang, H. Wu, W. Sun, and L. Zhang, “Low-threshold, high-efficiency Random fiber laser with linear output,” IEEE Photon. Technol. Lett. 27, 319–322 (2015).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

H. Tang, W. Zhang, Y. Rao, Y. Zhu, and Z. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[Crossref]

H. Wu, Z. Wang, X. Jia, P. Li, M. Fan, Y. Li, and Y. Zhu, “Flat amplitude multiwavelength Brillouin Raman random fiber laser with a half-open cavity,” Appl. Phys. B 112, 467–471 (2013).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Li, Y. Gong, and Y. Rao, “Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering,” Opt. Express 21, 29358–29363 (2013).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, X. Jia, and W. Zhang, “Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity,” Opt. Express 21, 20090–20095 (2013).
[Crossref]

Wang, Z. N.

W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode Fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
[Crossref]

H. Wu, Z. N. Wang, D. V. Churkin, I. D. Vatnik, M. Q. Fan, and Y. J. Rao, “Random distributed feedback Raman fiber laser with polarized pumping,” Laser Phys. Lett. 12, 015101 (2015).
[Crossref]

Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39, 5866–5869 (2014).
[Crossref]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21, 8544–8549 (2013).
[Crossref]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20, 17695–17700 (2012).
[Crossref]

Wang, Z. X. Y.

Wang, Z.-N.

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Wu, H.

M. Fan, Z. Wang, H. Wu, W. Sun, and L. Zhang, “Low-threshold, high-efficiency Random fiber laser with linear output,” IEEE Photon. Technol. Lett. 27, 319–322 (2015).
[Crossref]

H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirrors reflectivity in forward-pumped random fiber laser,” Opt. Express 23, 1421–1427 (2015).
[Crossref]

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

H. Wu, Z. N. Wang, D. V. Churkin, I. D. Vatnik, M. Q. Fan, and Y. J. Rao, “Random distributed feedback Raman fiber laser with polarized pumping,” Laser Phys. Lett. 12, 015101 (2015).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39, 5866–5869 (2014).
[Crossref]

Y.-J. Rao, X.-H. Jia, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, J. Li, X.-D. Yan, H. Wu, Y.-Y. Zhu, and F. Peng, “154.4  km BOTDA based on hybrid distributed Raman amplifications,” Proc. SPIE 9157, 91575P (2014).

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, X.-D. Yan, J. Li, H. Wu, Y.-Y. Zhu, and F. Peng, “Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application,” Opt. Express 21, 21208–21217 (2013).
[Crossref]

X.-H. Jia, Y.-J. Rao, C.-X. Yuan, J. Li, X.-D. Yan, Z.-N. Wang, W.-L. Zhang, H. Wu, Y.-Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express 21, 24611–24619 (2013).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, X. Jia, and W. Zhang, “Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity,” Opt. Express 21, 20090–20095 (2013).
[Crossref]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21, 8544–8549 (2013).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Li, Y. Gong, and Y. Rao, “Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering,” Opt. Express 21, 29358–29363 (2013).
[Crossref]

H. Wu, Z. Wang, X. Jia, P. Li, M. Fan, Y. Li, and Y. Zhu, “Flat amplitude multiwavelength Brillouin Raman random fiber laser with a half-open cavity,” Appl. Phys. B 112, 467–471 (2013).
[Crossref]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20, 17695–17700 (2012).
[Crossref]

Wu, H.-J.

Xiao, H.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “Random distributed feedback Raman fiber laser with short cavity and its temporal properties,” IEEE Photon. Technol. Lett. 26, 1605–1608 (2014).
[Crossref]

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-power random distributed feedback Raman fiber laser operating at 1.2-μm,” Chin. Opt. Lett. 12, 073501 (2014).
[Crossref]

Xiao, S.

Xie, K.

Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
[Crossref]

Z. Hu, P. Gao, K. Xie, Y. Liang, and H. Jiang, “Wavelength control of random polymer fiber laser based on adaptive disorder,” Opt. Lett. 39, 6911–6914 (2014).
[Crossref]

Xie, S.

Xu, J.

Y. Tang and J. Xu, “A random Q-switched fiber laser,” Sci. Rep. 5, 9338 (2015).
[Crossref]

Xu, X.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “Random distributed feedback Raman fiber laser with short cavity and its temporal properties,” IEEE Photon. Technol. Lett. 26, 1605–1608 (2014).
[Crossref]

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
[Crossref]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-power random distributed feedback Raman fiber laser operating at 1.2-μm,” Chin. Opt. Lett. 12, 073501 (2014).
[Crossref]

Xu, Z.

Yaacob, M.

A. Al-Alimi, M. Yaacob, and A. Abas, “Half-linear cavity multiwavelength Brillouin-erbium fiber laser,” J. Eur. Opt. Soc. Rapid Pub. 9, 14051 (2014).
[Crossref]

Yaacob, M. H.

Yan, X.-D.

Yan, Z.

Yang, Z.-X.

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE 8421, 842127 (2012).

Yao, T.

Yeo, K.

K. Yeo, M. Mahdi, H. Mohamad, S. Hitam, and M. Mokhtar, “Widely tunable Raman ring laser using highly nonlinear fiber,” Laser Phys. 19, 2200–2203 (2009).
[Crossref]

Yin, L.

Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
[Crossref]

Yuan, C.-X.

Zaidan, A. W.

A. R. Sarmani, R. Zamiri, M. H. A. Bakar, B. Z. Azmi, A. W. Zaidan, and M. A. Mahdi, “Tunable Raman fiber laser induced by Rayleigh back-scattering in an ultra-long cavity,” J. Eur. Opt. Soc. 6, 11043 (2011).
[Crossref]

Zakharov, V. E.

V. E. Zakharov, V. S. L’Vov, and G. Falkovich, Kolmogorov Spectra of Turbulence 1. Wave Turbulence (Springer, 1992).

Zamiri, R.

A. R. Sarmani, R. Zamiri, M. H. A. Bakar, B. Z. Azmi, A. W. Zaidan, and M. A. Mahdi, “Tunable Raman fiber laser induced by Rayleigh back-scattering in an ultra-long cavity,” J. Eur. Opt. Soc. 6, 11043 (2011).
[Crossref]

Zamzuri, A.

R. S. Shargh, M. Al-Mansoori, S. Anas, R. Sahbudin, A. Zamzuri, and M. Mahdi, “Improvement of comb lines quality employing double-pass architecture in Brillouin-Raman laser,” Laser Phys. Lett. 8, 823–827 (2011).
[Crossref]

A. Zamzuri, M. Md Ali, A. Ahmad, R. Mohamad, and M. Mahdi, “Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity,” Opt. Lett. 31, 918–920 (2006).
[Crossref]

Zeng, J. J.

Zhang, D.

Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
[Crossref]

Z. Hu, B. Miao, T. Wang, Q. Fu, D. Zhang, H. Ming, and Q. Zhang, “Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser,” Opt. Lett. 38, 4644–4647 (2013).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Zhang, H.

X. Du, H. Zhang, X. Wang, and P. Zhou, “Tunable random distributed feedback fiber laser operating at 1  μm,” Appl. Opt. 54, 908–911 (2015).
[Crossref]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-power random distributed feedback Raman fiber laser operating at 1.2-μm,” Chin. Opt. Lett. 12, 073501 (2014).
[Crossref]

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “Random distributed feedback Raman fiber laser with short cavity and its temporal properties,” IEEE Photon. Technol. Lett. 26, 1605–1608 (2014).
[Crossref]

Zhang, L.

Zhang, N.

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20, 902405 (2014).

C. Huang, X. Dong, S. Zhang, N. Zhang, and P. Shum, “Cascaded random fiber laser based on hybrid Brillouin-erbium fiber gains,” IEEE Photon. Technol. Lett. 26, 1287–1290 (2014).
[Crossref]

Zhang, P.

P. Zhang, T. Wang, Q. Jia, X. Liu, M. Kong, S. Tong, and H. Jiang, “A novel fiber laser based on Rayleigh scattering feedback with a half-opened cavity,” Proc. SPIE 906, 890617 (2013).

Zhang, Q.

Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
[Crossref]

Z. Hu, B. Miao, T. Wang, Q. Fu, D. Zhang, H. Ming, and Q. Zhang, “Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser,” Opt. Lett. 38, 4644–4647 (2013).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Zhang, S.

C. Huang, X. Dong, S. Zhang, N. Zhang, and P. Shum, “Cascaded random fiber laser based on hybrid Brillouin-erbium fiber gains,” IEEE Photon. Technol. Lett. 26, 1287–1290 (2014).
[Crossref]

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20, 902405 (2014).

Zhang, W.

H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirrors reflectivity in forward-pumped random fiber laser,” Opt. Express 23, 1421–1427 (2015).
[Crossref]

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

H. Tang, W. Zhang, Y. Rao, Y. Zhu, and Z. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[Crossref]

Y. Zhu, W. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, X. Jia, and W. Zhang, “Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity,” Opt. Express 21, 20090–20095 (2013).
[Crossref]

Zhang, W. L.

Zhang, W.-L.

Zhao, Y.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Zhou, D.-P.

Zhou, P.

X. Du, H. Zhang, X. Wang, and P. Zhou, “Tunable random distributed feedback fiber laser operating at 1  μm,” Appl. Opt. 54, 908–911 (2015).
[Crossref]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High-power random distributed feedback Raman fiber laser operating at 1.2-μm,” Chin. Opt. Lett. 12, 073501 (2014).
[Crossref]

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “Random distributed feedback Raman fiber laser with short cavity and its temporal properties,” IEEE Photon. Technol. Lett. 26, 1605–1608 (2014).
[Crossref]

Zhou, Y.

Zhu, J. M.

Zhu, J.-M.

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE 8421, 842127 (2012).

Zhu, T.

T. Zhu, X. Bao, and L. Chen, “A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering,” Opt. Commun. 285, 1371–1374 (2012).
[Crossref]

T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, “Experimental study on stimulated Rayleigh scattering in optical fibers,” Opt. Express 18, 22958–22963 (2010).
[Crossref]

Zhu, Y.

H. Tang, W. Zhang, Y. Rao, Y. Zhu, and Z. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[Crossref]

Y. Zhu, W. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
[Crossref]

H. Wu, Z. Wang, X. Jia, P. Li, M. Fan, Y. Li, and Y. Zhu, “Flat amplitude multiwavelength Brillouin Raman random fiber laser with a half-open cavity,” Appl. Phys. B 112, 467–471 (2013).
[Crossref]

S. Chernikov, Y. Zhu, J. Taylor, and V. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997).
[Crossref]

Zhu, Y. Y.

W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode Fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
[Crossref]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21, 8544–8549 (2013).
[Crossref]

Y. Y. Zhu, W. L. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
[Crossref]

Zhu, Y.-Y.

Zlobina, E. A.

S. I. Kablukov, E. I. Dontsova, E. A. Zlobina, I. N. Nemov, A. A. Vlasov, and S. A. Babin, “An LD-pumped Raman fiber laser operating below 1  μm,” Laser Phys. Lett. 10, 085103 (2013).
[Crossref]

Zolin, V.

V. Markushev, N. É. Ter-Gabriélyan, C. M. Briskina, V. Belan, and V. Zolin, “Stimulated emission kinetics of neodymium powder lasers,” Sov. J. Quantum Electron. 20, 773–777 (1990).
[Crossref]

Zou, G.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Zulkifli, M.

H. Ahmad, M. Zulkifli, M. Jemangin, and S. Harun, “Distributed feedback multimode Brillouin-Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (5)

H. Martins, M. Marques, and O. Frazão, “Intensity vibration sensor based on Raman fiber laser using a distributed mirror combined with Bragg grating structures,” Appl. Phys. B 114, 455–459 (2014).
[Crossref]

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B 104, 957–960 (2011).
[Crossref]

A. Pinto, O. Frazão, J. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99, 391–395 (2010).
[Crossref]

R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115  nm,” Appl. Phys. B 111, 169–172 (2013).
[Crossref]

H. Wu, Z. Wang, X. Jia, P. Li, M. Fan, Y. Li, and Y. Zhu, “Flat amplitude multiwavelength Brillouin Raman random fiber laser with a half-open cavity,” Appl. Phys. B 112, 467–471 (2013).
[Crossref]

Chin. Opt. Lett. (1)

Electron. Lett. (1)

G. Ravet, A. Fotiadi, M. Blondel, and P. Megret, “Passive Q-switching in all-fibre Raman laser with distributed Rayleigh feedback,” Electron. Lett. 40, 528–529 (2004).
[Crossref]

IEEE J. Quantum Electron. (2)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
[Crossref]

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “A laser with a non-resonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

Z. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, and X. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015).

W. L. Zhang, S. W. Li, R. Ma, Y. J. Rao, Y. Y. Zhu, Z. N. Wang, X. H. Jia, and J. Li, “Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode Fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 44–49 (2015).
[Crossref]

C. Huang, X. Dong, N. Zhang, S. Zhang, and P. P. Shum, “Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 20, 902405 (2014).

IEEE Photon. J. (1)

M. Abu Bakar, F. M. Adikan, and M. Mahdi, “Rayleigh-based Raman fiber laser with passive erbium-doped fiber for secondary pumping effect in remote L-band erbium-doped fiber amplifier,” IEEE Photon. J. 4, 1042–1050 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (10)

B. Saxena, Z. Ou, X. Bao, and L. Chen, “Low frequency-noise random fiber laser with bi-directional SBS and Rayleigh feedback,” IEEE Photon. Technol. Lett. 27, 490–493 (2015).
[Crossref]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13, 1352–1354 (2001).
[Crossref]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “Random distributed feedback Raman fiber laser with short cavity and its temporal properties,” IEEE Photon. Technol. Lett. 26, 1605–1608 (2014).
[Crossref]

C. Huang, X. Dong, S. Zhang, N. Zhang, and P. Shum, “Cascaded random fiber laser based on hybrid Brillouin-erbium fiber gains,” IEEE Photon. Technol. Lett. 26, 1287–1290 (2014).
[Crossref]

S. Babin, D. Churkin, A. Fotiadi, S. Kablukov, O. Medvedkov, and E. Podivilov, “Relative intensity noise in cascaded-Raman fiber lasers,” IEEE Photon. Technol. Lett. 17, 2553–2555 (2005).
[Crossref]

M. Fan, Z. Wang, H. Wu, W. Sun, and L. Zhang, “Low-threshold, high-efficiency Random fiber laser with linear output,” IEEE Photon. Technol. Lett. 27, 319–322 (2015).
[Crossref]

Y. Y. Zhu, W. L. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
[Crossref]

Y. Zhu, W. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
[Crossref]

M. Fernandez-Vallejo, M. Bravo, and M. Lopez-Amo, “Ultra-long laser systems for remote fiber Bragg gratings arrays interrogation,” IEEE Photon. Technol. Lett. 25, 1362–1364 (2013).
[Crossref]

P. Rosa, M. Tan, S. Le, I. Phillips, J. D. Ania-Castanon, S. Sygletos, and P. Harper, “Unrepeatered DP-QPSK transmission over 352.8  km SMF using random DFB fibre laser amplification,” IEEE Photon. Technol. Lett. 27, 1189–1192 (2015).

J. Eur. Opt. Soc. (1)

A. R. Sarmani, R. Zamiri, M. H. A. Bakar, B. Z. Azmi, A. W. Zaidan, and M. A. Mahdi, “Tunable Raman fiber laser induced by Rayleigh back-scattering in an ultra-long cavity,” J. Eur. Opt. Soc. 6, 11043 (2011).
[Crossref]

J. Eur. Opt. Soc. Rapid Pub. (1)

A. Al-Alimi, M. Yaacob, and A. Abas, “Half-linear cavity multiwavelength Brillouin-erbium fiber laser,” J. Eur. Opt. Soc. Rapid Pub. 9, 14051 (2014).
[Crossref]

J. Exp. Theor. Phys. (1)

I. Kolokolov, V. Lebedev, E. Podivilov, and S. Vergeles, “Theory of a random fiber laser,” J. Exp. Theor. Phys. 119, 1134–1139 (2014).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. (2)

N. Akhmediev, J. Dudley, D. Solli, and S. Turitsyn, “Recent progress in investigating optical rogue waves,” J. Opt. 15, 060201 (2013).
[Crossref]

Z. Hu, Y. Liang, K. Xie, P. Gao, D. Zhang, H. Jiang, F. Shi, L. Yin, J. Gao, H. Ming, and Q. Zhang, “Gold nanoparticle-based plasmonic random fiber laser,” J. Opt. 17, 035001 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

J. Phys. (1)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. 38, 10497–10535 (2005).

Laser Phys. (5)

D. V. Churkin, I. D. Vatnik, S. K. Turitsyn, and S. A. Babin, “Random distributed feedback Raman fiber laser operating in a 1.2  μm wavelength range,” Laser Phys. 21, 1525–1529 (2011).
[Crossref]

K. Yeo, M. Mahdi, H. Mohamad, S. Hitam, and M. Mokhtar, “Widely tunable Raman ring laser using highly nonlinear fiber,” Laser Phys. 19, 2200–2203 (2009).
[Crossref]

H. Martins, M. B. Marques, and O. Frazão, “Comparison of Brillouin-Raman comb fiber laser in two different configurations,” Laser Phys. 21, 1925–1931 (2011).

L. Wang, X. Dong, P. P. Shum, C. Huang, and H. Su, “Erbium-doped fiber laser with distributed Rayleigh output mirror,” Laser Phys. 24, 115101 (2014).
[Crossref]

J. Nuño and J. D. Ania-Castañón, “Cavity and random ultralong fibre laser amplification in BOTDAs: a comparison,” Laser Phys. 24, 065107 (2014).
[Crossref]

Laser Phys. Lett. (8)

H. Ahmad, M. Zulkifli, M. Jemangin, and S. Harun, “Distributed feedback multimode Brillouin-Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
[Crossref]

R. S. Shargh, M. H. Al-Mansoori, S. B. A. Anas, R. K. Z. Sahbudin, and M. A. Mahdi, “OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser,” Laser Phys. Lett. 8, 139–143 (2011).
[Crossref]

R. S. Shargh, M. Al-Mansoori, S. Anas, R. Sahbudin, A. Zamzuri, and M. Mahdi, “Improvement of comb lines quality employing double-pass architecture in Brillouin-Raman laser,” Laser Phys. Lett. 8, 823–827 (2011).
[Crossref]

H. Wu, Z. N. Wang, D. V. Churkin, I. D. Vatnik, M. Q. Fan, and Y. J. Rao, “Random distributed feedback Raman fiber laser with polarized pumping,” Laser Phys. Lett. 12, 015101 (2015).
[Crossref]

S. I. Kablukov, E. I. Dontsova, E. A. Zlobina, I. N. Nemov, A. A. Vlasov, and S. A. Babin, “An LD-pumped Raman fiber laser operating below 1  μm,” Laser Phys. Lett. 10, 085103 (2013).
[Crossref]

I. Vatnik, D. Churkin, E. Podivilov, and S. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
[Crossref]

I. D. Vatnik, D. V. Churkin, E. V. Podivilov, and S. A. Babin, “High-efficiency generation in a short random fiber laser,” Laser Phys. Lett. 11, 075101 (2014).
[Crossref]

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11, 075104 (2014).
[Crossref]

Nat. Commun. (1)

D. V. Churkin, I. V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, I. S. Terekhov, V. V. Lebedev, G. Falkovich, S. A. Babin, and S. K. Turitsyn, “Wave kinetics of random fibre lasers,” Nat. Commun. 2, 6214 (2015).
[Crossref]

Nat. Photonics (4)

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fibre laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8, 755–764 (2014).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Nat. Phys. (1)

Q. Baudouin, N. Mercadier, V. Guarrera, W. Guerin, and R. Kaiser, “A cold-atom random laser,” Nat. Phys. 9, 357–360 (2013).
[Crossref]

Nature (3)

N. M. Lawandy, R. Balachandran, A. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[Crossref]

D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Opt. Commun. (3)

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285, 2154–2160 (2012).
[Crossref]

K. Hammani, A. Picozzi, and C. Finot, “Extreme statistics in Raman fiber amplifiers: from analytical description to experiments,” Opt. Commun. 284, 2594–2603 (2011).
[Crossref]

T. Zhu, X. Bao, and L. Chen, “A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering,” Opt. Commun. 285, 1371–1374 (2012).
[Crossref]

Opt. Express (29)

T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, “Experimental study on stimulated Rayleigh scattering in optical fibers,” Opt. Express 18, 22958–22963 (2010).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Li, Y. Gong, and Y. Rao, “Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering,” Opt. Express 21, 29358–29363 (2013).
[Crossref]

G. Mamdoohi, A. R. Sarmani, A. F. Abas, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi, “20  GHz spacing multi-wavelength generation of Brillouin-Raman fiber laser in a hybrid linear cavity,” Opt. Express 21, 18724–18732 (2013).
[Crossref]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20, 17695–17700 (2012).
[Crossref]

X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express 21, 6572–6577 (2013).
[Crossref]

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express 20, 27376–27381 (2012).
[Crossref]

O. Gorbunov, S. Sugavanam, and D. Churkin, “Revealing statistical properties of quasi-CW fibre lasers in bandwidth-limited measurements,” Opt. Express 22, 28071–28076 (2014).
[Crossref]

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19, 8394–8405 (2011).
[Crossref]

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21, 8177–8182 (2013).
[Crossref]

V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. IJzerman, and W. L. Vos, “Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode,” Opt. Express 22, 8190–8204 (2014).
[Crossref]

J. Shi, S. ul Alam, and M. Ibsen, “Highly efficient Raman distributed feedback fibre lasers,” Opt. Express 20, 5082–5091 (2012).
[Crossref]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express 20, 28033 (2012).
[Crossref]

H. Wu, Z. Wang, M. Fan, L. Zhang, W. Zhang, and Y. Rao, “Role of the mirrors reflectivity in forward-pumped random fiber laser,” Opt. Express 23, 1421–1427 (2015).
[Crossref]

S. Babin, I. Vatnik, A. Y. Laptev, M. Bubnov, and E. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22, 24929–24934 (2014).
[Crossref]

S. V. Smirnov and D. V. Churkin, “Modeling of spectral and statistical properties of a random distributed feedback fiber laser,” Opt. Express 21, 21236–21241 (2013).
[Crossref]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2  μm,” Opt. Express 19, 18486–18494 (2011).
[Crossref]

A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19, 14152–14159 (2011).
[Crossref]

S. A. Babin, D. V. Churkin, A. Ismagulov, S. Kablukov, E. Podivilov, M. Rybakov, and A. Vlasov, “All-fiber widely tunable Raman fiber laser with controlled output spectrum,” Opt. Express 15, 8438–8443 (2007).
[Crossref]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castanon, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20, 11178–11188 (2012).
[Crossref]

S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21, 16466–16472 (2013).
[Crossref]

A. Pinto, M. Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser,” Opt. Express 19, 11906–11915 (2011).
[Crossref]

S. Sugavanam, Z. Yan, V. Kamynin, A. Kurkov, L. Zhang, and D. Churkin, “Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter,” Opt. Express 22, 2839–2844 (2014).
[Crossref]

M. Pang, X. Bao, L. Chen, Z. Qin, Y. Lu, and P. Lu, “Frequency stabilized coherent Brillouin random fiber laser: theory and experiments,” Opt. Express 21, 27155–27168 (2013).
[Crossref]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Y. Wang, Z. Nan, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20, 14400–14405 (2012).
[Crossref]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21, 8544–8549 (2013).
[Crossref]

X.-H. Jia, Y.-J. Rao, C.-X. Yuan, J. Li, X.-D. Yan, Z.-N. Wang, W.-L. Zhang, H. Wu, Y.-Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express 21, 24611–24619 (2013).
[Crossref]

Z. Wang, H. Wu, M. Fan, Y. Rao, X. Jia, and W. Zhang, “Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity,” Opt. Express 21, 20090–20095 (2013).
[Crossref]

H. Martins, M. B. Marques, and O. Frazão, “300  km-ultralong Raman fiber lasers using a distributed mirror for sensing applications,” Opt. Express 19, 18149–18154 (2011).
[Crossref]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, X.-D. Yan, J. Li, H. Wu, Y.-Y. Zhu, and F. Peng, “Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application,” Opt. Express 21, 21208–21217 (2013).
[Crossref]

Opt. Laser Technol. (1)

H. Tang, W. Zhang, Y. Rao, Y. Zhu, and Z. Wang, “Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG,” Opt. Laser Technol. 57, 100–103 (2014).
[Crossref]

Opt. Lasers Eng. (1)

J. Nuño and J. D. Ania-Castañón, “Fiber Sagnac interferometers with ultralong and random distributed feedback Raman laser amplification,” Opt. Lasers Eng. 54, 21–26 (2014).
[Crossref]

Opt. Lett. (28)

Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39, 5866–5869 (2014).
[Crossref]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[Crossref]

A. El-Taher, M. Alcon-Camas, S. Babin, P. Harper, J. D. Ania-Castanón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35, 1100–1102 (2010).
[Crossref]

V. DeMiguel-Soto, M. Bravo, and M. Lopez-Amo, “Fully switchable multiwavelength fiber laser assisted by a random mirror,” Opt. Lett. 39, 2020–2023 (2014).
[Crossref]

M. Pang, S. Xie, X. Bao, D.-P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett. 37, 3129–3131 (2012).
[Crossref]

A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett. 23, 1805–1807 (1998).
[Crossref]

M. Pang, X. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38, 1866–1868 (2013).
[Crossref]

S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “Random fiber laser directly pumped by a high-power laser diode,” Opt. Lett. 38, 3301–3303 (2013).
[Crossref]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. Lett. 35, 1425–1427 (2010).
[Crossref]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent CW fiber lasers,” Opt. Lett. 35, 3288–3290 (2010).
[Crossref]

S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett. 36, 790–792 (2011).
[Crossref]

D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett. 36, 3617–3619 (2011).
[Crossref]

S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett. 37, 500–502 (2012).
[Crossref]

A. A. Fotiadi, P. Mégret, and M. Blondel, “Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror,” Opt. Lett. 29, 1078–1080 (2004).
[Crossref]

S. Chernikov, Y. Zhu, J. Taylor, and V. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997).
[Crossref]

Y. Tang, X. Li, and Q. J. Wang, “High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering,” Opt. Lett. 38, 5474–5477 (2013).
[Crossref]

O. Gorbunov, S. Sugavanam, and D. Churkin, “Intensity dynamics and statistical properties of random distributed feedback fiber laser,” Opt. Lett. 40, 1783–1786 (2015).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31, 3007–3009 (2006).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33, 633–635 (2008).
[Crossref]

B. Saxena, X. Bao, and L. Chen, “Suppression of thermal frequency noise in erbium-doped fiber random lasers,” Opt. Lett. 39, 1038–1041 (2014).
[Crossref]

Y. Li, P. Lu, X. Bao, and Z. Ou, “Random spaced index modulation for a narrow linewidth tunable fiber laser with low intensity noise,” Opt. Lett. 39, 2294–2297 (2014).
[Crossref]

Z. Hu, B. Miao, T. Wang, Q. Fu, D. Zhang, H. Ming, and Q. Zhang, “Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser,” Opt. Lett. 38, 4644–4647 (2013).
[Crossref]

Z. Hu, P. Gao, K. Xie, Y. Liang, and H. Jiang, “Wavelength control of random polymer fiber laser based on adaptive disorder,” Opt. Lett. 39, 6911–6914 (2014).
[Crossref]

M. Bravo, M. Fernandez-Vallejo, and M. Lopez-Amo, “Internal modulation of a random fiber laser,” Opt. Lett. 38, 1542–1544 (2013).
[Crossref]

M. Gagné and R. Kashyap, “Random fiber Bragg grating Raman fiber laser,” Opt. Lett. 39, 2755–2758 (2014).
[Crossref]

S. Derevyanko, “Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index,” Opt. Lett. 33, 2404–2406 (2008).
[Crossref]

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27, 155–157 (2002).
[Crossref]

A. Zamzuri, M. Md Ali, A. Ahmad, R. Mohamad, and M. Mahdi, “Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity,” Opt. Lett. 31, 918–920 (2006).
[Crossref]

Opt. Photon. News (1)

Z. Wang, H. Wu, M. Fan, Y. Rao, I. Vatnik, E. Podivilov, S. Babin, D. Churkin, H. Zhang, P. Zhou, H. Xiao, and X. Wang, “Random fiber laser: simpler and brighter,” Opt. Photon. News 25(12), 30 (2014).

Optik (1)

L. Chen and Y. Ding, “Random distributed feedback fiber laser pumped by an ytterbium doped fiber laser,” Optik 125, 3663–3665 (2014).
[Crossref]

Phys. Rep. (4)

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542, 133–193 (2014).
[Crossref]

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Phys. Rev. (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

Phys. Rev. A (3)

M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot, M. Haelterman, B. Kibler, C. Michel, and G. Millot, “Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasi-solitons, dispersive waves, and extreme events,” Phys. Rev. A 91, 023823 (2015).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[Crossref]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
[Crossref]

Phys. Rev. B (1)

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B 86, 054204 (2012).

Phys. Rev. Lett. (6)

C. J. S. de Matos, L. D. S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99, 153903 (2007).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

S. Randoux, P. Walczak, M. Onorato, and P. Suret, “Intermittency in integrable turbulence,” Phys. Rev. Lett. 113, 113902 (2014).
[Crossref]

C. Lecaplain, P. Grelu, J. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[Crossref]

Proc. SPIE (8)

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230  km) FBG sensor system,” Proc. SPIE 7004, 70046C (2008).

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE 8421, 842127 (2012).

S. A. Babin, E. I. Dontsova, and S. I. Kablukov, “980-nm random fiber laser directly pumped by a high-power 938-nm laser diode,” Proc. SPIE 8961, 89612F (2014).

Y.-J. Rao, X.-H. Jia, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, J. Li, X.-D. Yan, H. Wu, Y.-Y. Zhu, and F. Peng, “154.4  km BOTDA based on hybrid distributed Raman amplifications,” Proc. SPIE 9157, 91575P (2014).

M. Bravo Acha, V. DeMiguel-Soto, A. Ortigosa, and M. Lopez-Amo, “Fully switchable multi-wavelength fiber laser based interrogator system for remote and versatile fiber optic sensors multiplexing structures,” Proc. SPIE 9157, 91576P (2014).

S. A. Babin, E. I. Dontsova, I. D. Vatnik, and S. I. Kablukov, “Second harmonic generation of a random fiber laser with Raman gain,” Proc. SPIE 9347, 934710 (2015).

I. D. Vatnik and D. V. Churkin, “Modeling of the spectrum in a random distributed feedback fiber laser within the power balance modes,” Proc. SPIE 9135, 91351Z (2014).

P. Zhang, T. Wang, Q. Jia, X. Liu, M. Kong, S. Tong, and H. Jiang, “A novel fiber laser based on Rayleigh scattering feedback with a half-opened cavity,” Proc. SPIE 906, 890617 (2013).

Sci. Rep. (1)

Y. Tang and J. Xu, “A random Q-switched fiber laser,” Sci. Rep. 5, 9338 (2015).
[Crossref]

Science (2)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

Sov. J. Quantum Electron. (1)

V. Markushev, N. É. Ter-Gabriélyan, C. M. Briskina, V. Belan, and V. Zolin, “Stimulated emission kinetics of neodymium powder lasers,” Sov. J. Quantum Electron. 20, 773–777 (1990).
[Crossref]

Waves Random Media (1)

H. Cao, “Lasing in random media,” Waves Random Media 13, R1–R39 (2003).
[Crossref]

Other (12)

A. Lanin, D. Churkin, K. Golant, and S. Turitsyn, “Raman gain and random distributed feedback generation in nitrogen doped silica core fiber,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

G. Keiser, Optical Fiber Communications (Wiley, 2003).

H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2001).

R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic, 2009).

S. Akiba, “Distributed feedback lasers,” in Encyclopedic Handbook of Integrated Optics, K. Iga and Y. Kokubun, eds. (CRC Press, 2010), pp. 41–53.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008).

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Spectral width optimization in random DFB fiber laser,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

A. Lanin, S. Sergeyev, D. Nasiev, D. Churkin, and S. Turitsyn, “On-off and multistate intermittencies in cascaded random distributed feedback fibre laser,” in Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013).

V. E. Zakharov, V. S. L’Vov, and G. Falkovich, Kolmogorov Spectra of Turbulence 1. Wave Turbulence (Springer, 1992).

S. Nazarenko, Wave Turbulence, Vol. 825 of Lecture Notes in Physics (Springer, 2011).

M. Tan, P. Rosa, I. Phillips, and P. Harper, “Extended reach of 116  Gb/s DP-QPSK transmission using random DFB fiber laser based Raman amplification and bidirectional second-order pumping,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4E.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (36)

Figure 1
Figure 1

(a) Basic scheme of the forward-pumped high-power RDFBL (reprinted with permission from Ref. [30]; copyright 2014 Optical Society of America). (b) The experimental setup in forward-pumped configuration. Reprinted with permission from Vatnik et al., Laser Phys. Lett. 11, 075101 (2014), Ref. [31]. Copyright IOP Publishing. All rights reserved.

Figure 2
Figure 2

Experimental demonstration of high-power operation of the random fiber laser. The generation power in the forward and backward directions is shown by red and blue symbols, respectively. The total generation power is shown by black symbols. The power of the residual pump wave is shown by green symbols. Reprinted from Zhang et al., Laser Phys. Lett. 11, 075104 (2014), Ref. [32]. Copyright IOP Publishing. Reproduced with permission. All rights reserved.

Figure 3
Figure 3

Ultimate generation efficiency of the random fiber laser. (a) Experimentally measured output power of the random fiber laser (red points) compared with the output power of the laser having a 4% output reflector (green points). Results are compared with the numerically calculated output power of an ASE source (gray line) of the same length (i.e., the system without random DFB). (b) Total optical efficiency (black squares, defined as the ratio of the output generation power to the input pump power) and relative quantum conversion efficiency (red squares, defined as the ratio of the generated photon number at the laser output to the transmitted pump photon number if the Raman conversion is absent) in comparison with theoretical limits in approximation of equal attenuation of the pump and Stokes waves (dashed lines). Reprinted with permission from Vatnik et al., Laser Phys. Lett. 11, 075101 (2014), Ref. [31]. Copyright IOP Publishing. All rights reserved.

Figure 4
Figure 4

(a) Maximum output power and optical conversion efficiency of the first-order random lasing as a function of fiber length. Results of numerical calculation within the power balance model are shown. Copyright 2015 IEEE. Reprinted, with permission, from Wang et al., IEEE J. Sel. Top. Quantum Electron. 21, 0900506 (2015) [33]. (b) Output power versus input pump power for different fiber lengths. Numerical simulations.

Figure 5
Figure 5

Linear output power dependence of the random fiber laser. Copyright 2015 IEEE. Reprinted, with permission, from Fan et al., IEEE Photon. Technol. Lett. 27, 319–322 (2015), Ref. [36].

Figure 6
Figure 6

Typical generation spectrum of the 51 km long random DFB fiber laser under 1455 nm pumping. (a) Spectral shape at different pump power levels, and (b) spectral width as a function of generation power. Reprinted with permission from Ref. [42]; copyright 2011 Optical Society of America.

Figure 7
Figure 7

Experimentally measured dependence of the width of the random DFB fiber laser generation spectrum on the laser length. (a) Spectral width as a function of generation power, and (b) spectral width as a function of pump power.

Figure 8
Figure 8

Width of the generation spectrum of a random DFB fiber laser numerically calculated within the NLSE-based model for fiber having different (a) nonlinearity and (b) dispersion. Reprinted with permission from Ref. [44]; copyright 2013 Optical Society of America.

Figure 9
Figure 9

Generation spectrum of the random DFB fiber laser pumped by a polarized pump source. (a) The laser operating in the 1 μm spectral range. Reprinted with permission from Churkin et al., Laser Phys. 21, 1525–1529 (2011), Ref. [46]. Copyright IOP Publishing. All rights reserved. (b) The laser operating in the 1.45 μm spectral range. Reprinted with permission from Wu et al., Laser Phys. Lett. 12, 015101 (2015), Ref. [47]. Copyright IOP Publishing. All rights reserved.

Figure 10
Figure 10

Generation spectrum of the narrowband random DFB fiber laser. Inset: spectral width over pump power. Reprinted with permission from Ref. [49]; copyright 2013 Optical Society of America.

Figure 11
Figure 11

Switchable multiwavelength random fiber laser: (a) experimental setup and (b) example of multiwavelength operation on different switchable lines separated by 100 GHz. Reprinted with permission from Ref. [64]; copyright 2014 Optical Society of America.

Figure 12
Figure 12

Random fiber laser based on SBS gain: (a) typical experimental realization (reprinted with permission from Ref. [72]; copyright 2013 Optical Society of America) and (b) observed linewidth of frequency-stabilized SBS random lasing with increasing input power (reprinted with permission from Ref. [73]; copyright 2013 Optical Society of America).

Figure 13
Figure 13

Frequency comb generation in a SBS-RS-based random fiber laser. (a) Resulting Brillouin comb spanning over 40 nm. (b) Spectral and power uniformity of even and odd modes in the comb (reprinted with permission from Ref. [84]; copyright 2013 Optical Society of America).

Figure 14
Figure 14

Observed linewidth narrowing with increasing power in a random laser operating via stimulated Rayleigh scattering. Reprinted with permission from “A self-gain random distributed feedback fiber laser based on stimulated Raman scattering,” Opt. Commun. 285, 1371–1374 (2012)  [87].

Figure 15
Figure 15

Random fiber Bragg grating based Raman fiber laser: (a) typical phase profile of the grating and (b) linewidth of the lasing obtained using a simple end-pumped configuration. Reprinted with permission from Ref. [99]. Copyright 2014 Optical Society of America.

Figure 16
Figure 16

Coherent lasing using a liquid-filled optical fiber. Figure 2(b) reprinted with permission from Hu et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012) [102]. Copyright 2012 by the American Physical Society.

Figure 17
Figure 17

Modulated CW output of the random DFB fiber laser incorporating an electro-optical modulator. Reprinted with permission from [106]. Copyright 2013 Optical Society of America.

Figure 18
Figure 18

Self-pulsing behavior of the random DFB fiber laser generating simultaneously first (at 1173 nm) and second (at 1237 nm) Stokes waves. Copyright 2014 IEEE. Reprinted, with permission, from Zhang et al., IEEE Photon. Technol. Lett. 26, 1605–1608 (2014) [107].

Figure 19
Figure 19

Experimentally measured intensity dynamics of random DFB fiber laser at pump power 3 W. Reprinted with permission from [113]. Copyright 2015 Optical Society of America.

Figure 20
Figure 20

Changes in the shape of (a) the intensity PDF and (b) intensity ACFs of the ideal signal with Gaussian statistics at different values of the electrical-to-spectral bandwidth ratio, E / S . Reprinted with permission from Ref. [130]. Copyright 2014 Optical Society of America.

Figure 21
Figure 21

Experimentally measured statistical properties of the random DFB fiber laser. The slope of the intensity PDF is shown: squares, at pump power 1.6 W; circles, at pump power 3 W; line, numerical prediction for a signal of Gaussian statistics. Inset: intensity probability density function at powers 1.6 and 3 W. Reprinted with permission from [113]. Copyright 2015 Optical Society of America.

Figure 22
Figure 22

(a) Spectra modeled for different pump powers. (b) Full width at half-maximum for different pump powers. Red squares indicate the model with no feedback. Reprinted with permission from Ref. [135].

Figure 23
Figure 23

(a) Wave spectrum at different pump power level. (b) Spectral full width at half-maximum. The data are numerically calculated from Eq. (5). Black circles are experimental data [138].

Figure 24
Figure 24

Shape of the random DFB fiber laser generation spectrum numerically calculated for different ratios between gain and dispersion [138].

Figure 25
Figure 25

Dependence of the spectrum of the random DFB fiber laser on spectral shape of the Raman gain. Red, Raman gain g ( ω ) ( 1 ω 2 ) ; black, g ( ω ) ( 1 ω 4 ) . (a) Large dispersion limit. (b) Small dispersion limit. Dashed line, hyperbolic secant law.

Figure 26
Figure 26

Predictions for the spectrum shape and spectral width within nonlinear kinetic theory and its verification in experiment. (a) Experimentally measured (black) and theoretically predicted (red) optical spectrum at power 1.5 W. (b) Spectrum width as a function of laser output power in theory and experiment. Experimental data are shown by black circles. The prediction for spectrum broadening from nonlinear kinetic theory is shown by the blue dashed line. The red line is a sum of nonlinear and linear contributions [138].

Figure 27
Figure 27

Effective noise figure versus ratio of averaged power for a distributed Raman amplifier based on a random fiber laser in different pumping configurations. Reprinted with permission from Ref. [142]. Copyright 2013 Optical Society of America.

Figure 28
Figure 28

RIN transfer function in a random fiber laser (red curve) compared with those calculated for a Raman fiber laser of conventional cavity design (blue curve). Reprinted with permission from Ref. [143]. Copyright 2012 Optical Society of America.

Figure 29
Figure 29

RIN level in different types of fiber lasers. The ring fiber laser incorporating a 10 cm long random fiber Bragg grating (red curve) compared with those of a single-frequency laser (green curve). Reprinted with permission from Ref. [146]. Copyright 2014 Optical Society of America.

Figure 30
Figure 30

Frequency response of the internally modulated random DFB fiber laser (red curve) in a comparison of the frequency response of the modulated conventional Raman fiber laser (blue curve). Reprinted with permission from Ref. [106]. Copyright 2013 Optical Society of America.

Figure 31
Figure 31

Point-based temperature sensing system based on a random fiber laser. (a) Experimental setup. (b) Temperature sensitivity. Reprinted with permission from Ref. [147]. Copyright 2012 Optical Society of America.

Figure 32
Figure 32

200 km long multipoint temperature sensor system based on a random fiber laser. (a) Experimental setup. (b) Generation spectrum of the multiwavelength signal used for temperature sensing. Copyright 2013 IEEE. Reprinted, with permission, from Fernandez-Vallejo, IEEE Photon. Technol. Lett. 25, 1362–1364 (2013) [148].

Figure 33
Figure 33

Random-fiber-laser-based sensor system with a Fabry–Perot interferometer as the sensing element. (a) Experimental setup. (b) Sensitivity of the generation wavelength over the temperature. Reprinted with permission from Martins et al., Appl. Phys. B 105, 957–960 (2011) [150]. Copyright 2011 AIP Publishing LLC.

Figure 34
Figure 34

300 km long strain sensor system based on coupled random fiber lasers: (a) experimental setup and (b) results of strain measurement. Reprinted with permission from Ref. [151]. Copyright 2011 Optical Society of America.

Figure 35
Figure 35

Brillouin optical time-domain reflectometry based on a random fiber laser. The temperature distribution is measured over a 150 km fiber span. The temperature value is color coded. Reprinted with permission from Ref. [69]. Copyright 2013 Optical Society of America.

Figure 36
Figure 36

175 km Φ -OTDR with hybrid distributed amplification: (a) experimental setup and (b) calculated Rayleigh backscattering signal in the case of an ultralong Raman fiber laser (URFL) configuration and the configuration based on a random fiber laser with hybrid distributed amplification (HDA). Reprinted with permission from Ref. [156]. Copyright 2014 Optical Society of America.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

{ ± d P ± d z = α p P ± g R ω p ω s P ± ( I + I + ) , ± d I ± d z = α s I ± + g R ( P + + P ) I ± + ε I .
± d P ± d z = α p P ± ω p ω s P ± ( g ( ω ) ( I ω + I ω + ) d ω + 4 ω s ) ,
± d I ω ± d z = α s I ω ± + g ( ω ) ( P + + P ) ( I ω ± + 2 ω s ) + ε I ω .
d I ω + d z = ( g ( ω ) P α s ) I ω + + 2 g ( ω ) P ω s .
d I ω d z = ( g ( ω ) P α s ) I ω + 2 g ( ω ) ω s + ε I ω + .
I ω out = 4 ω s g ( ω ) P ( e ( g ( ω ) P α s ) L 1 ) g ( ω ) P α s e ( g ( ω ) P α s ) L + 1 1 ε ( e 2 ( g ( ω ) P α s ) L 1 ) 2 ( g ( ω ) P α s ) .
i ( z g ^ / 2 ) ψ = β 2 t 2 ψ + γ ψ | ψ | 2 ,
g ^ ( ω ) = g R P ( z ) α a P ( z ) ω 2 .
ψ ( z , t 1 + t ) ψ ( z , t 1 ) = d ω 2 π exp ( i ω t ) I ( z , ω ) ,
I ( 0 , ω ) = | R ( ω ) | 2 I ( L , ω )
( z g 0 + a P ω 2 ) I ω = 4 γ 2 d ω 1 d ω 2 d ω 3 ( 2 π ) 2 δ ( ω + ω 1 ω 2 ω 3 ) g 0 g 0 2 + [ β 2 ( ω 2 + ω 1 2 ω 2 2 ω 3 2 ) ] 2 [ I ω I 2 I 3 + I 1 I 2 I 3 I ω I 1 I 2 I ω I 1 I 3 ] .
| R ( ω ) | 2 exp ( 0 L d z g 0 ( P ) ) = 1 + η ( P ) .
( η A ω 2 ) I ω + 2 γ 2 d ω 1 d ω 2 d ω 3 ( 2 π ) 2 δ ( ω + ω 1 ω 2 ω 3 ) 1 g 0 2 + [ β 2 ( ω 2 + ω 1 2 ω 2 2 ω 3 2 ) ] 2 [ I ω I 2 I 3 + I 1 I 2 I 3 I ω I 1 I 2 I ω I 1 I 3 ] = 0 ,

Metrics