Abstract

We present a comprehensive overview of sensor technology exploiting optical whispering gallery mode (WGM) resonances. After a short introduction we begin by detailing the fundamental principles and theory of WGMs in optical microcavities and the transduction mechanisms frequently employed for sensing purposes. Key recent theoretical contributions to the modeling and analysis of WGM systems are highlighted. Subsequently we review the state of the art of WGM sensors by outlining efforts made to date to improve current detection limits. Proposals in this vein are numerous and range, for example, from plasmonic enhancements and active cavities to hybrid optomechanical sensors, which are already working in the shot noise limited regime. In parallel to furthering WGM sensitivity, efforts to improve the time resolution are beginning to emerge. We therefore summarize the techniques being pursued in this vein. Ultimately WGM sensors aim for real-world applications, such as measurements of force and temperature, or alternatively gas and biosensing. Each such application is thus reviewed in turn, and important achievements are discussed. Finally, we adopt a more forward-looking perspective and discuss the outlook of WGM sensors within both a physical and biological context and consider how they may yet push the detection envelope further.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer, "Whispering gallery mode sensors: erratum," Adv. Opt. Photon. 7, 632-634 (2015)
https://www.osapublishing.org/aop/abstract.cfm?uri=aop-7-3-632

OSA Recommended Articles
Photonic crystal microring resonator for label-free biosensing

Stanley M. Lo, Shuren Hu, Girija Gaur, Yiorgos Kostoulas, Sharon M. Weiss, and Philippe M. Fauchet
Opt. Express 25(6) 7046-7054 (2017)

Periodic plasmonic enhancing epitopes on a whispering gallery mode biosensor

Stephen Arnold, Venkata Ramanaiah Dantham, Curtis Barbre, Bruce A. Garetz, and Xudong Fan
Opt. Express 20(24) 26147-26159 (2012)

Computational study of a label-free biosensor based on a photonic crystal nanocavity resonator

Saeed Olyaee and Samira Najafgholinezhad
Appl. Opt. 52(29) 7206-7213 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (28)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription