Abstract

The human eye is a relatively simple optical instrument. This limits the quality of the retinal image affecting vision. However, the neural circuitry seems to be exquisitely designed to match the otherwise limited optical capabilities, providing an exceptional quality of vision. In this tutorial article, the main characteristics of the eye’s geometry and optics will first be reviewed. Then, their impact on vision under a variety of normal conditions will be discussed. The information gathered here should serve both those readers interested in basic vision and physiological optics and those more interested in related applications.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Visual effect of the combined correction of spherical and longitudinal chromatic aberrations

Pablo Artal, Silvestre Manzanera, Patricia Piers, and Henk Weeber
Opt. Express 18(2) 1637-1648 (2010)

Physical human model eye and methods of its use to analyse optical performance of soft contact lenses

Ravi C Bakaraju, Klaus Ehrmann, Darrin Falk, Arthur Ho, and Eric Papas
Opt. Express 18(16) 16868-16882 (2010)

Impact of positive coupling of the eye’s trefoil and coma in retinal image quality and visual acuity

Eloy A. Villegas, Encarna Alcón, and Pablo Artal
J. Opt. Soc. Am. A 29(8) 1667-1672 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Le Grand, S. G. El Hage, Physiological Optics, Springer Series in Optical Sciences (Springer, 1980).
  2. J. Tabernero, A. Benito, V. Nourrit, P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
    [Crossref]
  3. J. Tabernero, A. Benito, E. Alcón, P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
    [Crossref]
  4. J. W. Goodman, Introduction to Fourier Optics, 4th ed. (McGraw-Hill, 2005).
  5. W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, 1990).
  6. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [Crossref]
  7. H. von Helmholtz, Popular Scientific Lectures, M. Kline, ed. (Dover, 1962).
  8. T. Young, “The Bakerian Lecture. On the mechanism of the eye,” Phil. Trans. R. Soc. London 91, 23–88 (1801).
    [Crossref]
  9. S. G. El Hage, F. Berny, “Contribution of crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973).
    [Crossref]
  10. P. Artal, A. Guirao, “Contribution of cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
    [Crossref]
  11. P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vis. 1(1):1, 1–8 (2001).
    [Crossref]
  12. P. Artal, A. Benito, J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1):1, 1–7 (2006).
    [Crossref]
  13. P. Artal, J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
    [Crossref]
  14. P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
    [Crossref]
  15. E. Berrio, J. Tabernero, P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vis. 10(14):34, 1–17 (2010).
    [Crossref]
  16. J. Santamaria, P. Artal, J. Bescos, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [Crossref]
  17. E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom. Vis. Sci. 79, 60–67 (2002).
  18. E. A. Villegas, E. Alcon, P. Artal, “Minimum amount of astigmatism that should be corrected,” J. Cataract Refract. Surg. 40, 13–19 (2013).
  19. E. A. Villegas, E. Alcon, P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).
  20. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
    [Crossref]
  21. P. Prieto, F. Vargas, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
    [Crossref]
  22. S. Manzanera, C. Canovas, P. M. Prieto, P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16, 7748–7755 (2008).
    [Crossref]
  23. L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
    [Crossref]
  24. P. Artal, S. Manzanera, P. Piers, H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18, 1637–1648 (2010).
    [Crossref]
  25. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2007).
    [Crossref]
  26. C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8, 1–11 (2014).
    [Crossref]
  27. P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
    [Crossref]
  28. G. Pérez, S. Manzanera, P. Artal, “Impact of scattering and spherical aberration in contrast sensitivity,” J. Vis. 9(3):19, 1–10 (2009).
    [Crossref]
  29. A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Investig. Ophthalmol. Vis. Sci. 40, 203–213 (1999).
  30. M. A. Webster, M. A. Georgeson, S. M. Webster, “Neural adjustments to image blur,” Nat. Neurosci. 5, 839–840 (2002).
    [Crossref]
  31. P. Artal, A. M. Derrington, E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vis. Res. 35, 939–947 (1995).
    [Crossref]
  32. A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vis. Res. 39, 207–217 (1999).
    [Crossref]
  33. B. Jaeken, L. Lundström, P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011).
    [Crossref]
  34. L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
    [Crossref]
  35. B. Jaeken, S. Mirabet, J. M. Marín, P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54, 3594–3599 (2013).
    [Crossref]
  36. P. Artal, C. Schwarz, C. Cánovas, A. Mira-Agudelo, “A night myopia studied with an adaptive optics visual analyzer,” PLoS ONE 7, e40239 (2012).
    [Crossref]
  37. E. Dalimier, C. Dainty, J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” J. Mod. Opt. 55, 791–803 (2008).
    [Crossref]
  38. E. J. Fernández, C. Schwarz, P. M. Prieto, S. Manzanera, P. Artal, “Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay,” Biomed. Opt. Express 4, 822–830 (2013).
    [Crossref]
  39. H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [Crossref]
  40. J. Tabernero, P. Artal, “Lens oscillations in the human eye. Implications for post-saccadic suppression of vision,” PLoS ONE 9, e95764 (2014).
    [Crossref]
  41. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143–1151 (2002).
    [Crossref]
  42. H. H. Emsley, Visual Optics (Hatton, 1948).
  43. M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 776–795 (1961).
  44. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
    [Crossref]
  45. F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel, 1969), pp. 375–386.
  46. P. Artal, J. Santamaría, J. Bescós, “Retrieval of the wave aberration of human eyes from actual point-spread function data,” J. Opt. Soc. Am. A 5, 1201–1206 (1988).
    [Crossref]
  47. J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of the WA´s aberration of the human eye with the use of a Hartmann-Shack sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [Crossref]
  48. J. Hartmann, “Bemerkungen uber den Bau und die Justirung von Spektrographen,” Zt. Instrumentenkd. 20, 47–58 (1900).
  49. R. V. Shack, B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).
  50. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
    [Crossref]
  51. F. Vargas-Martin, P. Prieto, P. Artal, “Correction of the aberrations in the human eye with liquid crystal spatial light modulators: limits to the performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
    [Crossref]
  52. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1864–1876 (2011).
    [Crossref]
  53. E. J. Fernández, P. M. Prieto, P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
    [Crossref]

2014 (2)

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8, 1–11 (2014).
[Crossref]

J. Tabernero, P. Artal, “Lens oscillations in the human eye. Implications for post-saccadic suppression of vision,” PLoS ONE 9, e95764 (2014).
[Crossref]

2013 (3)

B. Jaeken, S. Mirabet, J. M. Marín, P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54, 3594–3599 (2013).
[Crossref]

E. A. Villegas, E. Alcon, P. Artal, “Minimum amount of astigmatism that should be corrected,” J. Cataract Refract. Surg. 40, 13–19 (2013).

E. J. Fernández, C. Schwarz, P. M. Prieto, S. Manzanera, P. Artal, “Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay,” Biomed. Opt. Express 4, 822–830 (2013).
[Crossref]

2012 (1)

P. Artal, C. Schwarz, C. Cánovas, A. Mira-Agudelo, “A night myopia studied with an adaptive optics visual analyzer,” PLoS ONE 7, e40239 (2012).
[Crossref]

2011 (3)

2010 (2)

2009 (2)

G. Pérez, S. Manzanera, P. Artal, “Impact of scattering and spherical aberration in contrast sensitivity,” J. Vis. 9(3):19, 1–10 (2009).
[Crossref]

E. J. Fernández, P. M. Prieto, P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
[Crossref]

2008 (4)

S. Manzanera, C. Canovas, P. M. Prieto, P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16, 7748–7755 (2008).
[Crossref]

E. Dalimier, C. Dainty, J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” J. Mod. Opt. 55, 791–803 (2008).
[Crossref]

E. A. Villegas, E. Alcon, P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).

P. Artal, J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[Crossref]

2007 (3)

2006 (2)

J. Tabernero, A. Benito, V. Nourrit, P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[Crossref]

P. Artal, A. Benito, J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1):1, 1–7 (2006).
[Crossref]

2004 (1)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

2002 (4)

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom. Vis. Sci. 79, 60–67 (2002).

M. A. Webster, M. A. Georgeson, S. M. Webster, “Neural adjustments to image blur,” Nat. Neurosci. 5, 839–840 (2002).
[Crossref]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143–1151 (2002).
[Crossref]

P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[Crossref]

2001 (2)

H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[Crossref]

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vis. 1(1):1, 1–8 (2001).
[Crossref]

2000 (1)

1999 (3)

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vis. Res. 39, 207–217 (1999).
[Crossref]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[Crossref]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Investig. Ophthalmol. Vis. Sci. 40, 203–213 (1999).

1998 (2)

1995 (1)

P. Artal, A. M. Derrington, E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vis. Res. 35, 939–947 (1995).
[Crossref]

1994 (1)

1992 (1)

1988 (1)

1987 (1)

1977 (1)

1976 (1)

1973 (1)

1971 (1)

R. V. Shack, B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).

1961 (1)

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 776–795 (1961).

1900 (1)

J. Hartmann, “Bemerkungen uber den Bau und die Justirung von Spektrographen,” Zt. Instrumentenkd. 20, 47–58 (1900).

1801 (1)

T. Young, “The Bakerian Lecture. On the mechanism of the eye,” Phil. Trans. R. Soc. London 91, 23–88 (1801).
[Crossref]

Alcon, E.

E. A. Villegas, E. Alcon, P. Artal, “Minimum amount of astigmatism that should be corrected,” J. Cataract Refract. Surg. 40, 13–19 (2013).

E. A. Villegas, E. Alcon, P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).

Alcón, E.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[Crossref]

J. Tabernero, A. Benito, E. Alcón, P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
[Crossref]

Aragón, J. L.

Artal, P.

J. Tabernero, P. Artal, “Lens oscillations in the human eye. Implications for post-saccadic suppression of vision,” PLoS ONE 9, e95764 (2014).
[Crossref]

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8, 1–11 (2014).
[Crossref]

E. A. Villegas, E. Alcon, P. Artal, “Minimum amount of astigmatism that should be corrected,” J. Cataract Refract. Surg. 40, 13–19 (2013).

B. Jaeken, S. Mirabet, J. M. Marín, P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54, 3594–3599 (2013).
[Crossref]

E. J. Fernández, C. Schwarz, P. M. Prieto, S. Manzanera, P. Artal, “Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay,” Biomed. Opt. Express 4, 822–830 (2013).
[Crossref]

P. Artal, C. Schwarz, C. Cánovas, A. Mira-Agudelo, “A night myopia studied with an adaptive optics visual analyzer,” PLoS ONE 7, e40239 (2012).
[Crossref]

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[Crossref]

B. Jaeken, L. Lundström, P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011).
[Crossref]

P. Artal, S. Manzanera, P. Piers, H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18, 1637–1648 (2010).
[Crossref]

E. Berrio, J. Tabernero, P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vis. 10(14):34, 1–17 (2010).
[Crossref]

G. Pérez, S. Manzanera, P. Artal, “Impact of scattering and spherical aberration in contrast sensitivity,” J. Vis. 9(3):19, 1–10 (2009).
[Crossref]

E. J. Fernández, P. M. Prieto, P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
[Crossref]

S. Manzanera, C. Canovas, P. M. Prieto, P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16, 7748–7755 (2008).
[Crossref]

E. A. Villegas, E. Alcon, P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).

P. Artal, J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[Crossref]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2007).
[Crossref]

J. Tabernero, A. Benito, E. Alcón, P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
[Crossref]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
[Crossref]

J. Tabernero, A. Benito, V. Nourrit, P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[Crossref]

P. Artal, A. Benito, J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1):1, 1–7 (2006).
[Crossref]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom. Vis. Sci. 79, 60–67 (2002).

P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[Crossref]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143–1151 (2002).
[Crossref]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[Crossref]

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vis. 1(1):1, 1–8 (2001).
[Crossref]

P. Prieto, F. Vargas, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[Crossref]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Investig. Ophthalmol. Vis. Sci. 40, 203–213 (1999).

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vis. Res. 39, 207–217 (1999).
[Crossref]

P. Artal, A. Guirao, “Contribution of cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[Crossref]

F. Vargas-Martin, P. Prieto, P. Artal, “Correction of the aberrations in the human eye with liquid crystal spatial light modulators: limits to the performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
[Crossref]

P. Artal, A. M. Derrington, E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vis. Res. 35, 939–947 (1995).
[Crossref]

P. Artal, J. Santamaría, J. Bescós, “Retrieval of the wave aberration of human eyes from actual point-spread function data,” J. Opt. Soc. Am. A 5, 1201–1206 (1988).
[Crossref]

J. Santamaria, P. Artal, J. Bescos, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[Crossref]

Ayala, D. B.

Barbur, J. L.

E. Dalimier, C. Dainty, J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” J. Mod. Opt. 55, 791–803 (2008).
[Crossref]

Benito, A.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[Crossref]

J. Tabernero, A. Benito, E. Alcón, P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
[Crossref]

J. Tabernero, A. Benito, V. Nourrit, P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[Crossref]

P. Artal, A. Benito, J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1):1, 1–7 (2006).
[Crossref]

Benny, Y.

Berny, F.

S. G. El Hage, F. Berny, “Contribution of crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973).
[Crossref]

F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel, 1969), pp. 375–386.

Berrio, E.

E. Berrio, J. Tabernero, P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vis. 10(14):34, 1–17 (2010).
[Crossref]

P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[Crossref]

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vis. 1(1):1, 1–8 (2001).
[Crossref]

Bescos, J.

Bescós, J.

Bille, J. F.

Bonin, T.

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom. Vis. Sci. 79, 60–67 (2002).

Bourdoncle, B.

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom. Vis. Sci. 79, 60–67 (2002).

Bradley, A.

Canovas, C.

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8, 1–11 (2014).
[Crossref]

S. Manzanera, C. Canovas, P. M. Prieto, P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16, 7748–7755 (2008).
[Crossref]

Cánovas, C.

P. Artal, C. Schwarz, C. Cánovas, A. Mira-Agudelo, “A night myopia studied with an adaptive optics visual analyzer,” PLoS ONE 7, e40239 (2012).
[Crossref]

Carroll, J.

Chen, L.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

Colombo, E.

P. Artal, A. M. Derrington, E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vis. Res. 35, 939–947 (1995).
[Crossref]

Cooper, R. F.

Dainty, C.

E. Dalimier, C. Dainty, J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” J. Mod. Opt. 55, 791–803 (2008).
[Crossref]

Dalimier, E.

E. Dalimier, C. Dainty, J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” J. Mod. Opt. 55, 791–803 (2008).
[Crossref]

De Casas, A.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[Crossref]

Derrington, A. M.

P. Artal, A. M. Derrington, E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vis. Res. 35, 939–947 (1995).
[Crossref]

Dubis, A. M.

Dubra, A.

El Hage, S. G.

S. G. El Hage, F. Berny, “Contribution of crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973).
[Crossref]

Y. Le Grand, S. G. El Hage, Physiological Optics, Springer Series in Optical Sciences (Springer, 1980).

Emsley, H. H.

H. H. Emsley, Visual Optics (Hatton, 1948).

Fernández, E. J.

Georgeson, M. A.

M. A. Webster, M. A. Georgeson, S. M. Webster, “Neural adjustments to image blur,” Nat. Neurosci. 5, 839–840 (2002).
[Crossref]

Geraghty, E.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143–1151 (2002).
[Crossref]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Investig. Ophthalmol. Vis. Sci. 40, 203–213 (1999).

Goelz, S.

Gonzalez, C.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Investig. Ophthalmol. Vis. Sci. 40, 203–213 (1999).

González, C.

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom. Vis. Sci. 79, 60–67 (2002).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 4th ed. (McGraw-Hill, 2005).

Gorceix, N.

Grimm, B.

Guirao, A.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143–1151 (2002).
[Crossref]

P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[Crossref]

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vis. 1(1):1, 1–8 (2001).
[Crossref]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Investig. Ophthalmol. Vis. Sci. 40, 203–213 (1999).

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vis. Res. 39, 207–217 (1999).
[Crossref]

P. Artal, A. Guirao, “Contribution of cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[Crossref]

Gustafsson, J.

Hartmann, J.

J. Hartmann, “Bemerkungen uber den Bau und die Justirung von Spektrographen,” Zt. Instrumentenkd. 20, 47–58 (1900).

Hofer, H.

Howland, B.

Howland, H. C.

Jaeken, B.

B. Jaeken, S. Mirabet, J. M. Marín, P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54, 3594–3599 (2013).
[Crossref]

B. Jaeken, L. Lundström, P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011).
[Crossref]

Le Grand, Y.

Y. Le Grand, S. G. El Hage, Physiological Optics, Springer Series in Optical Sciences (Springer, 1980).

Liang, J.

Lundström, L.

Manzanera, S.

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8, 1–11 (2014).
[Crossref]

E. J. Fernández, C. Schwarz, P. M. Prieto, S. Manzanera, P. Artal, “Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay,” Biomed. Opt. Express 4, 822–830 (2013).
[Crossref]

P. Artal, S. Manzanera, P. Piers, H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18, 1637–1648 (2010).
[Crossref]

G. Pérez, S. Manzanera, P. Artal, “Impact of scattering and spherical aberration in contrast sensitivity,” J. Vis. 9(3):19, 1–10 (2009).
[Crossref]

S. Manzanera, C. Canovas, P. M. Prieto, P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16, 7748–7755 (2008).
[Crossref]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
[Crossref]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2007).
[Crossref]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

Marín, J. M.

B. Jaeken, S. Mirabet, J. M. Marín, P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54, 3594–3599 (2013).
[Crossref]

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[Crossref]

Mira-Agudelo, A.

P. Artal, C. Schwarz, C. Cánovas, A. Mira-Agudelo, “A night myopia studied with an adaptive optics visual analyzer,” PLoS ONE 7, e40239 (2012).
[Crossref]

Mirabet, S.

B. Jaeken, S. Mirabet, J. M. Marín, P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54, 3594–3599 (2013).
[Crossref]

Noll, R. J.

Norrby, S.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143–1151 (2002).
[Crossref]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Investig. Ophthalmol. Vis. Sci. 40, 203–213 (1999).

Norris, J. L.

Nourrit, V.

Pérez, G.

G. Pérez, S. Manzanera, P. Artal, “Impact of scattering and spherical aberration in contrast sensitivity,” J. Vis. 9(3):19, 1–10 (2009).
[Crossref]

Pérez, G. M.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[Crossref]

Piers, P.

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8, 1–11 (2014).
[Crossref]

P. Artal, S. Manzanera, P. Piers, H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18, 1637–1648 (2010).
[Crossref]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143–1151 (2002).
[Crossref]

P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[Crossref]

Platt, B. C.

R. V. Shack, B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).

Prieto, P.

Prieto, P. M.

Pujol, J.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[Crossref]

Redondo, M.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143–1151 (2002).
[Crossref]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Investig. Ophthalmol. Vis. Sci. 40, 203–213 (1999).

Ribak, E. N.

Roorda, A.

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[Crossref]

Santamaria, J.

Santamaría, J.

Schwarz, C.

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8, 1–11 (2014).
[Crossref]

E. J. Fernández, C. Schwarz, P. M. Prieto, S. Manzanera, P. Artal, “Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay,” Biomed. Opt. Express 4, 822–830 (2013).
[Crossref]

P. Artal, C. Schwarz, C. Cánovas, A. Mira-Agudelo, “A night myopia studied with an adaptive optics visual analyzer,” PLoS ONE 7, e40239 (2012).
[Crossref]

Shack, R. V.

R. V. Shack, B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).

Singer, B.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[Crossref]

Slansky, S.

F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel, 1969), pp. 375–386.

Smirnov, M. S.

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 776–795 (1961).

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, 1990).

Sulai, Y.

Tabernero, J.

J. Tabernero, P. Artal, “Lens oscillations in the human eye. Implications for post-saccadic suppression of vision,” PLoS ONE 9, e95764 (2014).
[Crossref]

E. Berrio, J. Tabernero, P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vis. 10(14):34, 1–17 (2010).
[Crossref]

P. Artal, J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[Crossref]

J. Tabernero, A. Benito, E. Alcón, P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
[Crossref]

P. Artal, A. Benito, J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1):1, 1–7 (2006).
[Crossref]

J. Tabernero, A. Benito, V. Nourrit, P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[Crossref]

Thibos, L. N.

Unsbo, P.

Vargas, F.

Vargas-Martin, F.

Villegas, E. A.

E. A. Villegas, E. Alcon, P. Artal, “Minimum amount of astigmatism that should be corrected,” J. Cataract Refract. Surg. 40, 13–19 (2013).

E. A. Villegas, E. Alcon, P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom. Vis. Sci. 79, 60–67 (2002).

von Helmholtz, H.

H. von Helmholtz, Popular Scientific Lectures, M. Kline, ed. (Dover, 1962).

Webster, M. A.

M. A. Webster, M. A. Georgeson, S. M. Webster, “Neural adjustments to image blur,” Nat. Neurosci. 5, 839–840 (2002).
[Crossref]

Webster, S. M.

M. A. Webster, M. A. Georgeson, S. M. Webster, “Neural adjustments to image blur,” Nat. Neurosci. 5, 839–840 (2002).
[Crossref]

Weeber, H.

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8, 1–11 (2014).
[Crossref]

P. Artal, S. Manzanera, P. Piers, H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18, 1637–1648 (2010).
[Crossref]

Williams, D. R.

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1864–1876 (2011).
[Crossref]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vis. 1(1):1, 1–8 (2001).
[Crossref]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[Crossref]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[Crossref]

Ye, M.

Young, T.

T. Young, “The Bakerian Lecture. On the mechanism of the eye,” Phil. Trans. R. Soc. London 91, 23–88 (1801).
[Crossref]

Zhang, X.

Appl. Opt. (1)

Arch. Ophthalmol. (Chicago) (1)

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143–1151 (2002).
[Crossref]

Biofizika (1)

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 776–795 (1961).

Biomed. Opt. Express (2)

Invest. Ophthalmol. Vis. Sci. (2)

B. Jaeken, S. Mirabet, J. M. Marín, P. Artal, “Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes,” Invest. Ophthalmol. Vis. Sci. 54, 3594–3599 (2013).
[Crossref]

E. A. Villegas, E. Alcon, P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).

Investig. Ophthalmol. Vis. Sci. (1)

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Investig. Ophthalmol. Vis. Sci. 40, 203–213 (1999).

J. Cataract Refract. Surg. (1)

E. A. Villegas, E. Alcon, P. Artal, “Minimum amount of astigmatism that should be corrected,” J. Cataract Refract. Surg. 40, 13–19 (2013).

J. Mod. Opt. (1)

E. Dalimier, C. Dainty, J. L. Barbur, “Effects of higher-order aberrations on contrast acuity as a function of light level,” J. Mod. Opt. 55, 791–803 (2008).
[Crossref]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (9)

J. Santamaria, P. Artal, J. Bescos, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[Crossref]

P. Artal, J. Santamaría, J. Bescós, “Retrieval of the wave aberration of human eyes from actual point-spread function data,” J. Opt. Soc. Am. A 5, 1201–1206 (1988).
[Crossref]

P. Prieto, F. Vargas, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[Crossref]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[Crossref]

P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[Crossref]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538–1544 (2007).
[Crossref]

J. Tabernero, A. Benito, E. Alcón, P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
[Crossref]

J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of the WA´s aberration of the human eye with the use of a Hartmann-Shack sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[Crossref]

F. Vargas-Martin, P. Prieto, P. Artal, “Correction of the aberrations in the human eye with liquid crystal spatial light modulators: limits to the performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
[Crossref]

J. Vis. (6)

G. Pérez, S. Manzanera, P. Artal, “Impact of scattering and spherical aberration in contrast sensitivity,” J. Vis. 9(3):19, 1–10 (2009).
[Crossref]

E. Berrio, J. Tabernero, P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vis. 10(14):34, 1–17 (2010).
[Crossref]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4):4, 281–287 (2004).
[Crossref]

C. Schwarz, C. Canovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2):8, 1–11 (2014).
[Crossref]

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vis. 1(1):1, 1–8 (2001).
[Crossref]

P. Artal, A. Benito, J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1):1, 1–7 (2006).
[Crossref]

Nat. Neurosci. (1)

M. A. Webster, M. A. Georgeson, S. M. Webster, “Neural adjustments to image blur,” Nat. Neurosci. 5, 839–840 (2002).
[Crossref]

Nat. Photonics (1)

P. Artal, J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[Crossref]

Nature (1)

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optom. Vis. Sci. (1)

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom. Vis. Sci. 79, 60–67 (2002).

Phil. Trans. R. Soc. London (1)

T. Young, “The Bakerian Lecture. On the mechanism of the eye,” Phil. Trans. R. Soc. London 91, 23–88 (1801).
[Crossref]

PLoS ONE (2)

J. Tabernero, P. Artal, “Lens oscillations in the human eye. Implications for post-saccadic suppression of vision,” PLoS ONE 9, e95764 (2014).
[Crossref]

P. Artal, C. Schwarz, C. Cánovas, A. Mira-Agudelo, “A night myopia studied with an adaptive optics visual analyzer,” PLoS ONE 7, e40239 (2012).
[Crossref]

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[Crossref]

Vis. Res. (2)

P. Artal, A. M. Derrington, E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vis. Res. 35, 939–947 (1995).
[Crossref]

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vis. Res. 39, 207–217 (1999).
[Crossref]

Zt. Instrumentenkd. (1)

J. Hartmann, “Bemerkungen uber den Bau und die Justirung von Spektrographen,” Zt. Instrumentenkd. 20, 47–58 (1900).

Other (6)

Y. Le Grand, S. G. El Hage, Physiological Optics, Springer Series in Optical Sciences (Springer, 1980).

J. W. Goodman, Introduction to Fourier Optics, 4th ed. (McGraw-Hill, 2005).

W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, 1990).

H. von Helmholtz, Popular Scientific Lectures, M. Kline, ed. (Dover, 1962).

F. Berny, S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel, 1969), pp. 375–386.

H. H. Emsley, Visual Optics (Hatton, 1948).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Figure 1
Figure 1

Schematic representation of the eye with the main geometrical and optical information. Refractive indices (blue), curvature radii (black), and distances (red) in mm.

Figure 2
Figure 2

Examples of location of the fovea (represented by the red circle) outside the optical axis and a possible decentering/tilt of the crystalline lens (right figure).

Figure 3
Figure 3

Schematic representation of the main axes and angles commonly defined in the eye.

Figure 4
Figure 4

Drawing from Helmholtz representing the Purkinje reflections in the anterior surfaces of the eye (cornea and lens).

Figure 5
Figure 5

First Purkinje image of a semicircle of LEDs and its center (green cross), and the pupil edge and its center (yellow cross). From this type of image, information on angles and lens tilt and decentration is obtained.

Figure 6
Figure 6

Kappa angle for a group of normal subjects. The red symbols indicate the average value and standard deviation.

Figure 7
Figure 7

Kappa angle in a group normal subjects with different values of axial length. Longer eyes (typically myopic) have smaller angle kappa than shorter eyes (hyperopes). The diagram on the right presents a simple explanation of the angular dependence with axial length. Adapted from J. Opt. Soc. Am. A 24, 3274–3283 (2007) [3].

Figure 8
Figure 8

Color-coded wave aberrations for 5 mm pupil diameter in eight normal young subjects. Although the magnitude of the aberrations is similar, each eye presents distinctive spatial patterns.

Figure 9
Figure 9

Color-coded wave aberrations for 5 mm pupil diameter for the cornea, internal surfaces (lens), and the whole eye corresponding to the right eye of the author. The lens aberrations compensate partially those present in the cornea. Adapted from J. Vis. 1(1):1, 1–8 (2001) [11].

Figure 10
Figure 10

Example of retinal images of letters in a normal eye calculated for different optical conditions: diffraction-limited eye, normally aberrated, and 3 D defocus. The visual object (group of letters “play”) subtends 10 arc min.

Figure 11
Figure 11

Double-pass retinal images (top) and the corresponding Strehl ratio as a function of defocus (bottom). Adapted from Optom. Vis. Sci. 79, 60–67 (2002) [17].

Figure 12
Figure 12

Visual acuity, expressed as logMAR, as a function of induced defocus determined in the same group of subjects where the double-pass images were recorded (Fig. 11). Adapted from Optom. Vis. Sci. 79, 60–67 (2002) [17].

Figure 13
Figure 13

Differences in decimal visual acuity before and after correction of astigmatism as a function of the amount of corrected astigmatism. VA: visual acuity. Adapted from J. Cataract Refract. Surg. 40, 13–19 (2013) [18].

Figure 14
Figure 14

Visual acuity measured in a group of normal and highly aberrated eyes as a function of the amount of aberrations, expressed as the RMS in micrometers.

Figure 15
Figure 15

RMS of the aberrations as a function of visual acuity. The amount of aberrations varied between 0.1 and 0.7 μm across subjects within a large range of visual acuities (0 to 0.3 logMAR, equivalent to 1 to 2 decimal acuity). Adapted from Invest. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008) [19].

Figure 16
Figure 16

Orientation of coma as a function of visual acuity. Visual acuity ranges from 0 to 0.3 logMAR (equivalent to 1 to 2 decimal).

Figure 17
Figure 17

LCA measured in three normal subjects (green, red, and purple lines) and the prediction of a chromatic eye model (dashed black line). Adapted from Opt. Express 16, 7748–7755 (2008) [22].

Figure 18
Figure 18

Simulation of retinal images in both monochromatic (left image) and polychromatic light (right image). The latter was obtained including the effect of both longitudinal and lateral chromatic aberrations.

Figure 19
Figure 19

Schematic examples of retinal images of a point source showing the relative contribution of aberrations and scattering.

Figure 20
Figure 20

Relative contrast sensitivity in four subjects with and without the addition of 0.15 μm of spherical aberration (examples of wavefront aberrations for one of the subjects for the two conditions). Without scatter, spherical aberrations always reduce contrast sensitivity (left bars). In the presence of scatter in some subjects, the induction of spherical aberration may increase sensitivity. Relative contrast sensitivity is defined as the normalized difference of contrast sensitivity with and without spherical aberration. Adapted from J. Vis. 9(3):19, 1–10 (2009) [28].

Figure 21
Figure 21

Graphical description of the procedure in the experiment to test the adaptation to aberrations. The subject is presented with a stimulus with normal aberrations and with the aberrations “rotated.” If the perceived contrast is lower, the subjects adjust the amount of the rotated aberrations until the contrast for the two conditions is matched. Adapted from J. Vis. 4(4):4, 281–287 (2004) [20].

Figure 22
Figure 22

Matching factor as a function of the angle of rotation of the presented aberrations. In all subjects, the wavefront error of the rotated wave aberration required to match the blur with the normal wave aberration was found to be less than in the normal oriented aberration case. Adapted from J. Vis. 4(4):4, 281–287 (2004) [20].

Figure 23
Figure 23

Visual acuity measured in one subject (the author) expressed as logMAR without any aberration, with the normal aberrations, and with the rotated aberrations. The performance was lowest with the rotated version of his aberrations.

Figure 24
Figure 24

Visual acuity as logMAR measured in one normal subject for two luminance levels: 100 cd / m 2 (dark blue symbols) and 0.03 cd / m 2 (light blue symbols).

Figure 25
Figure 25

Visual acuity as logMAR measured in the same subject as Fig. 24 for the low luminance level ( 0.03 cd / m 2 ) with (light blue symbols) and without (dark blue symbols) correction of the aberrations.

Metrics