Abstract

Exhibited by structurally chiral materials—such as Reusch piles, cholesteric liquid crystals (CLCs), and chiral sculptured thin films (STFs)—due to their helical nonhomogeneity along a fixed axis, the circular Bragg phenomenon is the almost total reflection of the incident light of the co-handed circular-polarization state but very little reflection of the incident light of the cross-handed circular-polarization state. Manifesting itself in spectral regimes that depend on the angle of incidence, the structural period, and the relative permittivity dyadic, the phenomenon amounts to the formation of a light pipe that bleeds energy backward under appropriate conditions. Mild dissipation and dispersion do not significantly affect the circular Bragg regime. Every structurally chiral material of sufficient thickness is essentially a circular-polarization-sensitive band-rejection filter. Cascades of these materials with or without structural defects can be used to satisfy complex filtering requirements, such as multiband, narrowband, and ultra-narrowband filtering. A shift in the circular Bragg regime due to infiltration of a chiral STF by a fluid enables optical sensing. Sources of circularly polarized light can be fabricated by embedding emission sources in CLCs and chiral STFs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Bragg, “The diffraction of X-rays by crystals,” Nobel Lecture (September 6, 1922), http://www.nobelprize.org/nobel_prizes/physics/laureates/1915/wl-bragg-lecture.html (accessed June 25, 2013).
  2. P. P. Ewald, “Zur Begründung der Kristalloptik. Teil II: Theorie der Reflexion und Brechung,” Ann. Phys. 49, 117–143 (1916). See Ewald [3] for an English translation by L. M. Hollingsworth and postscript comments by Ewald.
    [CrossRef]
  3. P. P. Ewald, On the Foundations of Crystal Optics, Document No.  (Air Force Cambridge Research Laboratories, 1970).
  4. A. Lakhtakia and V. C. Venugopal, “On Bragg reflection by helicoidal bianisotropic mediums,” Int. J. Electron. Commun. (AEÜ) 53, 287–290 (1999).
  5. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
    [CrossRef]
  6. N. Dushkina and A. Lakhtakia, “Structural colors,” in Engineered Biomimicry, A. Lakhtakia and R. J. Martín-Palma, eds. (Elsevier, 2013), pp. 267–303.
  7. A. Thelen, “Design of a hot mirror: contest results,” Appl. Opt. 35, 4966–4977 (1996).
    [CrossRef]
  8. J. A. Wheatley, R. A. Lewis, W. J. Schrenk, W. Lutz, and G. A. Motter, “Rapid production of large area polymeric cold mirror via a simultaneous layer formation process,” Proc. SPIE 2262, 262–275 (1994).
    [CrossRef]
  9. S. Wang, “Principles of distributed feedback and distributed Bragg-reflector lasers,” IEEE J. Quantum Electron. 10, 413–427 (1974).
    [CrossRef]
  10. E. Majkova, M. Jergel, M. Yamamoto, T. Tsuru, S. Luby, and P. Siffalovic, “Advanced nanometer-size structures,” Acta Phys. Slovaca 57, 911–1074 (2007).
    [CrossRef]
  11. A. Othonos, X. Lee, and D. P. Tsai, “Spectrally broadband Bragg grating mirror for an erbium-doped fiber laser,” Opt. Eng. 35, 1088–1092 (1996).
    [CrossRef]
  12. R. F. Lyon, “Prism-based color separation for professional digital photography,” in Proceedings PICS 2000: Image Processing, Image Quality, Image Capture Systems Conference (Society for Imaging Science and Technology, 2000), pp. 50–54.
  13. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
  14. P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
  15. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  16. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  17. X.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
    [CrossRef]
  18. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 76, 3269–3284 (2004).
    [CrossRef]
  19. P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. Tait, “Fiber Bragg grating multichemical sensor,” Proc. SPIE 6371, 637109 (2006).
    [CrossRef]
  20. I. J. Hodgkinson and Q. h. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).
  21. I. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74, 1794–1796 (1999).
    [CrossRef]
  22. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
  23. T. G. Mackay and A. Lakhtakia, “Negatively refracting chiral metamaterials: a review,” SPIE Rev. 1, 018003 (2010).
  24. S. Chandrasekhar, Liquid Crystals, 2nd ed. (Cambridge University, 1992).
  25. P. G. de Gennes and J. A. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).
  26. E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. Phys. Chem. Lpz. 138, 628–638 (1869).
  27. T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J. 12, 273–280 (2012).
    [CrossRef]
  28. N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
    [CrossRef]
  29. J. C. Bose, “On the rotation of plane of polarisation of electric waves by a twisted structure,” Proc. R. Soc. Lond. 63, 146–152 (1898).
    [CrossRef]
  30. E. Charney, The Molecular Basis of Optical Activity (Krieger, 1985).
  31. J. Bailey, “Astronomical sources of circularly polarized light and the origin of homochirality,” Orig. Life Evol. Biosph. 31, 167–183 (2001).
    [CrossRef]
  32. S. Clark, “Polarized starlight and the handedness of life,” Am. Sci. 87(4), 336–383 (1999).
    [CrossRef]
  33. G. Balavoine, A. Moradpour, and H. B. Kagan, “Preparation of chiral compounds with high optical purity by irradiation with circularly polarized light, a model reaction for the prebiotic generation of optical activity,” J. Am. Chem. Soc. 96, 5152–5158 (1974).
    [CrossRef]
  34. O. Buchardt, “Photochemistry with circularly polarized light,” Angew. Chem. Int. Ed. Engl. 13, 179–185 (1974).
    [CrossRef]
  35. H. Rubalcava and D. J. Fitzmaurice, “Photochemistry with circularly polarized light: a new method,” J. Chem. Phys. 92, 5975–5987 (1990).
    [CrossRef]
  36. A. Lakhtakia, “The editor’s apology,” in Selected Papers on Natural Optical Activity, A. Lakhtakia, ed. (SPIE, 1990), pp. xiii–xxiv.
  37. B. J. Glover and H. M. Whitney, “Structural colour and iridescence in plants: the poorly studied relations of pigment colour,” Ann. Bot. 105, 505–511 (2010).
    [CrossRef]
  38. G. Strout, S. D. Russell, D. P. Pulsifer, S. Erten, A. Lakhtakia, and D. W. Lee, “Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata,” Ann. Bot. 112, 1141–1148 (2013).
    [CrossRef]
  39. A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystal,” Biol. Rev. 44, 531–562 (1969).
    [CrossRef]
  40. L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, and J. Leader, “Natural and nanoengineered chiral reflectors: structural color of Manuka beetles and titania coatings,” Electromagnetics 25, 391–408 (2005).
    [CrossRef]
  41. T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
    [CrossRef]
  42. B. H. Billings, ed., Selected Papers on Applications of Polarized Light (SPIE, 1992).
  43. K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-Dihydroxyanthraquinone,” J. Am. Chem. Soc. 125, 14825–14831 (2003).
    [CrossRef]
  44. K. Claborn, A.-S. Chu, S.-H. Jang, F. Su, W. Kaminsky, and B. Kahr, “Circular extinction imaging: determination of the absolute orientation of embedded chromophores in enantiomorphously twinned LiKSO4 crystals,” Cryst. Growth Des. 5, 2117–2123 (2005).
    [CrossRef]
  45. G. D. Gillen, M. A. Walker, and L. D. Van Woerkom, “Enhanced double ionization with circularly polarized light,” Phys. Rev. A 64, 043413 (2001).
    [CrossRef]
  46. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
    [CrossRef]
  47. B. Zhang, D. Li, F. Dai, and H. S. Kwok, “Minimization of color fringing effect using a circularly polarized light,” J. Disp. Technol. 8, 269–272 (2012).
    [CrossRef]
  48. J. Konrad and M. Halle, “3-D displays and signal processing: an answer to 3-D ills?” IEEE Signal Process. Mag. 24(6), 97–111 (2007).
    [CrossRef]
  49. P. Boher, T. Leroux, T. Bignon, and V. Collomb-Patton, “Multispectral polarization viewing angle analysis of circular polarized stereoscopic 3D displays,” Proc. SPIE 7524, 75240R (2010).
    [CrossRef]
  50. https://commons.wikimedia.org/wiki/File:REALD.JPG (accessed June27, 2013).
  51. H. C. Chen, Theory of Electromagnetic Waves: A Coordinate-Free Approach (McGraw–Hill, 1983).
  52. M. D. Pickett and A. Lakhtakia, “On gyrotropic chiral sculptured thin films for magneto-optics,” Optik 113, 367–371 (2002).
    [CrossRef]
  53. A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach, 2001).
  54. T. G. Mackay and A. Lakhtakia, “Electromagnetic fields in linear bianisotropic mediums,” Prog. Opt. 51, 121–209 (2008).
    [CrossRef]
  55. T. G. Mackay and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide (World Scientific, 2010).
  56. J. I. Gersten and F. W. Smith, The Physics and Chemistry of Materials (Wiley, 2001).
  57. V. C. Venugopal and A. Lakhtakia, “Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. A 454, 1535–1571 (1998).
    [CrossRef]
  58. V. C. Venugopal and A. Lakhtakia, “Correction for: Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. A 455, 4383 (1999).
    [CrossRef]
  59. R. Rashed, “A pioneer in anaclastics, Ibn Sahl on burning mirrors and lenses,” Isis 81, 464–491 (1990).
    [CrossRef]
  60. A. Lakhtakia and W. S. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation,” Proc. R. Soc. A 453, 93–105 (1997).
    [CrossRef]
  61. A. Lakhtakia and W. S. Weiglhofer, “Corrections for: Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation,” Proc. R. Soc. A 454, 3275 (1998).
  62. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).
  63. I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals. Results of an exact calculation using the 4 × 4 characteristic matrix method,” J. Phys. (Paris) 46, 815–825 (1985).
    [CrossRef]
  64. M. Schubert and C. M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A 188, 1563–1575 (2001).
    [CrossRef]
  65. J. A. Polo and A. Lakhtakia, “Comparison of two methods for oblique propagation in helicoidal bianisotropic mediums,” Opt. Commun. 230, 369–386 (2004).
    [CrossRef]
  66. E. I. Kats, “Optical properties of cholesteric liquid crystals,” Sov. Phys. JETP 32, 1004–1007 (1971).
  67. R. Nityananda, “On the theory of light propagation in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 21, 315–331 (1973).
    [CrossRef]
  68. R. Nityananda and U. D. Kini, “The theory of reflexion and transmission by plane parallel cholesteric films,” Pramāṇa Suppl. 1, 311–323 (1975).
  69. O. Parodi, “Light propagation along the helical axis in chiral smectics C,” J. Phys. (Paris) Colloq. 36, C1-325–C1-326 (1975).
    [CrossRef]
  70. I. Abdulhalim, “Light propagation along the helix of chiral smectics and twisted nematics,” Opt. Commun. 64, 443–448 (1987).
    [CrossRef]
  71. A. Lakhtakia and W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. A 448, 419–437 (1995).
    [CrossRef]
  72. A. Lakhtakia and W. S. Weiglhofer, “Corrections on: On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. A 454, 3275 (1998).
  73. R. Dreher and G. Meier, “Optical properties of cholesteric liquid crystals,” Phys. Rev. A 8, 1616–1623 (1973).
    [CrossRef]
  74. L. Oldano, P. Allia, and L. Trossi, “Optical properties of anisotropic periodic helical structures,” J. Phys. (Paris) 46, 573–582 (1985).
    [CrossRef]
  75. K. Rokushima and J. Yamakita, “Analysis of diffraction in periodic liquid crystals: the optics of the chiral smectic C phase,” J. Opt. Soc. Am. A 4, 27–33 (1987).
    [CrossRef]
  76. T. H. Sterling and C. F. Hayes, “Optical rotatory power of a cholesteric liquid crystal for obliquely incident light using multiple scattering,” Mol. Cryst. Liq. Cryst. 43, 279–286 (1977).
    [CrossRef]
  77. R. S. Akopyan, B. Ya. Zel’dovich, and N. V. Tabiryan, “Optics of a chiral liquid crystal far from a Bragg resonance,” Sov. Phys. JETP 56, 1024–1027 (1982).
  78. W. S. Weiglhofer and A. Lakhtakia, “Oblique propagation in a cholesteric liquid crystal: 4 × 4 matrix perturbational solution,” Optik 102, 111–114 (1995).
  79. W. H. Southwell, “Spectral response calculations of rugate filters using coupled-wave theory,” J. Opt. Soc. Am. A 5, 1558–1564 (1988).
    [CrossRef]
  80. W. H. Southwell and R. L. Hall, “Rugate filter sidelobes suppression using quintic and rugated quintic matching layers,” Appl. Opt. 28, 2949–2951 (1989).
    [CrossRef]
  81. B. G. Bovard, “Rugate filter design: the modified Fourier transform technique,” Appl. Opt. 29, 24–30 (1990).
    [CrossRef]
  82. W. J. Gunning, R. L. Hall, F. J. Woodberry, W. H. Southwell, and N. S. Gluck, “Codeposition of continuous composition rugate filters,” Appl. Opt. 28, 2945–2948 (1989).
    [CrossRef]
  83. P. L. Swart, P. V. Bulkin, and B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997).
    [CrossRef]
  84. F. Reinitzer, “Beiträge zur Kenntiss des Cholesterins,” Monat. Chem. (Wien) 9, 421–441 (1888). See Sluckin et al. [85] for an English translation.
  85. T. J. Sluckin, D. A. Dunmur, and H. Stegemeyer, Crystals That Flow: Classic Papers From the History of Liquid Crystals (Taylor & Francis, 2004).
  86. G. Joly and J. Billard, “Quelques champs électromagnétiques dans les piles de Reusch I. Les vibrations propres d’une pile de deux lames a biréfringence rectiligne ne sont pas orthogonales,” J. Opt. (Paris) 12, 323–329 (1981).
    [CrossRef]
  87. G. Joly and J. Billard, “Quelques champs électromagnétiques dans les piles de Reusch II. Piles éclairées sous l’incidence normale par des ondes monochromatiques planes et uniformes,” J. Opt. (Paris) 13, 227–238 (1982).
    [CrossRef]
  88. G. Joly and N. Isaert, “Quelques champs électromagnétiques dans les piles de Reusch III. Biréfringence elliptique des vibrations itératives; activité optique de piles hélicoïdales d’extension finie,” J. Opt. (Paris) 16, 203–213 (1985).
    [CrossRef]
  89. G. Joly and N. Isaert, “Quelques champs électromagnétiques dans les piles de Reusch IV. Domaines multiples de réflexion sélective,” J. Opt. (Paris) 17, 211–221 (1986).
    [CrossRef]
  90. I. J. Hodgkinson, A. Lakhtakia, Q. h. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
    [CrossRef]
  91. A. C. van Popta, M. J. Brett, and J. C. Sit, “Double-handed circular Bragg phenomena in polygonal helix thin films,” J. Appl. Phys. 98, 083517 (2005).
    [CrossRef]
  92. A. Lakhtakia, “Electrically switchable exhibition of circular Bragg phenomenon by an isotropic slab,” Microw. Opt. Technol. Lett. 48, 2148–2153 (2006).
    [CrossRef]
  93. A. Lakhtakia, “Ambichiral, electro-optic, circular-polarization rejection filters: theory,” Phys. Lett. A 354, 330–334 (2006).
    [CrossRef]
  94. M. Dixit and A. Lakhtakia, “Electrically controlled Bragg resonances of an ambichiral electro-optic structure: oblique incidence,” Asian J. Phys. 17, 213–223 (2008).
  95. M. Dixit and A. Lakhtakia, “Selection strategy for circular-polarization-sensitive rejection characteristics of electro-optic ambichiral Reusch piles,” Opt. Commun. 281, 4812–4823 (2008).
    [CrossRef]
  96. J. L. Fergason, “Liquid crystals,” Sci. Am. 211(2), 76–85 (1964).
    [CrossRef]
  97. W. J. Haas, “Liquid crystal display research: the first fifteen years,” Mol. Cryst. Liq. Cryst. 94, 1–31 (1983).
    [CrossRef]
  98. G. R. Luckhurst, “Biaxial nematic liquid crystals: fact or fiction?” Thin Solid Films 393, 40–52 (2001).
    [CrossRef]
  99. T. J. Dingemans, L. A. Madsen, N. A. Zafiropoulos, W. Lin, and E. T. Samulski, “Uniaxial and biaxial nematic liquid crystals,” Phil. Trans. R. Soc. A 364, 2681–2696 (2006).
    [CrossRef]
  100. S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, “Liquid crystals of disc-like molecules,” Pramāṇa 9, 471–480 (1977).
    [CrossRef]
  101. S. Chandrasekhar and G. S. Ranganath, “Discotic liquid crystals,” Rep. Prog. Phys. 53, 57–84 (1990).
    [CrossRef]
  102. G. Pelzl, S. Diele, and W. Weissflog, “Banana-shaped compounds—a new field of liquid crystals,” Adv. Mater. 11, 707–724 (1999).
    [CrossRef]
  103. D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970).
    [CrossRef]
  104. A. Lakhtakia and W. S. Weiglhofer, “Simple and exact analytic solution for oblique propagation in a cholesteric liquid crystal,” Microw. Opt. Technol. Lett. 12, 245–248 (1996).
    [CrossRef]
  105. J. A. Polo and A. Lakhtakia, “Numerical implementation of exact analytical solution for oblique propagation in a cholesteric liquid crystal,” Microw. Opt. Technol. Lett. 35, 397–400 (2002).
    [CrossRef]
  106. H. Takezoe, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental studies on reflection spectra in monodomain cholesteric liquid crystal cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
    [CrossRef]
  107. H. Takezoe, K. Hashimoto, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental study on higher order reflection by monodomain cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 101, 329–340 (1983).
    [CrossRef]
  108. V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Proc. R. Soc. A 456, 125–161 (2000).
    [CrossRef]
  109. S. D. Jacobs, K. A. Cerqua, K. L. Marshall, A. Schmid, M. J. Guardalben, and K. J. Skerret, “Liquid-crystal laser optics: design, fabrication, and performance,” J. Opt. Soc. Am. B 5, 1962–1979 (1988).
    [CrossRef]
  110. W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
    [CrossRef]
  111. Y.-C. Yang, C.-S. Kee, J.-E. Kim, and H. Y. Park, “Photonic defect modes of cholesteric liquid crystals,” Phys. Rev. E 60, 6852–6854 (1999).
    [CrossRef]
  112. V. A. Belyakov and V. Semenov, “Optical defect modes in chiral liquid crystals,” J. Exp. Theor. Phys. 112, 694–710 (2011).
    [CrossRef]
  113. A. H. Gevorgyan and M. Z. Harutyunyan, “Chiral photonic crystals with an anisotropic defect layer,” Phys. Rev. E 76, 031701 (2007).
    [CrossRef]
  114. A. H. Gevorgyan, “Chiral photonic crystals with an anisotropic defect layer: oblique incidence,” Opt. Commun. 281, 5097–5103 (2008).
    [CrossRef]
  115. V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002).
    [CrossRef]
  116. F. Wang and A. Lakhtakia, “Optical crossover phenomenon due to a central 90°-twist defect in a chiral sculptured thin film or chiral liquid crystal,” Proc. R. Soc. A 461, 2985–3004 (2005).
    [CrossRef]
  117. T. Matsui, T. Ozaki, and K. Yoshino, “Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix,” Phys. Rev. E 69, 061715 (2004).
    [CrossRef]
  118. J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E 12, 553–564 (2003).
    [CrossRef]
  119. K. Robbie, M. J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
    [CrossRef]
  120. K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).
    [CrossRef]
  121. K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
    [CrossRef]
  122. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
    [CrossRef]
  123. R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008).
    [CrossRef]
  124. V. C. Venugopal and A. Lakhtakia, “On absorption by non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Eur. Phys. J. Appl. Phys. 10, 173–184 (2000).
    [CrossRef]
  125. A. Lakhtakia, “Spectral signatures of axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Eur. Phys. J. Appl. Phys. 8, 129–137 (1999).
    [CrossRef]
  126. A. Lakhtakia, “Bragg-regime absorption in axially excited slabs of dielectric thin-film helicoidal bianisotropic media,” Microw. Opt. Technol. Lett. 22, 243–247 (1999).
    [CrossRef]
  127. V. C. Venugopal and A. Lakhtakia, “On optical rotation and ellipticity transformation by axially excited slabs of dielectric thin-film helicoidal bianisotropic dielectric mediums (TFHBMs),” Int. J. Appl. Electromag. Mech. 9, 201–210 (1998).
  128. M. W. McCall and A. Lakhtakia, “Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part I: reflectances and transmittances,” J. Mod. Opt. 47, 973–991 (2000).
    [CrossRef]
  129. M. W. McCall and A. Lakhtakia, “Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part I: reflectances and transmittances: erratum,” J. Mod. Opt. 50, 2807 (2003).
    [CrossRef]
  130. Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
    [CrossRef]
  131. I. Hodgkinson, Q. h. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
    [CrossRef]
  132. P. C. P. Hrudey, K. L. Westra, and M. J. Brett, “Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition,” Adv. Mater. 18, 224–228 (2006).
    [CrossRef]
  133. B. Szeto, P. C. P. Hrudey, M. Taschuk, and M. J. Brett, “Circularly polarized luminescence from chiral thin films,” Proc. SPIE 6135, 613511 (2008).
    [CrossRef]
  134. I. J. Hodgkinson, Q. h. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
    [CrossRef]
  135. J. Gospodyn and J. C. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. (Amsterdam) 29, 318–325 (2006).
    [CrossRef]
  136. A. Lakhtakia, “Pseudo-isotropic and maximum-bandwidth points for axially excited chiral sculptured thin films,” Microw. Opt. Technol. Lett. 34, 367–371 (2002).
    [CrossRef]
  137. A. Lakhtakia, “Reflection of an obliquely incident plane wave by a half space filled by a helicoidal bianisotropic medium,” Phys. Lett. A 374, 3887–3894 (2010).
    [CrossRef]
  138. V. C. Venugopal and A. Lakhtakia, “On selective absorption in an axially excited slab of an absorbing dielectric thin-film helicoidal bianisotropic medium,” Opt. Commun. 145, 171–187 (1998).
    [CrossRef]
  139. V. C. Venugopal and A. Lakhtakia, “On selective absorption in an axially excited slab of an absorbing dielectric thin-film helicoidal bianisotropic medium: erratum,” Opt. Commun. 161, 370 (1999).
    [CrossRef]
  140. G. Borrmann, “Über Extinktionsdiagramme von Quarz,” Phys. Z. 42, 157–162 (1941).
  141. P. P. Ewald, “Crystal optics for visible light and x rays,” Rev. Mod. Phys. 37, 46–56 (1965).
    [CrossRef]
  142. R. Nityananda, U. D. Kini, S. Chandrasekhar, and K. A. Suresh, “Anomalous transmission (Borrmann effect) in absorbing cholesteric liquid crystals,” Pramāṇa Suppl. 1, 325–340 (1975).
  143. C. F. Bohren and D. F. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  144. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  145. J. Wang, A. Lakhtakia, and J. B. Geddes, “Multiple Bragg regimes exhibited by a chiral sculptured thin film half-space on axial excitation,” Optik 113, 213–221 (2002).
    [CrossRef]
  146. A. Lakhtakia, “Truncation of angular spread of Bragg zones by total reflection, and Goos–Hänchen shifts exhibited by chiral sculptured thin films,” Int. J. Electron. Commun. (AEÜ) 56, 169–176 (2002).
    [CrossRef]
  147. A. Lakhtakia, “Erratum to: Truncation of angular spread of Bragg zones by total reflection, and Goos–Hänchen shifts exhibited by chiral sculptured thin films,” Int. J. Electron. Commun. (AEÜ) 57, 79 (2003).
    [CrossRef]
  148. S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. A 25, 2611–2615 (2007).
    [CrossRef]
  149. A. Esfandiar, H. Savaloni, and F. Placido, “On the fabrication and characterization of graded slanted chiral nano-sculptured silver thin films,” Physica E 50, 88–96 (2013).
    [CrossRef]
  150. M. Suzuki, “Practical applications of thin films nanostructured by shadowing growth,” J. Nanophoton. 7, 073598 (2013).
    [CrossRef]
  151. S. E. Swiontek, D. P. Pulsifer, J. Xu, and A. Lakhtakia, “Suppression of circular Bragg phenomenon in chiral sculptured thin films produced with simultaneous rocking and rotation of substrate during serial bideposition,” J. Nanophoton. 7, 073599 (2013).
    [CrossRef]
  152. A. Lakhtakia and V. C. Venugopal, “Dielectric thin-film helicoidal bianistropic medium bilayers as tunable polarization-independent laser mirrors and notch filters,” Microw. Opt. Technol. Lett. 17, 135–140 (1998).
    [CrossRef]
  153. A. Lakhtakia and I. J. Hodgkinson, “Spectral response of dielectric thin-film helicoidal bianisotropic medium bilayer,” Opt. Commun. 167, 191–202 (1999).
    [CrossRef]
  154. J. A. Polo and A. Lakhtakia, “Tilt-modulated chiral sculptured thin films: an alternative to quarter-wave stacks,” Opt. Commun. 242, 13–21 (2004).
    [CrossRef]
  155. F. Wang, A. Lakhtakia, and R. Messier, “Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 20, 91–103 (2002).
    [CrossRef]
  156. F. Wang, A. Lakhtakia, and R. Messier, “Erratum: Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 24, 91 (2003).
    [CrossRef]
  157. F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
    [CrossRef]
  158. R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
    [CrossRef]
  159. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993).
    [CrossRef]
  160. N. Chateau and J.-P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994).
    [CrossRef]
  161. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  162. J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).
  163. K. M. Krause and M. J. Brett, “Spatially graded nanostructured chiral films as tunable circular polarizers,” Adv. Funct. Mater. 18, 3111–3118 (2008).
    [CrossRef]
  164. F. Babaei, A. Esfandiar, and H. Savaloni, “Optical spectra of graded nanostructured TiO2 chiral sculptured thin films,” Opt. Commun. 283, 2849–2856 (2010).
    [CrossRef]
  165. H. Savaloni and A. Esfandiar, “Fabrication, characterization and some applications of graded chiral zigzag shaped nano-sculptured silver thin films,” Appl. Surf. Sci. 257, 9425–9434 (2011).
    [CrossRef]
  166. J. B. Geddes, M. W. Meredith, and A. Lakhtakia, “Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals,” Opt. Commun. 182, 45–57 (2000).
    [CrossRef]
  167. M. W. Meredith and A. Lakhtakia, “Time-domain signature of an axially excited cholesteric liquid crystal. Part I: narrow-extent pulses,” Optik 111, 443–453 (2000).
  168. J. B. Geddes and A. Lakhtakia, “Time-domain signature of an axially excited cholesteric liquid crystal. Part II: Rectangular wide-extent pulses,” Optik 112, 62–66 (2001). Videos associated with this paper are available at http://www.esm.psu.edu/~axl4/Lakhtakia/TimeBragg/TDBragg.html .
    [CrossRef]
  169. J. B. Geddes and A. Lakhtakia, “Reflection and transmission of optical narrow-extent pulses by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 13, 3–14 (2001). Videos associated with this paper are available at http://www.esm.psu.edu/~axl4/Lakhtakia/TimeBragg/TDBragg.html .
    [CrossRef]
  170. J. B. Geddes and A. Lakhtakia, “Erratum: Reflection and transmission of optical narrow-extent pulses by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 16, 247 (2001).
  171. J. B. Geddes and A. Lakhtakia, “Time-domain simulation of the circular Bragg phenomenon exhibited by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 14, 97–105 (2001).
    [CrossRef]
  172. J. B. Geddes and A. Lakhtakia, “Erratum: Time-domain simulation of the circular Bragg phenomenon exhibited by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 16, 247 (2001).
  173. J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
    [CrossRef]
  174. J. B. Geddes and A. Lakhtakia, “Pulse-coded information transmission across an axially excited chiral-sculptured thin film in the Bragg regime,” Microw. Opt. Technol. Lett. 28, 59–62 (2001).
    [CrossRef]
  175. J. B. Geddes and A. Lakhtakia, “Swamping of circular Bragg phenomenon and shaping of videopulses,” Microw. Opt. Technol. Lett. 49, 776–779 (2007).
    [CrossRef]
  176. J. B. Geddes and A. Lakhtakia, “Videopulse bleeding in axially excited chiral sculptured thin films in the Bragg regime,” Eur. Phys. J. Appl. Phys. 17, 21–24 (2002).
    [CrossRef]
  177. A. Lakhtakia and M. W. McCall, “Circular polarization filters,” in Encyclopedia of Optical Engineering, R. Driggers, ed. (Marcel Dekker, 2003), Vol. 1, pp. 230–236.
  178. F. Zhang, J. Xu, A. Lakhtakia, T. Zhu, S. M. Pursel, and M. W. Horn, “Circular polarization emission from an external cavity diode laser,” Appl. Phys. Lett. 92, 111109 (2008).
    [CrossRef]
  179. Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
    [CrossRef]
  180. J. Adams, W. Haas, and J. Daily, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096–4098 (1971).
    [CrossRef]
  181. N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzuki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
    [CrossRef]
  182. Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Wideband circular polarization reflector fabricated by glancing angle deposition,” Opt. Express 16, 5186–5192 (2008).
    [CrossRef]
  183. A. Lakhtakia, “Stepwise chirping of chiral sculptured thin films for Bragg bandwidth enhancement,” Microw. Opt. Technol. Lett. 28, 323–326 (2001).
    [CrossRef]
  184. F. Chiadini and A. Lakhtakia, “Design of wideband circular-polarization filters made of chiral sculptured thin films,” Microw. Opt. Technol. Lett. 42, 135–138 (2004).
    [CrossRef]
  185. Y. Huang, Y. Zhou, and S.-T. Wu, “Broadband circular polarizer using stacked chiral polymer films,” Opt. Express 15, 6414–6419 (2007).
    [CrossRef]
  186. H. A. Haus and C. V. Shank, “Asymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
    [CrossRef]
  187. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
    [CrossRef]
  188. A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun. 168, 457–465 (1999).
    [CrossRef]
  189. I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Commun. 177, 79–84 (2000).
    [CrossRef]
  190. F. Zhang, J. Xu, A. Lakhtakia, S. M. Pursel, M. W. Horn, and A. Wang, “Circularly polarized emission from colloidal nanocrystal quantum dots confined in microcavities formed by chiral mirrors,” Appl. Phys. Lett. 91, 023102 (2007). Correction: the labels LCP and RCP should be interchanged in Fig. 2c of this paper.
    [CrossRef]
  191. A. Lakhtakia, V. C. Venugopal, and M. W. McCall, “Spectral holes in Bragg reflection from chiral sculptured thin films: circular polarization filters,” Opt. Commun. 177, 57–68 (2000).
    [CrossRef]
  192. A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun. 275, 283–287 (2007).
    [CrossRef]
  193. I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
    [CrossRef]
  194. A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
    [CrossRef]
  195. F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79–92 (2003).
    [CrossRef]
  196. L. D. Woolf, “Multiple smatterings of insight: 10 years of interaction with Craig Bohren,” J. Nanophoton. 4, 041595 (2010).
    [CrossRef]
  197. F. Wang and A. Lakhtakia, “Defect modes in multisection helical photonic crystals,” Opt. Express 13, 7319–7335 (2005).
    [CrossRef]
  198. I. J. Hodgkinson, Q. h. Wu, L. De Silva, M. Arnold, M. W. McCall, and A. Lakhtakia, “Supermodes of chiral photonic filters with combined twist and layer defects,” Phys. Rev. Lett. 91, 223901 (2003).
    [CrossRef]
  199. F. Wang and A. Lakhtakia, “Third method for generation of spectral holes in chiral sculptured thin films,” Opt. Commun. 250, 105–110 (2005).
    [CrossRef]
  200. M. McCall and A. Lakhtakia, “Polarization-dependent narrowband spectral filtering by chiral sculptured thin films,” J. Mod. Opt. 47, 743–755 (2000).
  201. P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
    [CrossRef]
  202. T. Jalkanen, V. Torres-Costa, J. Salonen, M. Björkqvist, E. Mäkilä, J. M. Martínez-Duart, and V.-P. Lehto, “Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors,” Opt. Express 17, 5446–5456 (2009).
    [CrossRef]
  203. A. Lakhtakia, “On determining gas concentrations using dielectric thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B Chem. 52, 243–250 (1998).
    [CrossRef]
  204. A. Lakhtakia, “Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 145–148 (2001).
    [CrossRef]
  205. A. Lakhtakia, “Correction to: Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 544 (2001).
    [CrossRef]
  206. T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
    [CrossRef]
  207. T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010).
    [CrossRef]
  208. Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B Chem. 156, 593–598 (2011).
    [CrossRef]
  209. J. C. Sit, D. J. Broer, and M. J. Brett, “Liquid crystal alignment and switching in porous chiral thin films,” Adv. Mater. 12, 371–373 (2000).
    [CrossRef]
  210. S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of chiral thin films and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
    [CrossRef]
  211. S. Odenbach, “Recent progress in magnetic fluid research,” J. Phys. Condens. Matter 16, R1135–R1150 (2004).
    [CrossRef]
  212. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystal,” Opt. Lett. 23, 1707–1709 (1998).
    [CrossRef]
  213. K. Bjorknas, P. Raynes, S. Gilmour, V. Christou, and K. Look, “Circularly polarized luminescence from an organoterbium emitter embedded in a chiral polymer,” Proc. SPIE 4806, 240–247 (2002).
    [CrossRef]
  214. J. Schmidtke and W. Stille, “Fluourescence of a dye-doped cholesteric liquid crystal film in the region of stop band: theory and experiment,” Eur. Phys. J. B 31, 179–194 (2003).
    [CrossRef]
  215. J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
    [CrossRef]
  216. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, “Laser emission from a dye-doped cholesteric liquid crystal pumped by another cholesteric liquid crystal laser,” Appl. Phys. Lett. 85, 3378–3380 (2004).
    [CrossRef]
  217. A. Lakhtakia and J. Xu, “Planewave remittances of an axially excited chiral sculptured thin film with gain,” Optik 118, 94–99 (2007).
    [CrossRef]
  218. F. Wang, A. Lakhtakia, and R. Messier, “Towards piezoelectrically tunable sculptured thin film lasers,” Sens. Actuators A Phys. 102, 31–35 (2002).
    [CrossRef]
  219. A. Lakhtakia, “On bioluminescent emission from chiral sculptured thin films,” Opt. Commun. 188, 313–320 (2001).
    [CrossRef]
  220. X.-H. Xu and A. J. Bard, “Immobilization and hybridization of DNA on an aluminum(III) alkanebisphophonate thin film with electrogenerated chemiluminescent detection,” J. Am. Chem. Soc. 117, 2627–2631 (1995).
    [CrossRef]
  221. E. E. Steltz and A. Lakhtakia, “Theory of second-harmonic-generated radiation from chiral sculptured thin films for bio-sensing,” Opt. Commun. 216, 139–150 (2003).
    [CrossRef]
  222. A. Lakhtakia and W. S. Weiglhofer, “Green function for radiation and propagation in helicoidal bianisotropic mediums,” IEE Proc.-Microw. Antennas Propag. 144, 57–59 (1997).
    [CrossRef]
  223. T. G. Mackay and A. Lakhtakia, “Theory of light emission from a dipole source embedded in a chiral sculptured thin film,” Opt. Express 15, 14689–14703 (2007).
    [CrossRef]
  224. T. G. Mackay and A. Lakhtakia, “Theory of light emission from a dipole source embedded in a chiral sculptured thin film: erratum,” Opt. Express 16, 3659 (2008).
    [CrossRef]
  225. S. S. Jamaian and T. G. Mackay, “On chemiluminescent emission from an infiltrated chiral sculptured thin film,” Opt. Commun. 284, 2382–2392 (2011).
    [CrossRef]
  226. S. S. Jamaian and T. G. Mackay, “Erratum to ‘On chemiluminescent emission from an infiltrated chiral sculptured thin film’,” Opt. Commun. 284, 3488–3489 (2011).
    [CrossRef]
  227. A. Lakhtakia, “On radiation from canonical source configurations embedded in structurally chiral materials,” Microw. Opt. Technol. Lett. 37, 37–40 (2003).
    [CrossRef]
  228. P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields (Pergamon, 1966).
  229. M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999), Appendix III.
  230. F. Wang, “Note on the asymptotic approximation of a double integral with an angular-spectrum representation,” Int. J. Electron. Commun. (AEÜ) 59, 258–261 (2005).
    [CrossRef]
  231. J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
    [CrossRef]
  232. I. J. Hodgkinson, A. Lakhtakia, and Q. h. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000).
    [CrossRef]
  233. Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Optical and structural properties of a circular polarization handedness inverter prepared by using glancing angle deposition,” J. Korean Phys. Soc. 55, 1263–1266 (2009).
    [CrossRef]
  234. J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. A 465, 87–107 (2009).
    [CrossRef]
  235. Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
    [CrossRef]
  236. T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
    [CrossRef]
  237. T. G. Mackay, A. Lakhtakia, and S. S. Jamaian, “Chiral sculptured thin films as integrated dual-modality optical sensors,” Proc. SPIE 8465, 84650X (2012).
    [CrossRef]
  238. S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
    [CrossRef]
  239. J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
    [CrossRef]
  240. D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Observation of the Dyakonov–Tamm wave,” Phys. Rev. Lett. 111, 243902 (2013).
    [CrossRef]
  241. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
    [CrossRef]
  242. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
    [CrossRef]
  243. A. Lakhtakia, “Polarization-universal rejection filtering by ambichiral structures made of indefinite dielectric-magnetic materials,” Phys. Scr. 77, 055401 (2008).
    [CrossRef]
  244. A. Lakhtakia, “Exhibition of circular Bragg phenomenon by hyperbolic, dielectric, structurally chiral materials,” J. Nanophoton. 8, 083998 (2014).
    [CrossRef]
  245. A. Lakhtakia and J. A. Reyes, “Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material—Part 1: Axial dc electric field,” Optik 119, 253–268 (2008).
    [CrossRef]
  246. A. Lakhtakia and J. A. Reyes, “Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material—Part 2: Arbitrary dc electric field,” Optik 119, 269–275 (2008).
    [CrossRef]
  247. R. W. Boyd, Nonlinear Optics (Academic, 1992), Chap. 10.
  248. F. Brochard and P. G. de Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. (Paris) 31, 691–708 (1970).
    [CrossRef]
  249. W. S. Weiglhofer and A. Lakhtakia, “Electromagnetic wave propagation in super-cholesteric materials parallel to the helical axis,” J. Phys. D 26, 2117–2122 (1993).
    [CrossRef]
  250. R. Probst, J. Lin, A. Komaee, A. Nacev, Z. Cummins, and B. Shapiro, “Planar steering of a single ferrofluid drop by optimal minimum power dynamic feedback control of four electromagnets at a distance,” J. Magn. Magn. Mater. 323, 885–896 (2011).
    [CrossRef]
  251. L. P. Gevorkyan, V. A. Makarov, and E. B. Cherepetskaya, “Compression of laser pulses during dynamic scattering in a nonlinear cholesteric liquid crystal,” Sov. J. Quantum Electron. 19, 1604–1605 (1989).
    [CrossRef]
  252. I.-C. Khoo and S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

2014 (1)

A. Lakhtakia, “Exhibition of circular Bragg phenomenon by hyperbolic, dielectric, structurally chiral materials,” J. Nanophoton. 8, 083998 (2014).
[CrossRef]

2013 (6)

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[CrossRef]

D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Observation of the Dyakonov–Tamm wave,” Phys. Rev. Lett. 111, 243902 (2013).
[CrossRef]

G. Strout, S. D. Russell, D. P. Pulsifer, S. Erten, A. Lakhtakia, and D. W. Lee, “Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata,” Ann. Bot. 112, 1141–1148 (2013).
[CrossRef]

A. Esfandiar, H. Savaloni, and F. Placido, “On the fabrication and characterization of graded slanted chiral nano-sculptured silver thin films,” Physica E 50, 88–96 (2013).
[CrossRef]

M. Suzuki, “Practical applications of thin films nanostructured by shadowing growth,” J. Nanophoton. 7, 073598 (2013).
[CrossRef]

S. E. Swiontek, D. P. Pulsifer, J. Xu, and A. Lakhtakia, “Suppression of circular Bragg phenomenon in chiral sculptured thin films produced with simultaneous rocking and rotation of substrate during serial bideposition,” J. Nanophoton. 7, 073599 (2013).
[CrossRef]

2012 (4)

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

B. Zhang, D. Li, F. Dai, and H. S. Kwok, “Minimization of color fringing effect using a circularly polarized light,” J. Disp. Technol. 8, 269–272 (2012).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J. 12, 273–280 (2012).
[CrossRef]

T. G. Mackay, A. Lakhtakia, and S. S. Jamaian, “Chiral sculptured thin films as integrated dual-modality optical sensors,” Proc. SPIE 8465, 84650X (2012).
[CrossRef]

2011 (7)

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

S. S. Jamaian and T. G. Mackay, “On chemiluminescent emission from an infiltrated chiral sculptured thin film,” Opt. Commun. 284, 2382–2392 (2011).
[CrossRef]

S. S. Jamaian and T. G. Mackay, “Erratum to ‘On chemiluminescent emission from an infiltrated chiral sculptured thin film’,” Opt. Commun. 284, 3488–3489 (2011).
[CrossRef]

R. Probst, J. Lin, A. Komaee, A. Nacev, Z. Cummins, and B. Shapiro, “Planar steering of a single ferrofluid drop by optimal minimum power dynamic feedback control of four electromagnets at a distance,” J. Magn. Magn. Mater. 323, 885–896 (2011).
[CrossRef]

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B Chem. 156, 593–598 (2011).
[CrossRef]

H. Savaloni and A. Esfandiar, “Fabrication, characterization and some applications of graded chiral zigzag shaped nano-sculptured silver thin films,” Appl. Surf. Sci. 257, 9425–9434 (2011).
[CrossRef]

V. A. Belyakov and V. Semenov, “Optical defect modes in chiral liquid crystals,” J. Exp. Theor. Phys. 112, 694–710 (2011).
[CrossRef]

2010 (9)

A. Lakhtakia, “Reflection of an obliquely incident plane wave by a half space filled by a helicoidal bianisotropic medium,” Phys. Lett. A 374, 3887–3894 (2010).
[CrossRef]

F. Babaei, A. Esfandiar, and H. Savaloni, “Optical spectra of graded nanostructured TiO2 chiral sculptured thin films,” Opt. Commun. 283, 2849–2856 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Negatively refracting chiral metamaterials: a review,” SPIE Rev. 1, 018003 (2010).

P. Boher, T. Leroux, T. Bignon, and V. Collomb-Patton, “Multispectral polarization viewing angle analysis of circular polarized stereoscopic 3D displays,” Proc. SPIE 7524, 75240R (2010).
[CrossRef]

B. J. Glover and H. M. Whitney, “Structural colour and iridescence in plants: the poorly studied relations of pigment colour,” Ann. Bot. 105, 505–511 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010).
[CrossRef]

L. D. Woolf, “Multiple smatterings of insight: 10 years of interaction with Craig Bohren,” J. Nanophoton. 4, 041595 (2010).
[CrossRef]

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

2009 (6)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Optical and structural properties of a circular polarization handedness inverter prepared by using glancing angle deposition,” J. Korean Phys. Soc. 55, 1263–1266 (2009).
[CrossRef]

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. A 465, 87–107 (2009).
[CrossRef]

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

T. Jalkanen, V. Torres-Costa, J. Salonen, M. Björkqvist, E. Mäkilä, J. M. Martínez-Duart, and V.-P. Lehto, “Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors,” Opt. Express 17, 5446–5456 (2009).
[CrossRef]

2008 (16)

T. G. Mackay and A. Lakhtakia, “Theory of light emission from a dipole source embedded in a chiral sculptured thin film: erratum,” Opt. Express 16, 3659 (2008).
[CrossRef]

Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Wideband circular polarization reflector fabricated by glancing angle deposition,” Opt. Express 16, 5186–5192 (2008).
[CrossRef]

A. Lakhtakia, “Polarization-universal rejection filtering by ambichiral structures made of indefinite dielectric-magnetic materials,” Phys. Scr. 77, 055401 (2008).
[CrossRef]

A. Lakhtakia and J. A. Reyes, “Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material—Part 1: Axial dc electric field,” Optik 119, 253–268 (2008).
[CrossRef]

A. Lakhtakia and J. A. Reyes, “Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material—Part 2: Arbitrary dc electric field,” Optik 119, 269–275 (2008).
[CrossRef]

B. Szeto, P. C. P. Hrudey, M. Taschuk, and M. J. Brett, “Circularly polarized luminescence from chiral thin films,” Proc. SPIE 6135, 613511 (2008).
[CrossRef]

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzuki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[CrossRef]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Electromagnetic fields in linear bianisotropic mediums,” Prog. Opt. 51, 121–209 (2008).
[CrossRef]

M. Dixit and A. Lakhtakia, “Electrically controlled Bragg resonances of an ambichiral electro-optic structure: oblique incidence,” Asian J. Phys. 17, 213–223 (2008).

M. Dixit and A. Lakhtakia, “Selection strategy for circular-polarization-sensitive rejection characteristics of electro-optic ambichiral Reusch piles,” Opt. Commun. 281, 4812–4823 (2008).
[CrossRef]

F. Zhang, J. Xu, A. Lakhtakia, T. Zhu, S. M. Pursel, and M. W. Horn, “Circular polarization emission from an external cavity diode laser,” Appl. Phys. Lett. 92, 111109 (2008).
[CrossRef]

K. M. Krause and M. J. Brett, “Spatially graded nanostructured chiral films as tunable circular polarizers,” Adv. Funct. Mater. 18, 3111–3118 (2008).
[CrossRef]

R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008).
[CrossRef]

A. H. Gevorgyan, “Chiral photonic crystals with an anisotropic defect layer: oblique incidence,” Opt. Commun. 281, 5097–5103 (2008).
[CrossRef]

2007 (12)

A. H. Gevorgyan and M. Z. Harutyunyan, “Chiral photonic crystals with an anisotropic defect layer,” Phys. Rev. E 76, 031701 (2007).
[CrossRef]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Swamping of circular Bragg phenomenon and shaping of videopulses,” Microw. Opt. Technol. Lett. 49, 776–779 (2007).
[CrossRef]

S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. A 25, 2611–2615 (2007).
[CrossRef]

J. Konrad and M. Halle, “3-D displays and signal processing: an answer to 3-D ills?” IEEE Signal Process. Mag. 24(6), 97–111 (2007).
[CrossRef]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef]

E. Majkova, M. Jergel, M. Yamamoto, T. Tsuru, S. Luby, and P. Siffalovic, “Advanced nanometer-size structures,” Acta Phys. Slovaca 57, 911–1074 (2007).
[CrossRef]

F. Zhang, J. Xu, A. Lakhtakia, S. M. Pursel, M. W. Horn, and A. Wang, “Circularly polarized emission from colloidal nanocrystal quantum dots confined in microcavities formed by chiral mirrors,” Appl. Phys. Lett. 91, 023102 (2007). Correction: the labels LCP and RCP should be interchanged in Fig. 2c of this paper.
[CrossRef]

A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun. 275, 283–287 (2007).
[CrossRef]

A. Lakhtakia and J. Xu, “Planewave remittances of an axially excited chiral sculptured thin film with gain,” Optik 118, 94–99 (2007).
[CrossRef]

Y. Huang, Y. Zhou, and S.-T. Wu, “Broadband circular polarizer using stacked chiral polymer films,” Opt. Express 15, 6414–6419 (2007).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Theory of light emission from a dipole source embedded in a chiral sculptured thin film,” Opt. Express 15, 14689–14703 (2007).
[CrossRef]

2006 (8)

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

P. C. P. Hrudey, K. L. Westra, and M. J. Brett, “Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition,” Adv. Mater. 18, 224–228 (2006).
[CrossRef]

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. Tait, “Fiber Bragg grating multichemical sensor,” Proc. SPIE 6371, 637109 (2006).
[CrossRef]

A. Lakhtakia, “Electrically switchable exhibition of circular Bragg phenomenon by an isotropic slab,” Microw. Opt. Technol. Lett. 48, 2148–2153 (2006).
[CrossRef]

A. Lakhtakia, “Ambichiral, electro-optic, circular-polarization rejection filters: theory,” Phys. Lett. A 354, 330–334 (2006).
[CrossRef]

T. J. Dingemans, L. A. Madsen, N. A. Zafiropoulos, W. Lin, and E. T. Samulski, “Uniaxial and biaxial nematic liquid crystals,” Phil. Trans. R. Soc. A 364, 2681–2696 (2006).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
[CrossRef]

J. Gospodyn and J. C. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. (Amsterdam) 29, 318–325 (2006).
[CrossRef]

2005 (7)

F. Wang and A. Lakhtakia, “Optical crossover phenomenon due to a central 90°-twist defect in a chiral sculptured thin film or chiral liquid crystal,” Proc. R. Soc. A 461, 2985–3004 (2005).
[CrossRef]

A. C. van Popta, M. J. Brett, and J. C. Sit, “Double-handed circular Bragg phenomena in polygonal helix thin films,” J. Appl. Phys. 98, 083517 (2005).
[CrossRef]

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, and J. Leader, “Natural and nanoengineered chiral reflectors: structural color of Manuka beetles and titania coatings,” Electromagnetics 25, 391–408 (2005).
[CrossRef]

K. Claborn, A.-S. Chu, S.-H. Jang, F. Su, W. Kaminsky, and B. Kahr, “Circular extinction imaging: determination of the absolute orientation of embedded chromophores in enantiomorphously twinned LiKSO4 crystals,” Cryst. Growth Des. 5, 2117–2123 (2005).
[CrossRef]

F. Wang and A. Lakhtakia, “Third method for generation of spectral holes in chiral sculptured thin films,” Opt. Commun. 250, 105–110 (2005).
[CrossRef]

F. Wang, “Note on the asymptotic approximation of a double integral with an angular-spectrum representation,” Int. J. Electron. Commun. (AEÜ) 59, 258–261 (2005).
[CrossRef]

F. Wang and A. Lakhtakia, “Defect modes in multisection helical photonic crystals,” Opt. Express 13, 7319–7335 (2005).
[CrossRef]

2004 (10)

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, “Laser emission from a dye-doped cholesteric liquid crystal pumped by another cholesteric liquid crystal laser,” Appl. Phys. Lett. 85, 3378–3380 (2004).
[CrossRef]

F. Chiadini and A. Lakhtakia, “Design of wideband circular-polarization filters made of chiral sculptured thin films,” Microw. Opt. Technol. Lett. 42, 135–138 (2004).
[CrossRef]

S. Odenbach, “Recent progress in magnetic fluid research,” J. Phys. Condens. Matter 16, R1135–R1150 (2004).
[CrossRef]

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 76, 3269–3284 (2004).
[CrossRef]

I. J. Hodgkinson, A. Lakhtakia, Q. h. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Comparison of two methods for oblique propagation in helicoidal bianisotropic mediums,” Opt. Commun. 230, 369–386 (2004).
[CrossRef]

T. Matsui, T. Ozaki, and K. Yoshino, “Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix,” Phys. Rev. E 69, 061715 (2004).
[CrossRef]

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Tilt-modulated chiral sculptured thin films: an alternative to quarter-wave stacks,” Opt. Commun. 242, 13–21 (2004).
[CrossRef]

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
[CrossRef]

2003 (11)

A. Lakhtakia, “Erratum to: Truncation of angular spread of Bragg zones by total reflection, and Goos–Hänchen shifts exhibited by chiral sculptured thin films,” Int. J. Electron. Commun. (AEÜ) 57, 79 (2003).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “Erratum: Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 24, 91 (2003).
[CrossRef]

M. W. McCall and A. Lakhtakia, “Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part I: reflectances and transmittances: erratum,” J. Mod. Opt. 50, 2807 (2003).
[CrossRef]

J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E 12, 553–564 (2003).
[CrossRef]

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-Dihydroxyanthraquinone,” J. Am. Chem. Soc. 125, 14825–14831 (2003).
[CrossRef]

A. Lakhtakia, “On radiation from canonical source configurations embedded in structurally chiral materials,” Microw. Opt. Technol. Lett. 37, 37–40 (2003).
[CrossRef]

J. Schmidtke and W. Stille, “Fluourescence of a dye-doped cholesteric liquid crystal film in the region of stop band: theory and experiment,” Eur. Phys. J. B 31, 179–194 (2003).
[CrossRef]

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

E. E. Steltz and A. Lakhtakia, “Theory of second-harmonic-generated radiation from chiral sculptured thin films for bio-sensing,” Opt. Commun. 216, 139–150 (2003).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, L. De Silva, M. Arnold, M. W. McCall, and A. Lakhtakia, “Supermodes of chiral photonic filters with combined twist and layer defects,” Phys. Rev. Lett. 91, 223901 (2003).
[CrossRef]

F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79–92 (2003).
[CrossRef]

2002 (10)

F. Wang, A. Lakhtakia, and R. Messier, “Towards piezoelectrically tunable sculptured thin film lasers,” Sens. Actuators A Phys. 102, 31–35 (2002).
[CrossRef]

K. Bjorknas, P. Raynes, S. Gilmour, V. Christou, and K. Look, “Circularly polarized luminescence from an organoterbium emitter embedded in a chiral polymer,” Proc. SPIE 4806, 240–247 (2002).
[CrossRef]

M. D. Pickett and A. Lakhtakia, “On gyrotropic chiral sculptured thin films for magneto-optics,” Optik 113, 367–371 (2002).
[CrossRef]

V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Numerical implementation of exact analytical solution for oblique propagation in a cholesteric liquid crystal,” Microw. Opt. Technol. Lett. 35, 397–400 (2002).
[CrossRef]

A. Lakhtakia, “Pseudo-isotropic and maximum-bandwidth points for axially excited chiral sculptured thin films,” Microw. Opt. Technol. Lett. 34, 367–371 (2002).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Videopulse bleeding in axially excited chiral sculptured thin films in the Bragg regime,” Eur. Phys. J. Appl. Phys. 17, 21–24 (2002).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 20, 91–103 (2002).
[CrossRef]

J. Wang, A. Lakhtakia, and J. B. Geddes, “Multiple Bragg regimes exhibited by a chiral sculptured thin film half-space on axial excitation,” Optik 113, 213–221 (2002).
[CrossRef]

A. Lakhtakia, “Truncation of angular spread of Bragg zones by total reflection, and Goos–Hänchen shifts exhibited by chiral sculptured thin films,” Int. J. Electron. Commun. (AEÜ) 56, 169–176 (2002).
[CrossRef]

2001 (16)

J. B. Geddes and A. Lakhtakia, “Pulse-coded information transmission across an axially excited chiral-sculptured thin film in the Bragg regime,” Microw. Opt. Technol. Lett. 28, 59–62 (2001).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Time-domain signature of an axially excited cholesteric liquid crystal. Part II: Rectangular wide-extent pulses,” Optik 112, 62–66 (2001). Videos associated with this paper are available at http://www.esm.psu.edu/~axl4/Lakhtakia/TimeBragg/TDBragg.html .
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Reflection and transmission of optical narrow-extent pulses by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 13, 3–14 (2001). Videos associated with this paper are available at http://www.esm.psu.edu/~axl4/Lakhtakia/TimeBragg/TDBragg.html .
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Erratum: Reflection and transmission of optical narrow-extent pulses by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 16, 247 (2001).

J. B. Geddes and A. Lakhtakia, “Time-domain simulation of the circular Bragg phenomenon exhibited by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 14, 97–105 (2001).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Erratum: Time-domain simulation of the circular Bragg phenomenon exhibited by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 16, 247 (2001).

G. D. Gillen, M. A. Walker, and L. D. Van Woerkom, “Enhanced double ionization with circularly polarized light,” Phys. Rev. A 64, 043413 (2001).
[CrossRef]

J. Bailey, “Astronomical sources of circularly polarized light and the origin of homochirality,” Orig. Life Evol. Biosph. 31, 167–183 (2001).
[CrossRef]

M. Schubert and C. M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A 188, 1563–1575 (2001).
[CrossRef]

G. R. Luckhurst, “Biaxial nematic liquid crystals: fact or fiction?” Thin Solid Films 393, 40–52 (2001).
[CrossRef]

A. Lakhtakia, “On bioluminescent emission from chiral sculptured thin films,” Opt. Commun. 188, 313–320 (2001).
[CrossRef]

S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of chiral thin films and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[CrossRef]

A. Lakhtakia, “Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 145–148 (2001).
[CrossRef]

A. Lakhtakia, “Correction to: Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 544 (2001).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

A. Lakhtakia, “Stepwise chirping of chiral sculptured thin films for Bragg bandwidth enhancement,” Microw. Opt. Technol. Lett. 28, 323–326 (2001).
[CrossRef]

2000 (14)

I. Hodgkinson, Q. h. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Commun. 177, 79–84 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[CrossRef]

A. Lakhtakia, V. C. Venugopal, and M. W. McCall, “Spectral holes in Bragg reflection from chiral sculptured thin films: circular polarization filters,” Opt. Commun. 177, 57–68 (2000).
[CrossRef]

J. C. Sit, D. J. Broer, and M. J. Brett, “Liquid crystal alignment and switching in porous chiral thin films,” Adv. Mater. 12, 371–373 (2000).
[CrossRef]

M. McCall and A. Lakhtakia, “Polarization-dependent narrowband spectral filtering by chiral sculptured thin films,” J. Mod. Opt. 47, 743–755 (2000).

I. J. Hodgkinson, A. Lakhtakia, and Q. h. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000).
[CrossRef]

J. B. Geddes, M. W. Meredith, and A. Lakhtakia, “Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals,” Opt. Commun. 182, 45–57 (2000).
[CrossRef]

M. W. Meredith and A. Lakhtakia, “Time-domain signature of an axially excited cholesteric liquid crystal. Part I: narrow-extent pulses,” Optik 111, 443–453 (2000).

M. W. McCall and A. Lakhtakia, “Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part I: reflectances and transmittances,” J. Mod. Opt. 47, 973–991 (2000).
[CrossRef]

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “On absorption by non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Eur. Phys. J. Appl. Phys. 10, 173–184 (2000).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Proc. R. Soc. A 456, 125–161 (2000).
[CrossRef]

1999 (12)

G. Pelzl, S. Diele, and W. Weissflog, “Banana-shaped compounds—a new field of liquid crystals,” Adv. Mater. 11, 707–724 (1999).
[CrossRef]

A. Lakhtakia, “Spectral signatures of axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Eur. Phys. J. Appl. Phys. 8, 129–137 (1999).
[CrossRef]

A. Lakhtakia, “Bragg-regime absorption in axially excited slabs of dielectric thin-film helicoidal bianisotropic media,” Microw. Opt. Technol. Lett. 22, 243–247 (1999).
[CrossRef]

Y.-C. Yang, C.-S. Kee, J.-E. Kim, and H. Y. Park, “Photonic defect modes of cholesteric liquid crystals,” Phys. Rev. E 60, 6852–6854 (1999).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “On selective absorption in an axially excited slab of an absorbing dielectric thin-film helicoidal bianisotropic medium: erratum,” Opt. Commun. 161, 370 (1999).
[CrossRef]

A. Lakhtakia and I. J. Hodgkinson, “Spectral response of dielectric thin-film helicoidal bianisotropic medium bilayer,” Opt. Commun. 167, 191–202 (1999).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “Correction for: Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. A 455, 4383 (1999).
[CrossRef]

S. Clark, “Polarized starlight and the handedness of life,” Am. Sci. 87(4), 336–383 (1999).
[CrossRef]

I. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74, 1794–1796 (1999).
[CrossRef]

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun. 168, 457–465 (1999).
[CrossRef]

A. Lakhtakia and V. C. Venugopal, “On Bragg reflection by helicoidal bianisotropic mediums,” Int. J. Electron. Commun. (AEÜ) 53, 287–290 (1999).

1998 (9)

A. Lakhtakia, “On determining gas concentrations using dielectric thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B Chem. 52, 243–250 (1998).
[CrossRef]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystal,” Opt. Lett. 23, 1707–1709 (1998).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. A 454, 1535–1571 (1998).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “Corrections for: Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation,” Proc. R. Soc. A 454, 3275 (1998).

A. Lakhtakia and W. S. Weiglhofer, “Corrections on: On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. A 454, 3275 (1998).

A. Lakhtakia and V. C. Venugopal, “Dielectric thin-film helicoidal bianistropic medium bilayers as tunable polarization-independent laser mirrors and notch filters,” Microw. Opt. Technol. Lett. 17, 135–140 (1998).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “On selective absorption in an axially excited slab of an absorbing dielectric thin-film helicoidal bianisotropic medium,” Opt. Commun. 145, 171–187 (1998).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “On optical rotation and ellipticity transformation by axially excited slabs of dielectric thin-film helicoidal bianisotropic dielectric mediums (TFHBMs),” Int. J. Appl. Electromag. Mech. 9, 201–210 (1998).

1997 (4)

A. Lakhtakia and W. S. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation,” Proc. R. Soc. A 453, 93–105 (1997).
[CrossRef]

P. L. Swart, P. V. Bulkin, and B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997).
[CrossRef]

X.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “Green function for radiation and propagation in helicoidal bianisotropic mediums,” IEE Proc.-Microw. Antennas Propag. 144, 57–59 (1997).
[CrossRef]

1996 (4)

A. Thelen, “Design of a hot mirror: contest results,” Appl. Opt. 35, 4966–4977 (1996).
[CrossRef]

A. Othonos, X. Lee, and D. P. Tsai, “Spectrally broadband Bragg grating mirror for an erbium-doped fiber laser,” Opt. Eng. 35, 1088–1092 (1996).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “Simple and exact analytic solution for oblique propagation in a cholesteric liquid crystal,” Microw. Opt. Technol. Lett. 12, 245–248 (1996).
[CrossRef]

1995 (6)

W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. A 448, 419–437 (1995).
[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
[CrossRef]

X.-H. Xu and A. J. Bard, “Immobilization and hybridization of DNA on an aluminum(III) alkanebisphophonate thin film with electrogenerated chemiluminescent detection,” J. Am. Chem. Soc. 117, 2627–2631 (1995).
[CrossRef]

W. S. Weiglhofer and A. Lakhtakia, “Oblique propagation in a cholesteric liquid crystal: 4 × 4 matrix perturbational solution,” Optik 102, 111–114 (1995).

1994 (3)

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

N. Chateau and J.-P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994).
[CrossRef]

J. A. Wheatley, R. A. Lewis, W. J. Schrenk, W. Lutz, and G. A. Motter, “Rapid production of large area polymeric cold mirror via a simultaneous layer formation process,” Proc. SPIE 2262, 262–275 (1994).
[CrossRef]

1993 (2)

L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993).
[CrossRef]

W. S. Weiglhofer and A. Lakhtakia, “Electromagnetic wave propagation in super-cholesteric materials parallel to the helical axis,” J. Phys. D 26, 2117–2122 (1993).
[CrossRef]

1990 (4)

B. G. Bovard, “Rugate filter design: the modified Fourier transform technique,” Appl. Opt. 29, 24–30 (1990).
[CrossRef]

H. Rubalcava and D. J. Fitzmaurice, “Photochemistry with circularly polarized light: a new method,” J. Chem. Phys. 92, 5975–5987 (1990).
[CrossRef]

R. Rashed, “A pioneer in anaclastics, Ibn Sahl on burning mirrors and lenses,” Isis 81, 464–491 (1990).
[CrossRef]

S. Chandrasekhar and G. S. Ranganath, “Discotic liquid crystals,” Rep. Prog. Phys. 53, 57–84 (1990).
[CrossRef]

1989 (3)

1988 (2)

1987 (2)

K. Rokushima and J. Yamakita, “Analysis of diffraction in periodic liquid crystals: the optics of the chiral smectic C phase,” J. Opt. Soc. Am. A 4, 27–33 (1987).
[CrossRef]

I. Abdulhalim, “Light propagation along the helix of chiral smectics and twisted nematics,” Opt. Commun. 64, 443–448 (1987).
[CrossRef]

1986 (1)

G. Joly and N. Isaert, “Quelques champs électromagnétiques dans les piles de Reusch IV. Domaines multiples de réflexion sélective,” J. Opt. (Paris) 17, 211–221 (1986).
[CrossRef]

1985 (3)

G. Joly and N. Isaert, “Quelques champs électromagnétiques dans les piles de Reusch III. Biréfringence elliptique des vibrations itératives; activité optique de piles hélicoïdales d’extension finie,” J. Opt. (Paris) 16, 203–213 (1985).
[CrossRef]

L. Oldano, P. Allia, and L. Trossi, “Optical properties of anisotropic periodic helical structures,” J. Phys. (Paris) 46, 573–582 (1985).
[CrossRef]

I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals. Results of an exact calculation using the 4 × 4 characteristic matrix method,” J. Phys. (Paris) 46, 815–825 (1985).
[CrossRef]

1983 (3)

W. J. Haas, “Liquid crystal display research: the first fifteen years,” Mol. Cryst. Liq. Cryst. 94, 1–31 (1983).
[CrossRef]

H. Takezoe, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental studies on reflection spectra in monodomain cholesteric liquid crystal cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

H. Takezoe, K. Hashimoto, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental study on higher order reflection by monodomain cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 101, 329–340 (1983).
[CrossRef]

1982 (2)

G. Joly and J. Billard, “Quelques champs électromagnétiques dans les piles de Reusch II. Piles éclairées sous l’incidence normale par des ondes monochromatiques planes et uniformes,” J. Opt. (Paris) 13, 227–238 (1982).
[CrossRef]

R. S. Akopyan, B. Ya. Zel’dovich, and N. V. Tabiryan, “Optics of a chiral liquid crystal far from a Bragg resonance,” Sov. Phys. JETP 56, 1024–1027 (1982).

1981 (1)

G. Joly and J. Billard, “Quelques champs électromagnétiques dans les piles de Reusch I. Les vibrations propres d’une pile de deux lames a biréfringence rectiligne ne sont pas orthogonales,” J. Opt. (Paris) 12, 323–329 (1981).
[CrossRef]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

1977 (2)

S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, “Liquid crystals of disc-like molecules,” Pramāṇa 9, 471–480 (1977).
[CrossRef]

T. H. Sterling and C. F. Hayes, “Optical rotatory power of a cholesteric liquid crystal for obliquely incident light using multiple scattering,” Mol. Cryst. Liq. Cryst. 43, 279–286 (1977).
[CrossRef]

1976 (1)

H. A. Haus and C. V. Shank, “Asymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
[CrossRef]

1975 (3)

R. Nityananda and U. D. Kini, “The theory of reflexion and transmission by plane parallel cholesteric films,” Pramāṇa Suppl. 1, 311–323 (1975).

O. Parodi, “Light propagation along the helical axis in chiral smectics C,” J. Phys. (Paris) Colloq. 36, C1-325–C1-326 (1975).
[CrossRef]

R. Nityananda, U. D. Kini, S. Chandrasekhar, and K. A. Suresh, “Anomalous transmission (Borrmann effect) in absorbing cholesteric liquid crystals,” Pramāṇa Suppl. 1, 325–340 (1975).

1974 (3)

S. Wang, “Principles of distributed feedback and distributed Bragg-reflector lasers,” IEEE J. Quantum Electron. 10, 413–427 (1974).
[CrossRef]

G. Balavoine, A. Moradpour, and H. B. Kagan, “Preparation of chiral compounds with high optical purity by irradiation with circularly polarized light, a model reaction for the prebiotic generation of optical activity,” J. Am. Chem. Soc. 96, 5152–5158 (1974).
[CrossRef]

O. Buchardt, “Photochemistry with circularly polarized light,” Angew. Chem. Int. Ed. Engl. 13, 179–185 (1974).
[CrossRef]

1973 (2)

R. Nityananda, “On the theory of light propagation in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 21, 315–331 (1973).
[CrossRef]

R. Dreher and G. Meier, “Optical properties of cholesteric liquid crystals,” Phys. Rev. A 8, 1616–1623 (1973).
[CrossRef]

1971 (2)

E. I. Kats, “Optical properties of cholesteric liquid crystals,” Sov. Phys. JETP 32, 1004–1007 (1971).

J. Adams, W. Haas, and J. Daily, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096–4098 (1971).
[CrossRef]

1970 (2)

D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970).
[CrossRef]

F. Brochard and P. G. de Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. (Paris) 31, 691–708 (1970).
[CrossRef]

1969 (1)

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystal,” Biol. Rev. 44, 531–562 (1969).
[CrossRef]

1965 (1)

P. P. Ewald, “Crystal optics for visible light and x rays,” Rev. Mod. Phys. 37, 46–56 (1965).
[CrossRef]

1964 (1)

J. L. Fergason, “Liquid crystals,” Sci. Am. 211(2), 76–85 (1964).
[CrossRef]

1959 (1)

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

1941 (1)

G. Borrmann, “Über Extinktionsdiagramme von Quarz,” Phys. Z. 42, 157–162 (1941).

1916 (1)

P. P. Ewald, “Zur Begründung der Kristalloptik. Teil II: Theorie der Reflexion und Brechung,” Ann. Phys. 49, 117–143 (1916). See Ewald [3] for an English translation by L. M. Hollingsworth and postscript comments by Ewald.
[CrossRef]

1898 (1)

J. C. Bose, “On the rotation of plane of polarisation of electric waves by a twisted structure,” Proc. R. Soc. Lond. 63, 146–152 (1898).
[CrossRef]

1888 (1)

F. Reinitzer, “Beiträge zur Kenntiss des Cholesterins,” Monat. Chem. (Wien) 9, 421–441 (1888). See Sluckin et al. [85] for an English translation.

1869 (1)

E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. Phys. Chem. Lpz. 138, 628–638 (1869).

Abdulhalim, I.

I. Abdulhalim, “Light propagation along the helix of chiral smectics and twisted nematics,” Opt. Commun. 64, 443–448 (1987).
[CrossRef]

I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals. Results of an exact calculation using the 4 × 4 characteristic matrix method,” J. Phys. (Paris) 46, 815–825 (1985).
[CrossRef]

Adams, J.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

J. Adams, W. Haas, and J. Daily, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096–4098 (1971).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

Akopyan, R. S.

R. S. Akopyan, B. Ya. Zel’dovich, and N. V. Tabiryan, “Optics of a chiral liquid crystal far from a Bragg resonance,” Sov. Phys. JETP 56, 1024–1027 (1982).

Allia, P.

L. Oldano, P. Allia, and L. Trossi, “Optical properties of anisotropic periodic helical structures,” J. Phys. (Paris) 46, 573–582 (1985).
[CrossRef]

Arnold, M.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, and J. Leader, “Natural and nanoengineered chiral reflectors: structural color of Manuka beetles and titania coatings,” Electromagnetics 25, 391–408 (2005).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, L. De Silva, M. Arnold, M. W. McCall, and A. Lakhtakia, “Supermodes of chiral photonic filters with combined twist and layer defects,” Phys. Rev. Lett. 91, 223901 (2003).
[CrossRef]

Babaei, F.

F. Babaei, A. Esfandiar, and H. Savaloni, “Optical spectra of graded nanostructured TiO2 chiral sculptured thin films,” Opt. Commun. 283, 2849–2856 (2010).
[CrossRef]

Bailey, J.

J. Bailey, “Astronomical sources of circularly polarized light and the origin of homochirality,” Orig. Life Evol. Biosph. 31, 167–183 (2001).
[CrossRef]

Balavoine, G.

G. Balavoine, A. Moradpour, and H. B. Kagan, “Preparation of chiral compounds with high optical purity by irradiation with circularly polarized light, a model reaction for the prebiotic generation of optical activity,” J. Am. Chem. Soc. 96, 5152–5158 (1974).
[CrossRef]

Barberi, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, “Laser emission from a dye-doped cholesteric liquid crystal pumped by another cholesteric liquid crystal laser,” Appl. Phys. Lett. 85, 3378–3380 (2004).
[CrossRef]

Bard, A. J.

X.-H. Xu and A. J. Bard, “Immobilization and hybridization of DNA on an aluminum(III) alkanebisphophonate thin film with electrogenerated chemiluminescent detection,” J. Am. Chem. Soc. 117, 2627–2631 (1995).
[CrossRef]

Bartolino, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, “Laser emission from a dye-doped cholesteric liquid crystal pumped by another cholesteric liquid crystal laser,” Appl. Phys. Lett. 85, 3378–3380 (2004).
[CrossRef]

Baumeister, P. W.

P. W. Baumeister, Optical Coating Technology (SPIE, 2004).

Belyakov, V. A.

V. A. Belyakov and V. Semenov, “Optical defect modes in chiral liquid crystals,” J. Exp. Theor. Phys. 112, 694–710 (2011).
[CrossRef]

Benguigui, L.

I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals. Results of an exact calculation using the 4 × 4 characteristic matrix method,” J. Phys. (Paris) 46, 815–825 (1985).
[CrossRef]

Berreman, D. W.

D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970).
[CrossRef]

Beydaghyan, G.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Bignon, T.

P. Boher, T. Leroux, T. Bignon, and V. Collomb-Patton, “Multispectral polarization viewing angle analysis of circular polarized stereoscopic 3D displays,” Proc. SPIE 7524, 75240R (2010).
[CrossRef]

Billard, J.

G. Joly and J. Billard, “Quelques champs électromagnétiques dans les piles de Reusch II. Piles éclairées sous l’incidence normale par des ondes monochromatiques planes et uniformes,” J. Opt. (Paris) 13, 227–238 (1982).
[CrossRef]

G. Joly and J. Billard, “Quelques champs électromagnétiques dans les piles de Reusch I. Les vibrations propres d’une pile de deux lames a biréfringence rectiligne ne sont pas orthogonales,” J. Opt. (Paris) 12, 323–329 (1981).
[CrossRef]

Bjorknas, K.

K. Bjorknas, P. Raynes, S. Gilmour, V. Christou, and K. Look, “Circularly polarized luminescence from an organoterbium emitter embedded in a chiral polymer,” Proc. SPIE 4806, 240–247 (2002).
[CrossRef]

Björkqvist, M.

Boher, P.

P. Boher, T. Leroux, T. Bignon, and V. Collomb-Patton, “Multispectral polarization viewing angle analysis of circular polarized stereoscopic 3D displays,” Proc. SPIE 7524, 75240R (2010).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. F. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Boland, P.

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. Tait, “Fiber Bragg grating multichemical sensor,” Proc. SPIE 6371, 637109 (2006).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999), Appendix III.

Borrmann, G.

G. Borrmann, “Über Extinktionsdiagramme von Quarz,” Phys. Z. 42, 157–162 (1941).

Bose, J. C.

J. C. Bose, “On the rotation of plane of polarisation of electric waves by a twisted structure,” Proc. R. Soc. Lond. 63, 146–152 (1898).
[CrossRef]

Bovard, B. G.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992), Chap. 10.

Brett, M. J.

K. M. Krause and M. J. Brett, “Spatially graded nanostructured chiral films as tunable circular polarizers,” Adv. Funct. Mater. 18, 3111–3118 (2008).
[CrossRef]

B. Szeto, P. C. P. Hrudey, M. Taschuk, and M. J. Brett, “Circularly polarized luminescence from chiral thin films,” Proc. SPIE 6135, 613511 (2008).
[CrossRef]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[CrossRef]

P. C. P. Hrudey, K. L. Westra, and M. J. Brett, “Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition,” Adv. Mater. 18, 224–228 (2006).
[CrossRef]

A. C. van Popta, M. J. Brett, and J. C. Sit, “Double-handed circular Bragg phenomena in polygonal helix thin films,” J. Appl. Phys. 98, 083517 (2005).
[CrossRef]

S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of chiral thin films and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[CrossRef]

J. C. Sit, D. J. Broer, and M. J. Brett, “Liquid crystal alignment and switching in porous chiral thin films,” Adv. Mater. 12, 371–373 (2000).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

Brochard, F.

F. Brochard and P. G. de Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. (Paris) 31, 691–708 (1970).
[CrossRef]

Broer, D. J.

S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of chiral thin films and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[CrossRef]

J. C. Sit, D. J. Broer, and M. J. Brett, “Liquid crystal alignment and switching in porous chiral thin films,” Adv. Mater. 12, 371–373 (2000).
[CrossRef]

Brown, T.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Buchardt, O.

O. Buchardt, “Photochemistry with circularly polarized light,” Angew. Chem. Int. Ed. Engl. 13, 179–185 (1974).
[CrossRef]

Bulkin, P. V.

P. L. Swart, P. V. Bulkin, and B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997).
[CrossRef]

Buzea, C.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Caldwell, R.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef]

Canham, L. T.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Caveney, S.

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystal,” Biol. Rev. 44, 531–562 (1969).
[CrossRef]

Cerqua, K. A.

Chandrasekhar, S.

S. Chandrasekhar and G. S. Ranganath, “Discotic liquid crystals,” Rep. Prog. Phys. 53, 57–84 (1990).
[CrossRef]

S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, “Liquid crystals of disc-like molecules,” Pramāṇa 9, 471–480 (1977).
[CrossRef]

R. Nityananda, U. D. Kini, S. Chandrasekhar, and K. A. Suresh, “Anomalous transmission (Borrmann effect) in absorbing cholesteric liquid crystals,” Pramāṇa Suppl. 1, 325–340 (1975).

S. Chandrasekhar, Liquid Crystals, 2nd ed. (Cambridge University, 1992).

Chanishvili, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, “Laser emission from a dye-doped cholesteric liquid crystal pumped by another cholesteric liquid crystal laser,” Appl. Phys. Lett. 85, 3378–3380 (2004).
[CrossRef]

Charney, E.

E. Charney, The Molecular Basis of Optical Activity (Krieger, 1985).

Chateau, N.

Chen, A.

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

Chen, H. C.

H. C. Chen, Theory of Electromagnetic Waves: A Coordinate-Free Approach (McGraw–Hill, 1983).

Cherepetskaya, E. B.

L. P. Gevorkyan, V. A. Makarov, and E. B. Cherepetskaya, “Compression of laser pulses during dynamic scattering in a nonlinear cholesteric liquid crystal,” Sov. J. Quantum Electron. 19, 1604–1605 (1989).
[CrossRef]

Chiadini, F.

F. Chiadini and A. Lakhtakia, “Design of wideband circular-polarization filters made of chiral sculptured thin films,” Microw. Opt. Technol. Lett. 42, 135–138 (2004).
[CrossRef]

Chilaya, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, “Laser emission from a dye-doped cholesteric liquid crystal pumped by another cholesteric liquid crystal laser,” Appl. Phys. Lett. 85, 3378–3380 (2004).
[CrossRef]

Chiou, T.-H.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef]

Christou, V.

K. Bjorknas, P. Raynes, S. Gilmour, V. Christou, and K. Look, “Circularly polarized luminescence from an organoterbium emitter embedded in a chiral polymer,” Proc. SPIE 4806, 240–247 (2002).
[CrossRef]

Chu, A.-S.

K. Claborn, A.-S. Chu, S.-H. Jang, F. Su, W. Kaminsky, and B. Kahr, “Circular extinction imaging: determination of the absolute orientation of embedded chromophores in enantiomorphously twinned LiKSO4 crystals,” Cryst. Growth Des. 5, 2117–2123 (2005).
[CrossRef]

Cipparrone, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, “Laser emission from a dye-doped cholesteric liquid crystal pumped by another cholesteric liquid crystal laser,” Appl. Phys. Lett. 85, 3378–3380 (2004).
[CrossRef]

Claborn, K.

K. Claborn, A.-S. Chu, S.-H. Jang, F. Su, W. Kaminsky, and B. Kahr, “Circular extinction imaging: determination of the absolute orientation of embedded chromophores in enantiomorphously twinned LiKSO4 crystals,” Cryst. Growth Des. 5, 2117–2123 (2005).
[CrossRef]

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-Dihydroxyanthraquinone,” J. Am. Chem. Soc. 125, 14825–14831 (2003).
[CrossRef]

Clark, S.

S. Clark, “Polarized starlight and the handedness of life,” Am. Sci. 87(4), 336–383 (1999).
[CrossRef]

Clemmow, P. C.

P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields (Pergamon, 1966).

Collomb-Patton, V.

P. Boher, T. Leroux, T. Bignon, and V. Collomb-Patton, “Multispectral polarization viewing angle analysis of circular polarized stereoscopic 3D displays,” Proc. SPIE 7524, 75240R (2010).
[CrossRef]

Cronin, T.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef]

Cummins, Z.

R. Probst, J. Lin, A. Komaee, A. Nacev, Z. Cummins, and B. Shapiro, “Planar steering of a single ferrofluid drop by optimal minimum power dynamic feedback control of four electromagnets at a distance,” J. Magn. Magn. Mater. 323, 885–896 (2011).
[CrossRef]

Dai, F.

B. Zhang, D. Li, F. Dai, and H. S. Kwok, “Minimization of color fringing effect using a circularly polarized light,” J. Disp. Technol. 8, 269–272 (2012).
[CrossRef]

Daily, J.

J. Adams, W. Haas, and J. Daily, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096–4098 (1971).
[CrossRef]

de Gennes, P. G.

F. Brochard and P. G. de Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. (Paris) 31, 691–708 (1970).
[CrossRef]

P. G. de Gennes and J. A. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).

De Silva, L.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, and J. Leader, “Natural and nanoengineered chiral reflectors: structural color of Manuka beetles and titania coatings,” Electromagnetics 25, 391–408 (2005).
[CrossRef]

I. J. Hodgkinson, A. Lakhtakia, Q. h. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, L. De Silva, M. Arnold, M. W. McCall, and A. Lakhtakia, “Supermodes of chiral photonic filters with combined twist and layer defects,” Phys. Rev. Lett. 91, 223901 (2003).
[CrossRef]

Dean, C.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Devender,

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

Diele, S.

G. Pelzl, S. Diele, and W. Weissflog, “Banana-shaped compounds—a new field of liquid crystals,” Adv. Mater. 11, 707–724 (1999).
[CrossRef]

Dingemans, T. J.

T. J. Dingemans, L. A. Madsen, N. A. Zafiropoulos, W. Lin, and E. T. Samulski, “Uniaxial and biaxial nematic liquid crystals,” Phil. Trans. R. Soc. A 364, 2681–2696 (2006).
[CrossRef]

Dixit, M.

M. Dixit and A. Lakhtakia, “Electrically controlled Bragg resonances of an ambichiral electro-optic structure: oblique incidence,” Asian J. Phys. 17, 213–223 (2008).

M. Dixit and A. Lakhtakia, “Selection strategy for circular-polarization-sensitive rejection characteristics of electro-optic ambichiral Reusch piles,” Opt. Commun. 281, 4812–4823 (2008).
[CrossRef]

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Dreher, R.

R. Dreher and G. Meier, “Optical properties of cholesteric liquid crystals,” Phys. Rev. A 8, 1616–1623 (1973).
[CrossRef]

Dunmur, D. A.

T. J. Sluckin, D. A. Dunmur, and H. Stegemeyer, Crystals That Flow: Classic Papers From the History of Liquid Crystals (Taylor & Francis, 2004).

Dushkina, N.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

N. Dushkina and A. Lakhtakia, “Structural colors,” in Engineered Biomimicry, A. Lakhtakia and R. J. Martín-Palma, eds. (Elsevier, 2013), pp. 267–303.

Erten, S.

G. Strout, S. D. Russell, D. P. Pulsifer, S. Erten, A. Lakhtakia, and D. W. Lee, “Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata,” Ann. Bot. 112, 1141–1148 (2013).
[CrossRef]

Esfandiar, A.

A. Esfandiar, H. Savaloni, and F. Placido, “On the fabrication and characterization of graded slanted chiral nano-sculptured silver thin films,” Physica E 50, 88–96 (2013).
[CrossRef]

H. Savaloni and A. Esfandiar, “Fabrication, characterization and some applications of graded chiral zigzag shaped nano-sculptured silver thin films,” Appl. Surf. Sci. 257, 9425–9434 (2011).
[CrossRef]

F. Babaei, A. Esfandiar, and H. Savaloni, “Optical spectra of graded nanostructured TiO2 chiral sculptured thin films,” Opt. Commun. 283, 2849–2856 (2010).
[CrossRef]

Ewald, P. P.

P. P. Ewald, “Crystal optics for visible light and x rays,” Rev. Mod. Phys. 37, 46–56 (1965).
[CrossRef]

P. P. Ewald, “Zur Begründung der Kristalloptik. Teil II: Theorie der Reflexion und Brechung,” Ann. Phys. 49, 117–143 (1916). See Ewald [3] for an English translation by L. M. Hollingsworth and postscript comments by Ewald.
[CrossRef]

P. P. Ewald, On the Foundations of Crystal Optics, Document No.  (Air Force Cambridge Research Laboratories, 1970).

Fan, B.

Faryad, M.

D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Observation of the Dyakonov–Tamm wave,” Phys. Rev. Lett. 111, 243902 (2013).
[CrossRef]

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Fergason, J. L.

J. L. Fergason, “Liquid crystals,” Sci. Am. 211(2), 76–85 (1964).
[CrossRef]

Finkelmann, H.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

Fitzmaurice, D. J.

H. Rubalcava and D. J. Fitzmaurice, “Photochemistry with circularly polarized light: a new method,” J. Chem. Phys. 92, 5975–5987 (1990).
[CrossRef]

Fonash, S. J.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B Chem. 156, 593–598 (2011).
[CrossRef]

Freeman, W. L.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Fritz, W. J.

W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
[CrossRef]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Fukuda, A.

H. Takezoe, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental studies on reflection spectra in monodomain cholesteric liquid crystal cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

H. Takezoe, K. Hashimoto, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental study on higher order reflection by monodomain cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 101, 329–340 (1983).
[CrossRef]

Gao, J.

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

Gaylord, T. K.

Geddes, J. B.

J. B. Geddes and A. Lakhtakia, “Swamping of circular Bragg phenomenon and shaping of videopulses,” Microw. Opt. Technol. Lett. 49, 776–779 (2007).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
[CrossRef]

J. Wang, A. Lakhtakia, and J. B. Geddes, “Multiple Bragg regimes exhibited by a chiral sculptured thin film half-space on axial excitation,” Optik 113, 213–221 (2002).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Videopulse bleeding in axially excited chiral sculptured thin films in the Bragg regime,” Eur. Phys. J. Appl. Phys. 17, 21–24 (2002).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Pulse-coded information transmission across an axially excited chiral-sculptured thin film in the Bragg regime,” Microw. Opt. Technol. Lett. 28, 59–62 (2001).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Erratum: Time-domain simulation of the circular Bragg phenomenon exhibited by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 16, 247 (2001).

J. B. Geddes and A. Lakhtakia, “Erratum: Reflection and transmission of optical narrow-extent pulses by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 16, 247 (2001).

J. B. Geddes and A. Lakhtakia, “Time-domain signature of an axially excited cholesteric liquid crystal. Part II: Rectangular wide-extent pulses,” Optik 112, 62–66 (2001). Videos associated with this paper are available at http://www.esm.psu.edu/~axl4/Lakhtakia/TimeBragg/TDBragg.html .
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Time-domain simulation of the circular Bragg phenomenon exhibited by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 14, 97–105 (2001).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Reflection and transmission of optical narrow-extent pulses by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 13, 3–14 (2001). Videos associated with this paper are available at http://www.esm.psu.edu/~axl4/Lakhtakia/TimeBragg/TDBragg.html .
[CrossRef]

J. B. Geddes, M. W. Meredith, and A. Lakhtakia, “Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals,” Opt. Commun. 182, 45–57 (2000).
[CrossRef]

Genack, A. Z.

Gersten, J. I.

J. I. Gersten and F. W. Smith, The Physics and Chemistry of Materials (Wiley, 2001).

Gevorgyan, A. H.

A. H. Gevorgyan, “Chiral photonic crystals with an anisotropic defect layer: oblique incidence,” Opt. Commun. 281, 5097–5103 (2008).
[CrossRef]

A. H. Gevorgyan and M. Z. Harutyunyan, “Chiral photonic crystals with an anisotropic defect layer,” Phys. Rev. E 76, 031701 (2007).
[CrossRef]

Gevorkyan, L. P.

L. P. Gevorkyan, V. A. Makarov, and E. B. Cherepetskaya, “Compression of laser pulses during dynamic scattering in a nonlinear cholesteric liquid crystal,” Sov. J. Quantum Electron. 19, 1604–1605 (1989).
[CrossRef]

Gilani, T. H.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Gillen, G. D.

G. D. Gillen, M. A. Walker, and L. D. Van Woerkom, “Enhanced double ionization with circularly polarized light,” Phys. Rev. A 64, 043413 (2001).
[CrossRef]

Gilmour, S.

K. Bjorknas, P. Raynes, S. Gilmour, V. Christou, and K. Look, “Circularly polarized luminescence from an organoterbium emitter embedded in a chiral polymer,” Proc. SPIE 4806, 240–247 (2002).
[CrossRef]

Glover, B. J.

B. J. Glover and H. M. Whitney, “Structural colour and iridescence in plants: the poorly studied relations of pigment colour,” Ann. Bot. 105, 505–511 (2010).
[CrossRef]

Gluck, N. S.

Goldizen, A.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef]

Gospodyn, J.

J. Gospodyn and J. C. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. (Amsterdam) 29, 318–325 (2006).
[CrossRef]

Grann, E. B.

Graver, T.

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. Tait, “Fiber Bragg grating multichemical sensor,” Proc. SPIE 6371, 637109 (2006).
[CrossRef]

Guardalben, M. J.

Gunning, W. J.

Ha, N. Y.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzuki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[CrossRef]

Haas, W.

J. Adams, W. Haas, and J. Daily, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096–4098 (1971).
[CrossRef]

Haas, W. J.

W. J. Haas, “Liquid crystal display research: the first fifteen years,” Mol. Cryst. Liq. Cryst. 94, 1–31 (1983).
[CrossRef]

Hall, R. L.

Halle, M.

J. Konrad and M. Halle, “3-D displays and signal processing: an answer to 3-D ills?” IEEE Signal Process. Mag. 24(6), 97–111 (2007).
[CrossRef]

Hansteen, F.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef]

Hara, M.

H. Takezoe, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental studies on reflection spectra in monodomain cholesteric liquid crystal cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

H. Takezoe, K. Hashimoto, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental study on higher order reflection by monodomain cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 101, 329–340 (1983).
[CrossRef]

Harutyunyan, M. Z.

A. H. Gevorgyan and M. Z. Harutyunyan, “Chiral photonic crystals with an anisotropic defect layer,” Phys. Rev. E 76, 031701 (2007).
[CrossRef]

Hashimoto, K.

H. Takezoe, K. Hashimoto, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental study on higher order reflection by monodomain cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 101, 329–340 (1983).
[CrossRef]

Haus, H. A.

H. A. Haus and C. V. Shank, “Asymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
[CrossRef]

Hawkeye, M. M.

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[CrossRef]

Hayes, C. F.

T. H. Sterling and C. F. Hayes, “Optical rotatory power of a cholesteric liquid crystal for obliquely incident light using multiple scattering,” Mol. Cryst. Liq. Cryst. 43, 279–286 (1977).
[CrossRef]

Hazel, J.

Herzinger, C. M.

M. Schubert and C. M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A 188, 1563–1575 (2001).
[CrossRef]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Hodgkinson, I.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, and J. Leader, “Natural and nanoengineered chiral reflectors: structural color of Manuka beetles and titania coatings,” Electromagnetics 25, 391–408 (2005).
[CrossRef]

I. Hodgkinson, Q. h. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

I. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74, 1794–1796 (1999).
[CrossRef]

Hodgkinson, I. J.

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

I. J. Hodgkinson, A. Lakhtakia, Q. h. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, L. De Silva, M. Arnold, M. W. McCall, and A. Lakhtakia, “Supermodes of chiral photonic filters with combined twist and layer defects,” Phys. Rev. Lett. 91, 223901 (2003).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Commun. 177, 79–84 (2000).
[CrossRef]

I. J. Hodgkinson, A. Lakhtakia, and Q. h. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[CrossRef]

A. Lakhtakia and I. J. Hodgkinson, “Spectral response of dielectric thin-film helicoidal bianisotropic medium bilayer,” Opt. Commun. 167, 191–202 (1999).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[CrossRef]

I. J. Hodgkinson and Q. h. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).

Horn, M. W.

F. Zhang, J. Xu, A. Lakhtakia, T. Zhu, S. M. Pursel, and M. W. Horn, “Circular polarization emission from an external cavity diode laser,” Appl. Phys. Lett. 92, 111109 (2008).
[CrossRef]

F. Zhang, J. Xu, A. Lakhtakia, S. M. Pursel, M. W. Horn, and A. Wang, “Circularly polarized emission from colloidal nanocrystal quantum dots confined in microcavities formed by chiral mirrors,” Appl. Phys. Lett. 91, 023102 (2007). Correction: the labels LCP and RCP should be interchanged in Fig. 2c of this paper.
[CrossRef]

S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. A 25, 2611–2615 (2007).
[CrossRef]

Hrudey, P. C. P.

B. Szeto, P. C. P. Hrudey, M. Taschuk, and M. J. Brett, “Circularly polarized luminescence from chiral thin films,” Proc. SPIE 6135, 613511 (2008).
[CrossRef]

P. C. P. Hrudey, K. L. Westra, and M. J. Brett, “Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition,” Adv. Mater. 18, 224–228 (2006).
[CrossRef]

Huang, T. J.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B Chem. 156, 593–598 (2011).
[CrossRef]

Huang, Y.

Huffman, D. F.

C. F. Bohren and D. F. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Hugonin, J.-P.

Hwangbo, C. K.

Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Optical and structural properties of a circular polarization handedness inverter prepared by using glancing angle deposition,” J. Korean Phys. Soc. 55, 1263–1266 (2009).
[CrossRef]

Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Wideband circular polarization reflector fabricated by glancing angle deposition,” Opt. Express 16, 5186–5192 (2008).
[CrossRef]

Isaert, N.

G. Joly and N. Isaert, “Quelques champs électromagnétiques dans les piles de Reusch IV. Domaines multiples de réflexion sélective,” J. Opt. (Paris) 17, 211–221 (1986).
[CrossRef]

G. Joly and N. Isaert, “Quelques champs électromagnétiques dans les piles de Reusch III. Biréfringence elliptique des vibrations itératives; activité optique de piles hélicoïdales d’extension finie,” J. Opt. (Paris) 16, 203–213 (1985).
[CrossRef]

Ishikawa, K.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzuki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[CrossRef]

Itoh, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

Jacobs, S. D.

Jalkanen, T.

Jamaian, S. S.

T. G. Mackay, A. Lakhtakia, and S. S. Jamaian, “Chiral sculptured thin films as integrated dual-modality optical sensors,” Proc. SPIE 8465, 84650X (2012).
[CrossRef]

S. S. Jamaian and T. G. Mackay, “Erratum to ‘On chemiluminescent emission from an infiltrated chiral sculptured thin film’,” Opt. Commun. 284, 3488–3489 (2011).
[CrossRef]

S. S. Jamaian and T. G. Mackay, “On chemiluminescent emission from an infiltrated chiral sculptured thin film,” Opt. Commun. 284, 2382–2392 (2011).
[CrossRef]

Jang, S.-H.

K. Claborn, A.-S. Chu, S.-H. Jang, F. Su, W. Kaminsky, and B. Kahr, “Circular extinction imaging: determination of the absolute orientation of embedded chromophores in enantiomorphously twinned LiKSO4 crystals,” Cryst. Growth Des. 5, 2117–2123 (2005).
[CrossRef]

Jeong, S. M.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzuki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[CrossRef]

Jergel, M.

E. Majkova, M. Jergel, M. Yamamoto, T. Tsuru, S. Luby, and P. Siffalovic, “Advanced nanometer-size structures,” Acta Phys. Slovaca 57, 911–1074 (2007).
[CrossRef]

John, W. D. St.

W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
[CrossRef]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Joly, G.

G. Joly and N. Isaert, “Quelques champs électromagnétiques dans les piles de Reusch IV. Domaines multiples de réflexion sélective,” J. Opt. (Paris) 17, 211–221 (1986).
[CrossRef]

G. Joly and N. Isaert, “Quelques champs électromagnétiques dans les piles de Reusch III. Biréfringence elliptique des vibrations itératives; activité optique de piles hélicoïdales d’extension finie,” J. Opt. (Paris) 16, 203–213 (1985).
[CrossRef]

G. Joly and J. Billard, “Quelques champs électromagnétiques dans les piles de Reusch II. Piles éclairées sous l’incidence normale par des ondes monochromatiques planes et uniformes,” J. Opt. (Paris) 13, 227–238 (1982).
[CrossRef]

G. Joly and J. Billard, “Quelques champs électromagnétiques dans les piles de Reusch I. Les vibrations propres d’une pile de deux lames a biréfringence rectiligne ne sont pas orthogonales,” J. Opt. (Paris) 12, 323–329 (1981).
[CrossRef]

Kafesaki, M.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Kagan, H. B.

G. Balavoine, A. Moradpour, and H. B. Kagan, “Preparation of chiral compounds with high optical purity by irradiation with circularly polarized light, a model reaction for the prebiotic generation of optical activity,” J. Am. Chem. Soc. 96, 5152–5158 (1974).
[CrossRef]

Kahr, B.

K. Claborn, A.-S. Chu, S.-H. Jang, F. Su, W. Kaminsky, and B. Kahr, “Circular extinction imaging: determination of the absolute orientation of embedded chromophores in enantiomorphously twinned LiKSO4 crystals,” Cryst. Growth Des. 5, 2117–2123 (2005).
[CrossRef]

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-Dihydroxyanthraquinone,” J. Am. Chem. Soc. 125, 14825–14831 (2003).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Kaminsky, W.

K. Claborn, A.-S. Chu, S.-H. Jang, F. Su, W. Kaminsky, and B. Kahr, “Circular extinction imaging: determination of the absolute orientation of embedded chromophores in enantiomorphously twinned LiKSO4 crystals,” Cryst. Growth Des. 5, 2117–2123 (2005).
[CrossRef]

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-Dihydroxyanthraquinone,” J. Am. Chem. Soc. 125, 14825–14831 (2003).
[CrossRef]

Kats, E. I.

E. I. Kats, “Optical properties of cholesteric liquid crystals,” Sov. Phys. JETP 32, 1004–1007 (1971).

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kee, C.-S.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, and H. Y. Park, “Photonic defect modes of cholesteric liquid crystals,” Phys. Rev. E 60, 6852–6854 (1999).
[CrossRef]

Kennedy, S. R.

S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of chiral thin films and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[CrossRef]

Khoo, I.-C.

I.-C. Khoo and S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

Kim, J.-E.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, and H. Y. Park, “Photonic defect modes of cholesteric liquid crystals,” Phys. Rev. E 60, 6852–6854 (1999).
[CrossRef]

Kimel, A. V.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef]

Kini, U. D.

R. Nityananda and U. D. Kini, “The theory of reflexion and transmission by plane parallel cholesteric films,” Pramāṇa Suppl. 1, 311–323 (1975).

R. Nityananda, U. D. Kini, S. Chandrasekhar, and K. A. Suresh, “Anomalous transmission (Borrmann effect) in absorbing cholesteric liquid crystals,” Pramāṇa Suppl. 1, 325–340 (1975).

Kinoshita, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

Kirilyuk, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef]

Kleinlogel, S.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef]

Knight, B.

Komaee, A.

R. Probst, J. Lin, A. Komaee, A. Nacev, Z. Cummins, and B. Shapiro, “Planar steering of a single ferrofluid drop by optimal minimum power dynamic feedback control of four electromagnets at a distance,” J. Magn. Magn. Mater. 323, 885–896 (2011).
[CrossRef]

Konrad, J.

J. Konrad and M. Halle, “3-D displays and signal processing: an answer to 3-D ills?” IEEE Signal Process. Mag. 24(6), 97–111 (2007).
[CrossRef]

Kopp, V. I.

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Kowal, J.

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

Krause, K. M.

K. M. Krause and M. J. Brett, “Spatially graded nanostructured chiral films as tunable circular polarizers,” Adv. Funct. Mater. 18, 3111–3118 (2008).
[CrossRef]

Kurimoto, M.

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-Dihydroxyanthraquinone,” J. Am. Chem. Soc. 125, 14825–14831 (2003).
[CrossRef]

Kuze, E.

H. Takezoe, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental studies on reflection spectra in monodomain cholesteric liquid crystal cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

H. Takezoe, K. Hashimoto, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental study on higher order reflection by monodomain cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 101, 329–340 (1983).
[CrossRef]

Kwok, H. S.

B. Zhang, D. Li, F. Dai, and H. S. Kwok, “Minimization of color fringing effect using a circularly polarized light,” J. Disp. Technol. 8, 269–272 (2012).
[CrossRef]

Lacquet, B. M.

P. L. Swart, P. V. Bulkin, and B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, “Exhibition of circular Bragg phenomenon by hyperbolic, dielectric, structurally chiral materials,” J. Nanophoton. 8, 083998 (2014).
[CrossRef]

S. E. Swiontek, D. P. Pulsifer, J. Xu, and A. Lakhtakia, “Suppression of circular Bragg phenomenon in chiral sculptured thin films produced with simultaneous rocking and rotation of substrate during serial bideposition,” J. Nanophoton. 7, 073599 (2013).
[CrossRef]

G. Strout, S. D. Russell, D. P. Pulsifer, S. Erten, A. Lakhtakia, and D. W. Lee, “Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata,” Ann. Bot. 112, 1141–1148 (2013).
[CrossRef]

D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Observation of the Dyakonov–Tamm wave,” Phys. Rev. Lett. 111, 243902 (2013).
[CrossRef]

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[CrossRef]

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

T. G. Mackay, A. Lakhtakia, and S. S. Jamaian, “Chiral sculptured thin films as integrated dual-modality optical sensors,” Proc. SPIE 8465, 84650X (2012).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J. 12, 273–280 (2012).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B Chem. 156, 593–598 (2011).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Negatively refracting chiral metamaterials: a review,” SPIE Rev. 1, 018003 (2010).

T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010).
[CrossRef]

A. Lakhtakia, “Reflection of an obliquely incident plane wave by a half space filled by a helicoidal bianisotropic medium,” Phys. Lett. A 374, 3887–3894 (2010).
[CrossRef]

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. A 465, 87–107 (2009).
[CrossRef]

M. Dixit and A. Lakhtakia, “Selection strategy for circular-polarization-sensitive rejection characteristics of electro-optic ambichiral Reusch piles,” Opt. Commun. 281, 4812–4823 (2008).
[CrossRef]

A. Lakhtakia and J. A. Reyes, “Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material—Part 1: Axial dc electric field,” Optik 119, 253–268 (2008).
[CrossRef]

M. Dixit and A. Lakhtakia, “Electrically controlled Bragg resonances of an ambichiral electro-optic structure: oblique incidence,” Asian J. Phys. 17, 213–223 (2008).

T. G. Mackay and A. Lakhtakia, “Theory of light emission from a dipole source embedded in a chiral sculptured thin film: erratum,” Opt. Express 16, 3659 (2008).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Electromagnetic fields in linear bianisotropic mediums,” Prog. Opt. 51, 121–209 (2008).
[CrossRef]

F. Zhang, J. Xu, A. Lakhtakia, T. Zhu, S. M. Pursel, and M. W. Horn, “Circular polarization emission from an external cavity diode laser,” Appl. Phys. Lett. 92, 111109 (2008).
[CrossRef]

A. Lakhtakia and J. A. Reyes, “Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material—Part 2: Arbitrary dc electric field,” Optik 119, 269–275 (2008).
[CrossRef]

A. Lakhtakia, “Polarization-universal rejection filtering by ambichiral structures made of indefinite dielectric-magnetic materials,” Phys. Scr. 77, 055401 (2008).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Swamping of circular Bragg phenomenon and shaping of videopulses,” Microw. Opt. Technol. Lett. 49, 776–779 (2007).
[CrossRef]

A. Lakhtakia and J. Xu, “Planewave remittances of an axially excited chiral sculptured thin film with gain,” Optik 118, 94–99 (2007).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Theory of light emission from a dipole source embedded in a chiral sculptured thin film,” Opt. Express 15, 14689–14703 (2007).
[CrossRef]

F. Zhang, J. Xu, A. Lakhtakia, S. M. Pursel, M. W. Horn, and A. Wang, “Circularly polarized emission from colloidal nanocrystal quantum dots confined in microcavities formed by chiral mirrors,” Appl. Phys. Lett. 91, 023102 (2007). Correction: the labels LCP and RCP should be interchanged in Fig. 2c of this paper.
[CrossRef]

A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun. 275, 283–287 (2007).
[CrossRef]

A. Lakhtakia, “Electrically switchable exhibition of circular Bragg phenomenon by an isotropic slab,” Microw. Opt. Technol. Lett. 48, 2148–2153 (2006).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
[CrossRef]

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

A. Lakhtakia, “Ambichiral, electro-optic, circular-polarization rejection filters: theory,” Phys. Lett. A 354, 330–334 (2006).
[CrossRef]

F. Wang and A. Lakhtakia, “Defect modes in multisection helical photonic crystals,” Opt. Express 13, 7319–7335 (2005).
[CrossRef]

F. Wang and A. Lakhtakia, “Optical crossover phenomenon due to a central 90°-twist defect in a chiral sculptured thin film or chiral liquid crystal,” Proc. R. Soc. A 461, 2985–3004 (2005).
[CrossRef]

F. Wang and A. Lakhtakia, “Third method for generation of spectral holes in chiral sculptured thin films,” Opt. Commun. 250, 105–110 (2005).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Tilt-modulated chiral sculptured thin films: an alternative to quarter-wave stacks,” Opt. Commun. 242, 13–21 (2004).
[CrossRef]

I. J. Hodgkinson, A. Lakhtakia, Q. h. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[CrossRef]

F. Chiadini and A. Lakhtakia, “Design of wideband circular-polarization filters made of chiral sculptured thin films,” Microw. Opt. Technol. Lett. 42, 135–138 (2004).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Comparison of two methods for oblique propagation in helicoidal bianisotropic mediums,” Opt. Commun. 230, 369–386 (2004).
[CrossRef]

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
[CrossRef]

E. E. Steltz and A. Lakhtakia, “Theory of second-harmonic-generated radiation from chiral sculptured thin films for bio-sensing,” Opt. Commun. 216, 139–150 (2003).
[CrossRef]

M. W. McCall and A. Lakhtakia, “Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part I: reflectances and transmittances: erratum,” J. Mod. Opt. 50, 2807 (2003).
[CrossRef]

A. Lakhtakia, “Erratum to: Truncation of angular spread of Bragg zones by total reflection, and Goos–Hänchen shifts exhibited by chiral sculptured thin films,” Int. J. Electron. Commun. (AEÜ) 57, 79 (2003).
[CrossRef]

A. Lakhtakia, “On radiation from canonical source configurations embedded in structurally chiral materials,” Microw. Opt. Technol. Lett. 37, 37–40 (2003).
[CrossRef]

F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79–92 (2003).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, L. De Silva, M. Arnold, M. W. McCall, and A. Lakhtakia, “Supermodes of chiral photonic filters with combined twist and layer defects,” Phys. Rev. Lett. 91, 223901 (2003).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “Erratum: Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 24, 91 (2003).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Numerical implementation of exact analytical solution for oblique propagation in a cholesteric liquid crystal,” Microw. Opt. Technol. Lett. 35, 397–400 (2002).
[CrossRef]

J. Wang, A. Lakhtakia, and J. B. Geddes, “Multiple Bragg regimes exhibited by a chiral sculptured thin film half-space on axial excitation,” Optik 113, 213–221 (2002).
[CrossRef]

M. D. Pickett and A. Lakhtakia, “On gyrotropic chiral sculptured thin films for magneto-optics,” Optik 113, 367–371 (2002).
[CrossRef]

A. Lakhtakia, “Truncation of angular spread of Bragg zones by total reflection, and Goos–Hänchen shifts exhibited by chiral sculptured thin films,” Int. J. Electron. Commun. (AEÜ) 56, 169–176 (2002).
[CrossRef]

A. Lakhtakia, “Pseudo-isotropic and maximum-bandwidth points for axially excited chiral sculptured thin films,” Microw. Opt. Technol. Lett. 34, 367–371 (2002).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “Towards piezoelectrically tunable sculptured thin film lasers,” Sens. Actuators A Phys. 102, 31–35 (2002).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 20, 91–103 (2002).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Videopulse bleeding in axially excited chiral sculptured thin films in the Bragg regime,” Eur. Phys. J. Appl. Phys. 17, 21–24 (2002).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Pulse-coded information transmission across an axially excited chiral-sculptured thin film in the Bragg regime,” Microw. Opt. Technol. Lett. 28, 59–62 (2001).
[CrossRef]

A. Lakhtakia, “Stepwise chirping of chiral sculptured thin films for Bragg bandwidth enhancement,” Microw. Opt. Technol. Lett. 28, 323–326 (2001).
[CrossRef]

A. Lakhtakia, “On bioluminescent emission from chiral sculptured thin films,” Opt. Commun. 188, 313–320 (2001).
[CrossRef]

A. Lakhtakia, “Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 145–148 (2001).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Erratum: Reflection and transmission of optical narrow-extent pulses by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 16, 247 (2001).

J. B. Geddes and A. Lakhtakia, “Erratum: Time-domain simulation of the circular Bragg phenomenon exhibited by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 16, 247 (2001).

J. B. Geddes and A. Lakhtakia, “Time-domain signature of an axially excited cholesteric liquid crystal. Part II: Rectangular wide-extent pulses,” Optik 112, 62–66 (2001). Videos associated with this paper are available at http://www.esm.psu.edu/~axl4/Lakhtakia/TimeBragg/TDBragg.html .
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Time-domain simulation of the circular Bragg phenomenon exhibited by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 14, 97–105 (2001).
[CrossRef]

A. Lakhtakia, “Correction to: Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 544 (2001).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Reflection and transmission of optical narrow-extent pulses by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 13, 3–14 (2001). Videos associated with this paper are available at http://www.esm.psu.edu/~axl4/Lakhtakia/TimeBragg/TDBragg.html .
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “On absorption by non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Eur. Phys. J. Appl. Phys. 10, 173–184 (2000).
[CrossRef]

M. W. Meredith and A. Lakhtakia, “Time-domain signature of an axially excited cholesteric liquid crystal. Part I: narrow-extent pulses,” Optik 111, 443–453 (2000).

A. Lakhtakia, V. C. Venugopal, and M. W. McCall, “Spectral holes in Bragg reflection from chiral sculptured thin films: circular polarization filters,” Opt. Commun. 177, 57–68 (2000).
[CrossRef]

J. B. Geddes, M. W. Meredith, and A. Lakhtakia, “Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals,” Opt. Commun. 182, 45–57 (2000).
[CrossRef]

I. Hodgkinson, Q. h. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[CrossRef]

M. McCall and A. Lakhtakia, “Polarization-dependent narrowband spectral filtering by chiral sculptured thin films,” J. Mod. Opt. 47, 743–755 (2000).

I. J. Hodgkinson, A. Lakhtakia, and Q. h. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000).
[CrossRef]

M. W. McCall and A. Lakhtakia, “Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part I: reflectances and transmittances,” J. Mod. Opt. 47, 973–991 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Commun. 177, 79–84 (2000).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Proc. R. Soc. A 456, 125–161 (2000).
[CrossRef]

A. Lakhtakia and I. J. Hodgkinson, “Spectral response of dielectric thin-film helicoidal bianisotropic medium bilayer,” Opt. Commun. 167, 191–202 (1999).
[CrossRef]

A. Lakhtakia and V. C. Venugopal, “On Bragg reflection by helicoidal bianisotropic mediums,” Int. J. Electron. Commun. (AEÜ) 53, 287–290 (1999).

A. Lakhtakia, “Spectral signatures of axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Eur. Phys. J. Appl. Phys. 8, 129–137 (1999).
[CrossRef]

A. Lakhtakia, “Bragg-regime absorption in axially excited slabs of dielectric thin-film helicoidal bianisotropic media,” Microw. Opt. Technol. Lett. 22, 243–247 (1999).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “Correction for: Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. A 455, 4383 (1999).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “On selective absorption in an axially excited slab of an absorbing dielectric thin-film helicoidal bianisotropic medium: erratum,” Opt. Commun. 161, 370 (1999).
[CrossRef]

A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun. 168, 457–465 (1999).
[CrossRef]

A. Lakhtakia, “On determining gas concentrations using dielectric thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B Chem. 52, 243–250 (1998).
[CrossRef]

A. Lakhtakia and V. C. Venugopal, “Dielectric thin-film helicoidal bianistropic medium bilayers as tunable polarization-independent laser mirrors and notch filters,” Microw. Opt. Technol. Lett. 17, 135–140 (1998).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “On optical rotation and ellipticity transformation by axially excited slabs of dielectric thin-film helicoidal bianisotropic dielectric mediums (TFHBMs),” Int. J. Appl. Electromag. Mech. 9, 201–210 (1998).

V. C. Venugopal and A. Lakhtakia, “Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. A 454, 1535–1571 (1998).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “Corrections for: Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation,” Proc. R. Soc. A 454, 3275 (1998).

A. Lakhtakia and W. S. Weiglhofer, “Corrections on: On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. A 454, 3275 (1998).

V. C. Venugopal and A. Lakhtakia, “On selective absorption in an axially excited slab of an absorbing dielectric thin-film helicoidal bianisotropic medium,” Opt. Commun. 145, 171–187 (1998).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation,” Proc. R. Soc. A 453, 93–105 (1997).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “Green function for radiation and propagation in helicoidal bianisotropic mediums,” IEE Proc.-Microw. Antennas Propag. 144, 57–59 (1997).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “Simple and exact analytic solution for oblique propagation in a cholesteric liquid crystal,” Microw. Opt. Technol. Lett. 12, 245–248 (1996).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

W. S. Weiglhofer and A. Lakhtakia, “Oblique propagation in a cholesteric liquid crystal: 4 × 4 matrix perturbational solution,” Optik 102, 111–114 (1995).

A. Lakhtakia and W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. A 448, 419–437 (1995).
[CrossRef]

W. S. Weiglhofer and A. Lakhtakia, “Electromagnetic wave propagation in super-cholesteric materials parallel to the helical axis,” J. Phys. D 26, 2117–2122 (1993).
[CrossRef]

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

A. Lakhtakia and M. W. McCall, “Circular polarization filters,” in Encyclopedia of Optical Engineering, R. Driggers, ed. (Marcel Dekker, 2003), Vol. 1, pp. 230–236.

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).

A. Lakhtakia, “The editor’s apology,” in Selected Papers on Natural Optical Activity, A. Lakhtakia, ed. (SPIE, 1990), pp. xiii–xxiv.

T. G. Mackay and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide (World Scientific, 2010).

N. Dushkina and A. Lakhtakia, “Structural colors,” in Engineered Biomimicry, A. Lakhtakia and R. J. Martín-Palma, eds. (Elsevier, 2013), pp. 267–303.

Leader, J.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, and J. Leader, “Natural and nanoengineered chiral reflectors: structural color of Manuka beetles and titania coatings,” Electromagnetics 25, 391–408 (2005).
[CrossRef]

Lee, D. W.

G. Strout, S. D. Russell, D. P. Pulsifer, S. Erten, A. Lakhtakia, and D. W. Lee, “Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata,” Ann. Bot. 112, 1141–1148 (2013).
[CrossRef]

Lee, X.

A. Othonos, X. Lee, and D. P. Tsai, “Spectrally broadband Bragg grating mirror for an erbium-doped fiber laser,” Opt. Eng. 35, 1088–1092 (1996).
[CrossRef]

Lehto, V.-P.

Lei, M.

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

Leroux, T.

P. Boher, T. Leroux, T. Bignon, and V. Collomb-Patton, “Multispectral polarization viewing angle analysis of circular polarized stereoscopic 3D displays,” Proc. SPIE 7524, 75240R (2010).
[CrossRef]

Lewis, R. A.

J. A. Wheatley, R. A. Lewis, W. J. Schrenk, W. Lutz, and G. A. Motter, “Rapid production of large area polymeric cold mirror via a simultaneous layer formation process,” Proc. SPIE 2262, 262–275 (1994).
[CrossRef]

Li, D.

B. Zhang, D. Li, F. Dai, and H. S. Kwok, “Minimization of color fringing effect using a circularly polarized light,” J. Disp. Technol. 8, 269–272 (2012).
[CrossRef]

Li, L.

Liang, H.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B Chem. 156, 593–598 (2011).
[CrossRef]

Lin, J.

R. Probst, J. Lin, A. Komaee, A. Nacev, Z. Cummins, and B. Shapiro, “Planar steering of a single ferrofluid drop by optimal minimum power dynamic feedback control of four electromagnets at a distance,” J. Magn. Magn. Mater. 323, 885–896 (2011).
[CrossRef]

Lin, W.

T. J. Dingemans, L. A. Madsen, N. A. Zafiropoulos, W. Lin, and E. T. Samulski, “Uniaxial and biaxial nematic liquid crystals,” Phil. Trans. R. Soc. A 364, 2681–2696 (2006).
[CrossRef]

Liou, J.

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

Liu, J.

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Liu, Y. J.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B Chem. 156, 593–598 (2011).
[CrossRef]

Loeffler, B.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef]

Look, K.

K. Bjorknas, P. Raynes, S. Gilmour, V. Christou, and K. Look, “Circularly polarized luminescence from an organoterbium emitter embedded in a chiral polymer,” Proc. SPIE 4806, 240–247 (2002).
[CrossRef]

Lu, Z. J.

W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
[CrossRef]

Luby, S.

E. Majkova, M. Jergel, M. Yamamoto, T. Tsuru, S. Luby, and P. Siffalovic, “Advanced nanometer-size structures,” Acta Phys. Slovaca 57, 911–1074 (2007).
[CrossRef]

Luckhurst, G. R.

G. R. Luckhurst, “Biaxial nematic liquid crystals: fact or fiction?” Thin Solid Films 393, 40–52 (2001).
[CrossRef]

Lutz, W.

J. A. Wheatley, R. A. Lewis, W. J. Schrenk, W. Lutz, and G. A. Motter, “Rapid production of large area polymeric cold mirror via a simultaneous layer formation process,” Proc. SPIE 2262, 262–275 (1994).
[CrossRef]

Lyon, R. F.

R. F. Lyon, “Prism-based color separation for professional digital photography,” in Proceedings PICS 2000: Image Processing, Image Quality, Image Capture Systems Conference (Society for Imaging Science and Technology, 2000), pp. 50–54.

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J. 12, 273–280 (2012).
[CrossRef]

T. G. Mackay, A. Lakhtakia, and S. S. Jamaian, “Chiral sculptured thin films as integrated dual-modality optical sensors,” Proc. SPIE 8465, 84650X (2012).
[CrossRef]

S. S. Jamaian and T. G. Mackay, “Erratum to ‘On chemiluminescent emission from an infiltrated chiral sculptured thin film’,” Opt. Commun. 284, 3488–3489 (2011).
[CrossRef]

S. S. Jamaian and T. G. Mackay, “On chemiluminescent emission from an infiltrated chiral sculptured thin film,” Opt. Commun. 284, 2382–2392 (2011).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Negatively refracting chiral metamaterials: a review,” SPIE Rev. 1, 018003 (2010).

T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Electromagnetic fields in linear bianisotropic mediums,” Prog. Opt. 51, 121–209 (2008).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Theory of light emission from a dipole source embedded in a chiral sculptured thin film: erratum,” Opt. Express 16, 3659 (2008).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Theory of light emission from a dipole source embedded in a chiral sculptured thin film,” Opt. Express 15, 14689–14703 (2007).
[CrossRef]

T. G. Mackay and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide (World Scientific, 2010).

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).

Madsen, L. A.

T. J. Dingemans, L. A. Madsen, N. A. Zafiropoulos, W. Lin, and E. T. Samulski, “Uniaxial and biaxial nematic liquid crystals,” Phil. Trans. R. Soc. A 364, 2681–2696 (2006).
[CrossRef]

Majkova, E.

E. Majkova, M. Jergel, M. Yamamoto, T. Tsuru, S. Luby, and P. Siffalovic, “Advanced nanometer-size structures,” Acta Phys. Slovaca 57, 911–1074 (2007).
[CrossRef]

Makarov, V. A.

L. P. Gevorkyan, V. A. Makarov, and E. B. Cherepetskaya, “Compression of laser pulses during dynamic scattering in a nonlinear cholesteric liquid crystal,” Sov. J. Quantum Electron. 19, 1604–1605 (1989).
[CrossRef]

Mäkilä, E.

Marshall, J.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef]

Marshall, K. L.

Martínez-Duart, J. M.

Matsui, T.

T. Matsui, T. Ozaki, and K. Yoshino, “Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix,” Phys. Rev. E 69, 061715 (2004).
[CrossRef]

Mazzulla, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, “Laser emission from a dye-doped cholesteric liquid crystal pumped by another cholesteric liquid crystal laser,” Appl. Phys. Lett. 85, 3378–3380 (2004).
[CrossRef]

McCall, M.

M. McCall and A. Lakhtakia, “Polarization-dependent narrowband spectral filtering by chiral sculptured thin films,” J. Mod. Opt. 47, 743–755 (2000).

A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun. 168, 457–465 (1999).
[CrossRef]

McCall, M. W.

I. J. Hodgkinson, A. Lakhtakia, Q. h. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, L. De Silva, M. Arnold, M. W. McCall, and A. Lakhtakia, “Supermodes of chiral photonic filters with combined twist and layer defects,” Phys. Rev. Lett. 91, 223901 (2003).
[CrossRef]

M. W. McCall and A. Lakhtakia, “Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part I: reflectances and transmittances: erratum,” J. Mod. Opt. 50, 2807 (2003).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

A. Lakhtakia, V. C. Venugopal, and M. W. McCall, “Spectral holes in Bragg reflection from chiral sculptured thin films: circular polarization filters,” Opt. Commun. 177, 57–68 (2000).
[CrossRef]

M. W. McCall and A. Lakhtakia, “Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part I: reflectances and transmittances,” J. Mod. Opt. 47, 973–991 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Commun. 177, 79–84 (2000).
[CrossRef]

A. Lakhtakia and M. W. McCall, “Circular polarization filters,” in Encyclopedia of Optical Engineering, R. Driggers, ed. (Marcel Dekker, 2003), Vol. 1, pp. 230–236.

Meier, G.

R. Dreher and G. Meier, “Optical properties of cholesteric liquid crystals,” Phys. Rev. A 8, 1616–1623 (1973).
[CrossRef]

Mendez, A.

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. Tait, “Fiber Bragg grating multichemical sensor,” Proc. SPIE 6371, 637109 (2006).
[CrossRef]

Meredith, M. W.

M. W. Meredith and A. Lakhtakia, “Time-domain signature of an axially excited cholesteric liquid crystal. Part I: narrow-extent pulses,” Optik 111, 443–453 (2000).

J. B. Geddes, M. W. Meredith, and A. Lakhtakia, “Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals,” Opt. Commun. 182, 45–57 (2000).
[CrossRef]

Messier, R.

R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “Erratum: Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 24, 91 (2003).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 20, 91–103 (2002).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “Towards piezoelectrically tunable sculptured thin film lasers,” Sens. Actuators A Phys. 102, 31–35 (2002).
[CrossRef]

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).

Miyazaki, J.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

Moharam, M. G.

Moradpour, A.

G. Balavoine, A. Moradpour, and H. B. Kagan, “Preparation of chiral compounds with high optical purity by irradiation with circularly polarized light, a model reaction for the prebiotic generation of optical activity,” J. Am. Chem. Soc. 96, 5152–5158 (1974).
[CrossRef]

Motter, G. A.

J. A. Wheatley, R. A. Lewis, W. J. Schrenk, W. Lutz, and G. A. Motter, “Rapid production of large area polymeric cold mirror via a simultaneous layer formation process,” Proc. SPIE 2262, 262–275 (1994).
[CrossRef]

Murray, P.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, and J. Leader, “Natural and nanoengineered chiral reflectors: structural color of Manuka beetles and titania coatings,” Electromagnetics 25, 391–408 (2005).
[CrossRef]

Nacev, A.

R. Probst, J. Lin, A. Komaee, A. Nacev, Z. Cummins, and B. Shapiro, “Planar steering of a single ferrofluid drop by optimal minimum power dynamic feedback control of four electromagnets at a distance,” J. Magn. Magn. Mater. 323, 885–896 (2011).
[CrossRef]

Neville, A. C.

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystal,” Biol. Rev. 44, 531–562 (1969).
[CrossRef]

Nishimura, S.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzuki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[CrossRef]

Nityananda, R.

R. Nityananda and U. D. Kini, “The theory of reflexion and transmission by plane parallel cholesteric films,” Pramāṇa Suppl. 1, 311–323 (1975).

R. Nityananda, U. D. Kini, S. Chandrasekhar, and K. A. Suresh, “Anomalous transmission (Borrmann effect) in absorbing cholesteric liquid crystals,” Pramāṇa Suppl. 1, 325–340 (1975).

R. Nityananda, “On the theory of light propagation in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 21, 315–331 (1973).
[CrossRef]

Numan, M. Z.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Odenbach, S.

S. Odenbach, “Recent progress in magnetic fluid research,” J. Phys. Condens. Matter 16, R1135–R1150 (2004).
[CrossRef]

Ohtsuka, Y.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzuki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[CrossRef]

Oldano, L.

L. Oldano, P. Allia, and L. Trossi, “Optical properties of anisotropic periodic helical structures,” J. Phys. (Paris) 46, 573–582 (1985).
[CrossRef]

Othonos, A.

A. Othonos, X. Lee, and D. P. Tsai, “Spectrally broadband Bragg grating mirror for an erbium-doped fiber laser,” Opt. Eng. 35, 1088–1092 (1996).
[CrossRef]

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Ouchi, Y.

H. Takezoe, K. Hashimoto, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental study on higher order reflection by monodomain cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 101, 329–340 (1983).
[CrossRef]

H. Takezoe, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental studies on reflection spectra in monodomain cholesteric liquid crystal cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

Ozaki, T.

T. Matsui, T. Ozaki, and K. Yoshino, “Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix,” Phys. Rev. E 69, 061715 (2004).
[CrossRef]

Park, H. Y.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, and H. Y. Park, “Photonic defect modes of cholesteric liquid crystals,” Phys. Rev. E 60, 6852–6854 (1999).
[CrossRef]

Park, Y. J.

Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Optical and structural properties of a circular polarization handedness inverter prepared by using glancing angle deposition,” J. Korean Phys. Soc. 55, 1263–1266 (2009).
[CrossRef]

Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Wideband circular polarization reflector fabricated by glancing angle deposition,” Opt. Express 16, 5186–5192 (2008).
[CrossRef]

Parodi, O.

O. Parodi, “Light propagation along the helical axis in chiral smectics C,” J. Phys. (Paris) Colloq. 36, C1-325–C1-326 (1975).
[CrossRef]

Pelzl, G.

G. Pelzl, S. Diele, and W. Weissflog, “Banana-shaped compounds—a new field of liquid crystals,” Adv. Mater. 11, 707–724 (1999).
[CrossRef]

Pestov, D.

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. Tait, “Fiber Bragg grating multichemical sensor,” Proc. SPIE 6371, 637109 (2006).
[CrossRef]

Petriashvili, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, “Laser emission from a dye-doped cholesteric liquid crystal pumped by another cholesteric liquid crystal laser,” Appl. Phys. Lett. 85, 3378–3380 (2004).
[CrossRef]

Pickett, M. D.

M. D. Pickett and A. Lakhtakia, “On gyrotropic chiral sculptured thin films for magneto-optics,” Optik 113, 367–371 (2002).
[CrossRef]

Placido, F.

A. Esfandiar, H. Savaloni, and F. Placido, “On the fabrication and characterization of graded slanted chiral nano-sculptured silver thin films,” Physica E 50, 88–96 (2013).
[CrossRef]

Plum, E.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Polo, J. A.

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. A 465, 87–107 (2009).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Tilt-modulated chiral sculptured thin films: an alternative to quarter-wave stacks,” Opt. Commun. 242, 13–21 (2004).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Comparison of two methods for oblique propagation in helicoidal bianisotropic mediums,” Opt. Commun. 230, 369–386 (2004).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Numerical implementation of exact analytical solution for oblique propagation in a cholesteric liquid crystal,” Microw. Opt. Technol. Lett. 35, 397–400 (2002).
[CrossRef]

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

Pommet, D. A.

Probst, R.

R. Probst, J. Lin, A. Komaee, A. Nacev, Z. Cummins, and B. Shapiro, “Planar steering of a single ferrofluid drop by optimal minimum power dynamic feedback control of four electromagnets at a distance,” J. Magn. Magn. Mater. 323, 885–896 (2011).
[CrossRef]

Prost, J. A.

P. G. de Gennes and J. A. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).

Puklin-Faucher, E.

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-Dihydroxyanthraquinone,” J. Am. Chem. Soc. 125, 14825–14831 (2003).
[CrossRef]

Pulsifer, D. P.

S. E. Swiontek, D. P. Pulsifer, J. Xu, and A. Lakhtakia, “Suppression of circular Bragg phenomenon in chiral sculptured thin films produced with simultaneous rocking and rotation of substrate during serial bideposition,” J. Nanophoton. 7, 073599 (2013).
[CrossRef]

G. Strout, S. D. Russell, D. P. Pulsifer, S. Erten, A. Lakhtakia, and D. W. Lee, “Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata,” Ann. Bot. 112, 1141–1148 (2013).
[CrossRef]

D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Observation of the Dyakonov–Tamm wave,” Phys. Rev. Lett. 111, 243902 (2013).
[CrossRef]

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[CrossRef]

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

Pursel, S. M.

F. Zhang, J. Xu, A. Lakhtakia, T. Zhu, S. M. Pursel, and M. W. Horn, “Circular polarization emission from an external cavity diode laser,” Appl. Phys. Lett. 92, 111109 (2008).
[CrossRef]

F. Zhang, J. Xu, A. Lakhtakia, S. M. Pursel, M. W. Horn, and A. Wang, “Circularly polarized emission from colloidal nanocrystal quantum dots confined in microcavities formed by chiral mirrors,” Appl. Phys. Lett. 91, 023102 (2007). Correction: the labels LCP and RCP should be interchanged in Fig. 2c of this paper.
[CrossRef]

S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. A 25, 2611–2615 (2007).
[CrossRef]

Radic, S.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

Ranganath, G. S.

S. Chandrasekhar and G. S. Ranganath, “Discotic liquid crystals,” Rep. Prog. Phys. 53, 57–84 (1990).
[CrossRef]

Rao, X.-J.

X.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Rashed, R.

R. Rashed, “A pioneer in anaclastics, Ibn Sahl on burning mirrors and lenses,” Isis 81, 464–491 (1990).
[CrossRef]

Rasing, Th.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef]

Raynes, P.

K. Bjorknas, P. Raynes, S. Gilmour, V. Christou, and K. Look, “Circularly polarized luminescence from an organoterbium emitter embedded in a chiral polymer,” Proc. SPIE 4806, 240–247 (2002).
[CrossRef]

Reinitzer, F.

F. Reinitzer, “Beiträge zur Kenntiss des Cholesterins,” Monat. Chem. (Wien) 9, 421–441 (1888). See Sluckin et al. [85] for an English translation.

Reusch, E.

E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. Phys. Chem. Lpz. 138, 628–638 (1869).

Reyes, J. A.

A. Lakhtakia and J. A. Reyes, “Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material—Part 1: Axial dc electric field,” Optik 119, 253–268 (2008).
[CrossRef]

A. Lakhtakia and J. A. Reyes, “Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material—Part 2: Arbitrary dc electric field,” Optik 119, 269–275 (2008).
[CrossRef]

Robbie, K.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

I. Hodgkinson, Q. h. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

Rokushima, K.

Rubalcava, H.

H. Rubalcava and D. J. Fitzmaurice, “Photochemistry with circularly polarized light: a new method,” J. Chem. Phys. 92, 5975–5987 (1990).
[CrossRef]

Russell, P. St. J.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Russell, S. D.

G. Strout, S. D. Russell, D. P. Pulsifer, S. Erten, A. Lakhtakia, and D. W. Lee, “Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata,” Ann. Bot. 112, 1141–1148 (2013).
[CrossRef]

Sadashiva, B. K.

S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, “Liquid crystals of disc-like molecules,” Pramāṇa 9, 471–480 (1977).
[CrossRef]

Salonen, J.

Samulski, E. T.

T. J. Dingemans, L. A. Madsen, N. A. Zafiropoulos, W. Lin, and E. T. Samulski, “Uniaxial and biaxial nematic liquid crystals,” Phil. Trans. R. Soc. A 364, 2681–2696 (2006).
[CrossRef]

Savaloni, H.

A. Esfandiar, H. Savaloni, and F. Placido, “On the fabrication and characterization of graded slanted chiral nano-sculptured silver thin films,” Physica E 50, 88–96 (2013).
[CrossRef]

H. Savaloni and A. Esfandiar, “Fabrication, characterization and some applications of graded chiral zigzag shaped nano-sculptured silver thin films,” Appl. Surf. Sci. 257, 9425–9434 (2011).
[CrossRef]

F. Babaei, A. Esfandiar, and H. Savaloni, “Optical spectra of graded nanostructured TiO2 chiral sculptured thin films,” Opt. Commun. 283, 2849–2856 (2010).
[CrossRef]

Scheffer, T. J.

D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970).
[CrossRef]

Schmid, A.

Schmidtke, J.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

J. Schmidtke and W. Stille, “Fluourescence of a dye-doped cholesteric liquid crystal film in the region of stop band: theory and experiment,” Eur. Phys. J. B 31, 179–194 (2003).
[CrossRef]

J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E 12, 553–564 (2003).
[CrossRef]

Schrenk, W. J.

J. A. Wheatley, R. A. Lewis, W. J. Schrenk, W. Lutz, and G. A. Motter, “Rapid production of large area polymeric cold mirror via a simultaneous layer formation process,” Proc. SPIE 2262, 262–275 (1994).
[CrossRef]

Schubert, M.

M. Schubert and C. M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A 188, 1563–1575 (2001).
[CrossRef]

Semchenko, I. V.

A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach, 2001).

Semenov, V.

V. A. Belyakov and V. Semenov, “Optical defect modes in chiral liquid crystals,” J. Exp. Theor. Phys. 112, 694–710 (2011).
[CrossRef]

Serdyukov, A. N.

A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach, 2001).

Sethuraman, G.

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. Tait, “Fiber Bragg grating multichemical sensor,” Proc. SPIE 6371, 637109 (2006).
[CrossRef]

Shank, C. V.

H. A. Haus and C. V. Shank, “Asymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
[CrossRef]

Shapiro, B.

R. Probst, J. Lin, A. Komaee, A. Nacev, Z. Cummins, and B. Shapiro, “Planar steering of a single ferrofluid drop by optimal minimum power dynamic feedback control of four electromagnets at a distance,” J. Magn. Magn. Mater. 323, 885–896 (2011).
[CrossRef]

Sherwin, J. A.

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

Shi, J.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B Chem. 156, 593–598 (2011).
[CrossRef]

Siddiqi, A.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef]

Siffalovic, P.

E. Majkova, M. Jergel, M. Yamamoto, T. Tsuru, S. Luby, and P. Siffalovic, “Advanced nanometer-size structures,” Acta Phys. Slovaca 57, 911–1074 (2007).
[CrossRef]

Sihvola, A.

A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach, 2001).

Sit, J. C.

J. Gospodyn and J. C. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. (Amsterdam) 29, 318–325 (2006).
[CrossRef]

A. C. van Popta, M. J. Brett, and J. C. Sit, “Double-handed circular Bragg phenomena in polygonal helix thin films,” J. Appl. Phys. 98, 083517 (2005).
[CrossRef]

S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of chiral thin films and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[CrossRef]

J. C. Sit, D. J. Broer, and M. J. Brett, “Liquid crystal alignment and switching in porous chiral thin films,” Adv. Mater. 12, 371–373 (2000).
[CrossRef]

Skerret, K. J.

Sluckin, T. J.

T. J. Sluckin, D. A. Dunmur, and H. Stegemeyer, Crystals That Flow: Classic Papers From the History of Liquid Crystals (Taylor & Francis, 2004).

Smith, F. W.

J. I. Gersten and F. W. Smith, The Physics and Chemistry of Materials (Wiley, 2001).

Snow, P. A.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Sobahan, K. M. A.

Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Optical and structural properties of a circular polarization handedness inverter prepared by using glancing angle deposition,” J. Korean Phys. Soc. 55, 1263–1266 (2009).
[CrossRef]

Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Wideband circular polarization reflector fabricated by glancing angle deposition,” Opt. Express 16, 5186–5192 (2008).
[CrossRef]

Soukoulis, C. M.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Southwell, W. H.

Squire, E. K.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Stanciu, C. D.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef]

Starzhinskii, V. M.

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Stegemeyer, H.

T. J. Sluckin, D. A. Dunmur, and H. Stegemeyer, Crystals That Flow: Classic Papers From the History of Liquid Crystals (Taylor & Francis, 2004).

Steltz, E. E.

E. E. Steltz and A. Lakhtakia, “Theory of second-harmonic-generated radiation from chiral sculptured thin films for bio-sensing,” Opt. Commun. 216, 139–150 (2003).
[CrossRef]

Sterling, T. H.

T. H. Sterling and C. F. Hayes, “Optical rotatory power of a cholesteric liquid crystal for obliquely incident light using multiple scattering,” Mol. Cryst. Liq. Cryst. 43, 279–286 (1977).
[CrossRef]

Stille, W.

J. Schmidtke and W. Stille, “Fluourescence of a dye-doped cholesteric liquid crystal film in the region of stop band: theory and experiment,” Eur. Phys. J. B 31, 179–194 (2003).
[CrossRef]

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E 12, 553–564 (2003).
[CrossRef]

Strout, G.

G. Strout, S. D. Russell, D. P. Pulsifer, S. Erten, A. Lakhtakia, and D. W. Lee, “Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata,” Ann. Bot. 112, 1141–1148 (2013).
[CrossRef]

Su, F.

K. Claborn, A.-S. Chu, S.-H. Jang, F. Su, W. Kaminsky, and B. Kahr, “Circular extinction imaging: determination of the absolute orientation of embedded chromophores in enantiomorphously twinned LiKSO4 crystals,” Cryst. Growth Des. 5, 2117–2123 (2005).
[CrossRef]

Sunal, P. D.

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

Suresh, K. A.

S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, “Liquid crystals of disc-like molecules,” Pramāṇa 9, 471–480 (1977).
[CrossRef]

R. Nityananda, U. D. Kini, S. Chandrasekhar, and K. A. Suresh, “Anomalous transmission (Borrmann effect) in absorbing cholesteric liquid crystals,” Pramāṇa Suppl. 1, 325–340 (1975).

Suzuki, G.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzuki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[CrossRef]

Suzuki, M.

M. Suzuki, “Practical applications of thin films nanostructured by shadowing growth,” J. Nanophoton. 7, 073598 (2013).
[CrossRef]

Swart, P. L.

P. L. Swart, P. V. Bulkin, and B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997).
[CrossRef]

Swiontek, S. E.

S. E. Swiontek, D. P. Pulsifer, J. Xu, and A. Lakhtakia, “Suppression of circular Bragg phenomenon in chiral sculptured thin films produced with simultaneous rocking and rotation of substrate during serial bideposition,” J. Nanophoton. 7, 073599 (2013).
[CrossRef]

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[CrossRef]

Szeto, B.

B. Szeto, P. C. P. Hrudey, M. Taschuk, and M. J. Brett, “Circularly polarized luminescence from chiral thin films,” Proc. SPIE 6135, 613511 (2008).
[CrossRef]

Tabiryan, N. V.

R. S. Akopyan, B. Ya. Zel’dovich, and N. V. Tabiryan, “Optics of a chiral liquid crystal far from a Bragg resonance,” Sov. Phys. JETP 56, 1024–1027 (1982).

Tait, G.

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. Tait, “Fiber Bragg grating multichemical sensor,” Proc. SPIE 6371, 637109 (2006).
[CrossRef]

Takanishi, Y.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzuki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[CrossRef]

Takezoe, H.

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzuki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[CrossRef]

H. Takezoe, K. Hashimoto, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental study on higher order reflection by monodomain cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 101, 329–340 (1983).
[CrossRef]

H. Takezoe, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental studies on reflection spectra in monodomain cholesteric liquid crystal cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

Talwar, D. N.

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Taschuk, M.

B. Szeto, P. C. P. Hrudey, M. Taschuk, and M. J. Brett, “Circularly polarized luminescence from chiral thin films,” Proc. SPIE 6135, 613511 (2008).
[CrossRef]

Thelen, A.

Thorn, K. E.

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[CrossRef]

Torres-Costa, V.

Tretyakov, S. A.

A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach, 2001).

Trossi, L.

L. Oldano, P. Allia, and L. Trossi, “Optical properties of anisotropic periodic helical structures,” J. Phys. (Paris) 46, 573–582 (1985).
[CrossRef]

Tsai, D. P.

A. Othonos, X. Lee, and D. P. Tsai, “Spectrally broadband Bragg grating mirror for an erbium-doped fiber laser,” Opt. Eng. 35, 1088–1092 (1996).
[CrossRef]

Tsukamoto, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef]

Tsuru, T.

E. Majkova, M. Jergel, M. Yamamoto, T. Tsuru, S. Luby, and P. Siffalovic, “Advanced nanometer-size structures,” Acta Phys. Slovaca 57, 911–1074 (2007).
[CrossRef]

van Popta, A. C.

A. C. van Popta, M. J. Brett, and J. C. Sit, “Double-handed circular Bragg phenomena in polygonal helix thin films,” J. Appl. Phys. 98, 083517 (2005).
[CrossRef]

Van Woerkom, L. D.

G. D. Gillen, M. A. Walker, and L. D. Van Woerkom, “Enhanced double ionization with circularly polarized light,” Phys. Rev. A 64, 043413 (2001).
[CrossRef]

Venugopal, V. C.

A. Lakhtakia, V. C. Venugopal, and M. W. McCall, “Spectral holes in Bragg reflection from chiral sculptured thin films: circular polarization filters,” Opt. Commun. 177, 57–68 (2000).
[CrossRef]

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “On absorption by non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Eur. Phys. J. Appl. Phys. 10, 173–184 (2000).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Proc. R. Soc. A 456, 125–161 (2000).
[CrossRef]

A. Lakhtakia and V. C. Venugopal, “On Bragg reflection by helicoidal bianisotropic mediums,” Int. J. Electron. Commun. (AEÜ) 53, 287–290 (1999).

V. C. Venugopal and A. Lakhtakia, “Correction for: Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. A 455, 4383 (1999).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “On selective absorption in an axially excited slab of an absorbing dielectric thin-film helicoidal bianisotropic medium: erratum,” Opt. Commun. 161, 370 (1999).
[CrossRef]

A. Lakhtakia and V. C. Venugopal, “Dielectric thin-film helicoidal bianistropic medium bilayers as tunable polarization-independent laser mirrors and notch filters,” Microw. Opt. Technol. Lett. 17, 135–140 (1998).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “On optical rotation and ellipticity transformation by axially excited slabs of dielectric thin-film helicoidal bianisotropic dielectric mediums (TFHBMs),” Int. J. Appl. Electromag. Mech. 9, 201–210 (1998).

V. C. Venugopal and A. Lakhtakia, “On selective absorption in an axially excited slab of an absorbing dielectric thin-film helicoidal bianisotropic medium,” Opt. Commun. 145, 171–187 (1998).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. A 454, 1535–1571 (1998).
[CrossRef]

Vithana, H. K. M.

Walker, M. A.

G. D. Gillen, M. A. Walker, and L. D. Van Woerkom, “Enhanced double ionization with circularly polarized light,” Phys. Rev. A 64, 043413 (2001).
[CrossRef]

Wang, A.

F. Zhang, J. Xu, A. Lakhtakia, S. M. Pursel, M. W. Horn, and A. Wang, “Circularly polarized emission from colloidal nanocrystal quantum dots confined in microcavities formed by chiral mirrors,” Appl. Phys. Lett. 91, 023102 (2007). Correction: the labels LCP and RCP should be interchanged in Fig. 2c of this paper.
[CrossRef]

Wang, B.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Wang, F.

F. Wang and A. Lakhtakia, “Defect modes in multisection helical photonic crystals,” Opt. Express 13, 7319–7335 (2005).
[CrossRef]

F. Wang and A. Lakhtakia, “Third method for generation of spectral holes in chiral sculptured thin films,” Opt. Commun. 250, 105–110 (2005).
[CrossRef]

F. Wang, “Note on the asymptotic approximation of a double integral with an angular-spectrum representation,” Int. J. Electron. Commun. (AEÜ) 59, 258–261 (2005).
[CrossRef]

F. Wang and A. Lakhtakia, “Optical crossover phenomenon due to a central 90°-twist defect in a chiral sculptured thin film or chiral liquid crystal,” Proc. R. Soc. A 461, 2985–3004 (2005).
[CrossRef]

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
[CrossRef]

F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79–92 (2003).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “Erratum: Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 24, 91 (2003).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 20, 91–103 (2002).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “Towards piezoelectrically tunable sculptured thin film lasers,” Sens. Actuators A Phys. 102, 31–35 (2002).
[CrossRef]

Wang, J.

J. Wang, A. Lakhtakia, and J. B. Geddes, “Multiple Bragg regimes exhibited by a chiral sculptured thin film half-space on axial excitation,” Optik 113, 213–221 (2002).
[CrossRef]

Wang, S.

S. Wang, “Principles of distributed feedback and distributed Bragg-reflector lasers,” IEEE J. Quantum Electron. 10, 413–427 (1974).
[CrossRef]

Weiglhofer, W. S.

A. Lakhtakia and W. S. Weiglhofer, “Corrections for: Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation,” Proc. R. Soc. A 454, 3275 (1998).

A. Lakhtakia and W. S. Weiglhofer, “Corrections on: On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. A 454, 3275 (1998).

A. Lakhtakia and W. S. Weiglhofer, “Green function for radiation and propagation in helicoidal bianisotropic mediums,” IEE Proc.-Microw. Antennas Propag. 144, 57–59 (1997).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation,” Proc. R. Soc. A 453, 93–105 (1997).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “Simple and exact analytic solution for oblique propagation in a cholesteric liquid crystal,” Microw. Opt. Technol. Lett. 12, 245–248 (1996).
[CrossRef]

W. S. Weiglhofer and A. Lakhtakia, “Oblique propagation in a cholesteric liquid crystal: 4 × 4 matrix perturbational solution,” Optik 102, 111–114 (1995).

A. Lakhtakia and W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. A 448, 419–437 (1995).
[CrossRef]

W. S. Weiglhofer and A. Lakhtakia, “Electromagnetic wave propagation in super-cholesteric materials parallel to the helical axis,” J. Phys. D 26, 2117–2122 (1993).
[CrossRef]

Weil, R.

I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals. Results of an exact calculation using the 4 × 4 characteristic matrix method,” J. Phys. (Paris) 46, 815–825 (1985).
[CrossRef]

Weissflog, W.

G. Pelzl, S. Diele, and W. Weissflog, “Banana-shaped compounds—a new field of liquid crystals,” Adv. Mater. 11, 707–724 (1999).
[CrossRef]

Westra, K. L.

P. C. P. Hrudey, K. L. Westra, and M. J. Brett, “Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition,” Adv. Mater. 18, 224–228 (2006).
[CrossRef]

Wheatley, J. A.

J. A. Wheatley, R. A. Lewis, W. J. Schrenk, W. Lutz, and G. A. Motter, “Rapid production of large area polymeric cold mirror via a simultaneous layer formation process,” Proc. SPIE 2262, 262–275 (1994).
[CrossRef]

Whitney, H. M.

B. J. Glover and H. M. Whitney, “Structural colour and iridescence in plants: the poorly studied relations of pigment colour,” Ann. Bot. 105, 505–511 (2010).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999), Appendix III.

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 76, 3269–3284 (2004).
[CrossRef]

Woodberry, F. J.

Woolf, L. D.

L. D. Woolf, “Multiple smatterings of insight: 10 years of interaction with Craig Bohren,” J. Nanophoton. 4, 041595 (2010).
[CrossRef]

Wu, Q.

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

Wu, Q. H.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, and J. Leader, “Natural and nanoengineered chiral reflectors: structural color of Manuka beetles and titania coatings,” Electromagnetics 25, 391–408 (2005).
[CrossRef]

I. J. Hodgkinson, A. Lakhtakia, Q. h. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, L. De Silva, M. Arnold, M. W. McCall, and A. Lakhtakia, “Supermodes of chiral photonic filters with combined twist and layer defects,” Phys. Rev. Lett. 91, 223901 (2003).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

I. Hodgkinson, Q. h. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Commun. 177, 79–84 (2000).
[CrossRef]

I. J. Hodgkinson, A. Lakhtakia, and Q. h. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[CrossRef]

I. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74, 1794–1796 (1999).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[CrossRef]

I. J. Hodgkinson and Q. h. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).

Wu, S.-T.

Xu, J.

S. E. Swiontek, D. P. Pulsifer, J. Xu, and A. Lakhtakia, “Suppression of circular Bragg phenomenon in chiral sculptured thin films produced with simultaneous rocking and rotation of substrate during serial bideposition,” J. Nanophoton. 7, 073599 (2013).
[CrossRef]

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B Chem. 156, 593–598 (2011).
[CrossRef]

F. Zhang, J. Xu, A. Lakhtakia, T. Zhu, S. M. Pursel, and M. W. Horn, “Circular polarization emission from an external cavity diode laser,” Appl. Phys. Lett. 92, 111109 (2008).
[CrossRef]

A. Lakhtakia and J. Xu, “Planewave remittances of an axially excited chiral sculptured thin film with gain,” Optik 118, 94–99 (2007).
[CrossRef]

F. Zhang, J. Xu, A. Lakhtakia, S. M. Pursel, M. W. Horn, and A. Wang, “Circularly polarized emission from colloidal nanocrystal quantum dots confined in microcavities formed by chiral mirrors,” Appl. Phys. Lett. 91, 023102 (2007). Correction: the labels LCP and RCP should be interchanged in Fig. 2c of this paper.
[CrossRef]

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

Xu, X.-H.

X.-H. Xu and A. J. Bard, “Immobilization and hybridization of DNA on an aluminum(III) alkanebisphophonate thin film with electrogenerated chemiluminescent detection,” J. Am. Chem. Soc. 117, 2627–2631 (1995).
[CrossRef]

Yakubovich, V. A.

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Yamakita, J.

Yamamoto, M.

E. Majkova, M. Jergel, M. Yamamoto, T. Tsuru, S. Luby, and P. Siffalovic, “Advanced nanometer-size structures,” Acta Phys. Slovaca 57, 911–1074 (2007).
[CrossRef]

Yang, D.-K.

W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
[CrossRef]

Yang, Y.-C.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, and H. Y. Park, “Photonic defect modes of cholesteric liquid crystals,” Phys. Rev. E 60, 6852–6854 (1999).
[CrossRef]

Yoshino, K.

T. Matsui, T. Ozaki, and K. Yoshino, “Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix,” Phys. Rev. E 69, 061715 (2004).
[CrossRef]

Yoshioka, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

You, G.

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Young, N. O.

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

Zafiropoulos, N. A.

T. J. Dingemans, L. A. Madsen, N. A. Zafiropoulos, W. Lin, and E. T. Samulski, “Uniaxial and biaxial nematic liquid crystals,” Phil. Trans. R. Soc. A 364, 2681–2696 (2006).
[CrossRef]

Zel’dovich, B. Ya.

R. S. Akopyan, B. Ya. Zel’dovich, and N. V. Tabiryan, “Optics of a chiral liquid crystal far from a Bragg resonance,” Sov. Phys. JETP 56, 1024–1027 (1982).

Zhang, B.

B. Zhang, D. Li, F. Dai, and H. S. Kwok, “Minimization of color fringing effect using a circularly polarized light,” J. Disp. Technol. 8, 269–272 (2012).
[CrossRef]

Zhang, F.

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B Chem. 156, 593–598 (2011).
[CrossRef]

F. Zhang, J. Xu, A. Lakhtakia, T. Zhu, S. M. Pursel, and M. W. Horn, “Circular polarization emission from an external cavity diode laser,” Appl. Phys. Lett. 92, 111109 (2008).
[CrossRef]

F. Zhang, J. Xu, A. Lakhtakia, S. M. Pursel, M. W. Horn, and A. Wang, “Circularly polarized emission from colloidal nanocrystal quantum dots confined in microcavities formed by chiral mirrors,” Appl. Phys. Lett. 91, 023102 (2007). Correction: the labels LCP and RCP should be interchanged in Fig. 2c of this paper.
[CrossRef]

Zhang, J. D.

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Zheludev, N. I.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Zhou, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Zhou, Y.

Zhu, T.

F. Zhang, J. Xu, A. Lakhtakia, T. Zhu, S. M. Pursel, and M. W. Horn, “Circular polarization emission from an external cavity diode laser,” Appl. Phys. Lett. 92, 111109 (2008).
[CrossRef]

Zhu, Y.

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Acta Phys. Slovaca (1)

E. Majkova, M. Jergel, M. Yamamoto, T. Tsuru, S. Luby, and P. Siffalovic, “Advanced nanometer-size structures,” Acta Phys. Slovaca 57, 911–1074 (2007).
[CrossRef]

Adv. Funct. Mater. (1)

K. M. Krause and M. J. Brett, “Spatially graded nanostructured chiral films as tunable circular polarizers,” Adv. Funct. Mater. 18, 3111–3118 (2008).
[CrossRef]

Adv. Mater. (3)

P. C. P. Hrudey, K. L. Westra, and M. J. Brett, “Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition,” Adv. Mater. 18, 224–228 (2006).
[CrossRef]

J. C. Sit, D. J. Broer, and M. J. Brett, “Liquid crystal alignment and switching in porous chiral thin films,” Adv. Mater. 12, 371–373 (2000).
[CrossRef]

G. Pelzl, S. Diele, and W. Weissflog, “Banana-shaped compounds—a new field of liquid crystals,” Adv. Mater. 11, 707–724 (1999).
[CrossRef]

Am. Sci. (1)

S. Clark, “Polarized starlight and the handedness of life,” Am. Sci. 87(4), 336–383 (1999).
[CrossRef]

Anal. Chem. (1)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 76, 3269–3284 (2004).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

O. Buchardt, “Photochemistry with circularly polarized light,” Angew. Chem. Int. Ed. Engl. 13, 179–185 (1974).
[CrossRef]

Ann. Bot. (2)

B. J. Glover and H. M. Whitney, “Structural colour and iridescence in plants: the poorly studied relations of pigment colour,” Ann. Bot. 105, 505–511 (2010).
[CrossRef]

G. Strout, S. D. Russell, D. P. Pulsifer, S. Erten, A. Lakhtakia, and D. W. Lee, “Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata,” Ann. Bot. 112, 1141–1148 (2013).
[CrossRef]

Ann. Phys. (1)

P. P. Ewald, “Zur Begründung der Kristalloptik. Teil II: Theorie der Reflexion und Brechung,” Ann. Phys. 49, 117–143 (1916). See Ewald [3] for an English translation by L. M. Hollingsworth and postscript comments by Ewald.
[CrossRef]

Ann. Phys. Chem. Lpz. (1)

E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. Phys. Chem. Lpz. 138, 628–638 (1869).

Appl. Opt. (6)

Appl. Phys. Express (1)

Y. Zhu, F. Zhang, G. You, J. Liu, J. D. Zhang, A. Lakhtakia, and J. Xu, “Stable circularly polarized emission from a vertical-cavity surface-emitting laser with a chiral reflector,” Appl. Phys. Express 5, 032102 (2012).
[CrossRef]

Appl. Phys. Lett. (5)

F. Zhang, J. Xu, A. Lakhtakia, T. Zhu, S. M. Pursel, and M. W. Horn, “Circular polarization emission from an external cavity diode laser,” Appl. Phys. Lett. 92, 111109 (2008).
[CrossRef]

F. Zhang, J. Xu, A. Lakhtakia, S. M. Pursel, M. W. Horn, and A. Wang, “Circularly polarized emission from colloidal nanocrystal quantum dots confined in microcavities formed by chiral mirrors,” Appl. Phys. Lett. 91, 023102 (2007). Correction: the labels LCP and RCP should be interchanged in Fig. 2c of this paper.
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, and A. Mazzulla, “Laser emission from a dye-doped cholesteric liquid crystal pumped by another cholesteric liquid crystal laser,” Appl. Phys. Lett. 85, 3378–3380 (2004).
[CrossRef]

I. Hodgkinson and Q. H. Wu, “Birefringent thin-film polarizers for use at normal incidence and with planar technologies,” Appl. Phys. Lett. 74, 1794–1796 (1999).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Appl. Surf. Sci. (1)

H. Savaloni and A. Esfandiar, “Fabrication, characterization and some applications of graded chiral zigzag shaped nano-sculptured silver thin films,” Appl. Surf. Sci. 257, 9425–9434 (2011).
[CrossRef]

Asian J. Phys. (1)

M. Dixit and A. Lakhtakia, “Electrically controlled Bragg resonances of an ambichiral electro-optic structure: oblique incidence,” Asian J. Phys. 17, 213–223 (2008).

Biol. Rev. (1)

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystal,” Biol. Rev. 44, 531–562 (1969).
[CrossRef]

Cryst. Growth Des. (1)

K. Claborn, A.-S. Chu, S.-H. Jang, F. Su, W. Kaminsky, and B. Kahr, “Circular extinction imaging: determination of the absolute orientation of embedded chromophores in enantiomorphously twinned LiKSO4 crystals,” Cryst. Growth Des. 5, 2117–2123 (2005).
[CrossRef]

Curr. Biol. (1)

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[CrossRef]

Electromagnetics (1)

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, and J. Leader, “Natural and nanoengineered chiral reflectors: structural color of Manuka beetles and titania coatings,” Electromagnetics 25, 391–408 (2005).
[CrossRef]

Electron. Lett. (1)

Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138 (2009).
[CrossRef]

Eur. Phys. J. Appl. Phys. (9)

J. B. Geddes and A. Lakhtakia, “Videopulse bleeding in axially excited chiral sculptured thin films in the Bragg regime,” Eur. Phys. J. Appl. Phys. 17, 21–24 (2002).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “On absorption by non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Eur. Phys. J. Appl. Phys. 10, 173–184 (2000).
[CrossRef]

A. Lakhtakia, “Spectral signatures of axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Eur. Phys. J. Appl. Phys. 8, 129–137 (1999).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Reflection and transmission of optical narrow-extent pulses by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 13, 3–14 (2001). Videos associated with this paper are available at http://www.esm.psu.edu/~axl4/Lakhtakia/TimeBragg/TDBragg.html .
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Erratum: Reflection and transmission of optical narrow-extent pulses by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 16, 247 (2001).

J. B. Geddes and A. Lakhtakia, “Time-domain simulation of the circular Bragg phenomenon exhibited by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 14, 97–105 (2001).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Erratum: Time-domain simulation of the circular Bragg phenomenon exhibited by axially excited chiral sculptured thin films,” Eur. Phys. J. Appl. Phys. 16, 247 (2001).

F. Wang, A. Lakhtakia, and R. Messier, “Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 20, 91–103 (2002).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “Erratum: Coupling of Raleigh–Wood anomalies with the circular Bragg phenomenon in the slanted sculptured thin films,” Eur. Phys. J. Appl. Phys. 24, 91 (2003).
[CrossRef]

Eur. Phys. J. B (1)

J. Schmidtke and W. Stille, “Fluourescence of a dye-doped cholesteric liquid crystal film in the region of stop band: theory and experiment,” Eur. Phys. J. B 31, 179–194 (2003).
[CrossRef]

Eur. Phys. J. E (1)

J. Schmidtke and W. Stille, “Photonic defect modes in cholesteric liquid crystal films,” Eur. Phys. J. E 12, 553–564 (2003).
[CrossRef]

IEE Proc.-Microw. Antennas Propag. (1)

A. Lakhtakia and W. S. Weiglhofer, “Green function for radiation and propagation in helicoidal bianisotropic mediums,” IEE Proc.-Microw. Antennas Propag. 144, 57–59 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. A. Haus and C. V. Shank, “Asymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
[CrossRef]

S. Wang, “Principles of distributed feedback and distributed Bragg-reflector lasers,” IEEE J. Quantum Electron. 10, 413–427 (1974).
[CrossRef]

IEEE Photon. J. (1)

T. G. Mackay and A. Lakhtakia, “Empirical model of optical sensing via spectral shift of circular Bragg phenomenon,” IEEE Photon. J. 2, 92–101 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

IEEE Sens. J. (1)

T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J. 12, 273–280 (2012).
[CrossRef]

IEEE Signal Process. Mag. (1)

J. Konrad and M. Halle, “3-D displays and signal processing: an answer to 3-D ills?” IEEE Signal Process. Mag. 24(6), 97–111 (2007).
[CrossRef]

Int. J. Appl. Electromag. Mech. (1)

V. C. Venugopal and A. Lakhtakia, “On optical rotation and ellipticity transformation by axially excited slabs of dielectric thin-film helicoidal bianisotropic dielectric mediums (TFHBMs),” Int. J. Appl. Electromag. Mech. 9, 201–210 (1998).

Int. J. Electron. Commun. (4)

A. Lakhtakia, “Truncation of angular spread of Bragg zones by total reflection, and Goos–Hänchen shifts exhibited by chiral sculptured thin films,” Int. J. Electron. Commun. (AEÜ) 56, 169–176 (2002).
[CrossRef]

A. Lakhtakia, “Erratum to: Truncation of angular spread of Bragg zones by total reflection, and Goos–Hänchen shifts exhibited by chiral sculptured thin films,” Int. J. Electron. Commun. (AEÜ) 57, 79 (2003).
[CrossRef]

A. Lakhtakia and V. C. Venugopal, “On Bragg reflection by helicoidal bianisotropic mediums,” Int. J. Electron. Commun. (AEÜ) 53, 287–290 (1999).

F. Wang, “Note on the asymptotic approximation of a double integral with an angular-spectrum representation,” Int. J. Electron. Commun. (AEÜ) 59, 258–261 (2005).
[CrossRef]

Isis (1)

R. Rashed, “A pioneer in anaclastics, Ibn Sahl on burning mirrors and lenses,” Isis 81, 464–491 (1990).
[CrossRef]

J. Am. Chem. Soc. (3)

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-Dihydroxyanthraquinone,” J. Am. Chem. Soc. 125, 14825–14831 (2003).
[CrossRef]

G. Balavoine, A. Moradpour, and H. B. Kagan, “Preparation of chiral compounds with high optical purity by irradiation with circularly polarized light, a model reaction for the prebiotic generation of optical activity,” J. Am. Chem. Soc. 96, 5152–5158 (1974).
[CrossRef]

X.-H. Xu and A. J. Bard, “Immobilization and hybridization of DNA on an aluminum(III) alkanebisphophonate thin film with electrogenerated chemiluminescent detection,” J. Am. Chem. Soc. 117, 2627–2631 (1995).
[CrossRef]

J. Appl. Phys. (3)

J. Adams, W. Haas, and J. Daily, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096–4098 (1971).
[CrossRef]

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

A. C. van Popta, M. J. Brett, and J. C. Sit, “Double-handed circular Bragg phenomena in polygonal helix thin films,” J. Appl. Phys. 98, 083517 (2005).
[CrossRef]

J. Chem. Phys. (1)

H. Rubalcava and D. J. Fitzmaurice, “Photochemistry with circularly polarized light: a new method,” J. Chem. Phys. 92, 5975–5987 (1990).
[CrossRef]

J. Disp. Technol. (1)

B. Zhang, D. Li, F. Dai, and H. S. Kwok, “Minimization of color fringing effect using a circularly polarized light,” J. Disp. Technol. 8, 269–272 (2012).
[CrossRef]

J. Exp. Theor. Phys. (1)

V. A. Belyakov and V. Semenov, “Optical defect modes in chiral liquid crystals,” J. Exp. Theor. Phys. 112, 694–710 (2011).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Optical and structural properties of a circular polarization handedness inverter prepared by using glancing angle deposition,” J. Korean Phys. Soc. 55, 1263–1266 (2009).
[CrossRef]

J. Magn. Magn. Mater. (1)

R. Probst, J. Lin, A. Komaee, A. Nacev, Z. Cummins, and B. Shapiro, “Planar steering of a single ferrofluid drop by optimal minimum power dynamic feedback control of four electromagnets at a distance,” J. Magn. Magn. Mater. 323, 885–896 (2011).
[CrossRef]

J. Mod. Opt. (4)

M. McCall and A. Lakhtakia, “Polarization-dependent narrowband spectral filtering by chiral sculptured thin films,” J. Mod. Opt. 47, 743–755 (2000).

M. W. McCall and A. Lakhtakia, “Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part I: reflectances and transmittances,” J. Mod. Opt. 47, 973–991 (2000).
[CrossRef]

M. W. McCall and A. Lakhtakia, “Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part I: reflectances and transmittances: erratum,” J. Mod. Opt. 50, 2807 (2003).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763–2783 (2006).
[CrossRef]

J. Nanophoton. (7)

M. Suzuki, “Practical applications of thin films nanostructured by shadowing growth,” J. Nanophoton. 7, 073598 (2013).
[CrossRef]

S. E. Swiontek, D. P. Pulsifer, J. Xu, and A. Lakhtakia, “Suppression of circular Bragg phenomenon in chiral sculptured thin films produced with simultaneous rocking and rotation of substrate during serial bideposition,” J. Nanophoton. 7, 073599 (2013).
[CrossRef]

R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

A. Lakhtakia, “Exhibition of circular Bragg phenomenon by hyperbolic, dielectric, structurally chiral materials,” J. Nanophoton. 8, 083998 (2014).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010).
[CrossRef]

L. D. Woolf, “Multiple smatterings of insight: 10 years of interaction with Craig Bohren,” J. Nanophoton. 4, 041595 (2010).
[CrossRef]

J. Opt. (Paris) (4)

G. Joly and J. Billard, “Quelques champs électromagnétiques dans les piles de Reusch I. Les vibrations propres d’une pile de deux lames a biréfringence rectiligne ne sont pas orthogonales,” J. Opt. (Paris) 12, 323–329 (1981).
[CrossRef]

G. Joly and J. Billard, “Quelques champs électromagnétiques dans les piles de Reusch II. Piles éclairées sous l’incidence normale par des ondes monochromatiques planes et uniformes,” J. Opt. (Paris) 13, 227–238 (1982).
[CrossRef]

G. Joly and N. Isaert, “Quelques champs électromagnétiques dans les piles de Reusch III. Biréfringence elliptique des vibrations itératives; activité optique de piles hélicoïdales d’extension finie,” J. Opt. (Paris) 16, 203–213 (1985).
[CrossRef]

G. Joly and N. Isaert, “Quelques champs électromagnétiques dans les piles de Reusch IV. Domaines multiples de réflexion sélective,” J. Opt. (Paris) 17, 211–221 (1986).
[CrossRef]

J. Opt. Soc. Am. A (5)

J. Opt. Soc. Am. B (1)

J. Phys. (Paris) (3)

F. Brochard and P. G. de Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. (Paris) 31, 691–708 (1970).
[CrossRef]

L. Oldano, P. Allia, and L. Trossi, “Optical properties of anisotropic periodic helical structures,” J. Phys. (Paris) 46, 573–582 (1985).
[CrossRef]

I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals. Results of an exact calculation using the 4 × 4 characteristic matrix method,” J. Phys. (Paris) 46, 815–825 (1985).
[CrossRef]

J. Phys. (Paris) Colloq. (1)

O. Parodi, “Light propagation along the helical axis in chiral smectics C,” J. Phys. (Paris) Colloq. 36, C1-325–C1-326 (1975).
[CrossRef]

J. Phys. Condens. Matter (1)

S. Odenbach, “Recent progress in magnetic fluid research,” J. Phys. Condens. Matter 16, R1135–R1150 (2004).
[CrossRef]

J. Phys. D (1)

W. S. Weiglhofer and A. Lakhtakia, “Electromagnetic wave propagation in super-cholesteric materials parallel to the helical axis,” J. Phys. D 26, 2117–2122 (1993).
[CrossRef]

J. Vac. Sci. Technol. A (4)

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13, 2991–2993 (1995).
[CrossRef]

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

S. M. Pursel and M. W. Horn, “Prospects for nanowire sculptured-thin-film devices,” J. Vac. Sci. Technol. A 25, 2611–2615 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Takezoe, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental studies on reflection spectra in monodomain cholesteric liquid crystal cells: total reflection, subsidiary oscillation and its beat or swell structure,” Jpn. J. Appl. Phys. 22, 1080–1091 (1983).
[CrossRef]

Liq. Cryst. (1)

S. R. Kennedy, J. C. Sit, D. J. Broer, and M. J. Brett, “Optical activity of chiral thin films and liquid crystal hybrids,” Liq. Cryst. 28, 1799–1803 (2001).
[CrossRef]

Meas. Sci. Technol. (1)

X.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Microw. Opt. Technol. Lett. (11)

A. Lakhtakia and W. S. Weiglhofer, “Simple and exact analytic solution for oblique propagation in a cholesteric liquid crystal,” Microw. Opt. Technol. Lett. 12, 245–248 (1996).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Numerical implementation of exact analytical solution for oblique propagation in a cholesteric liquid crystal,” Microw. Opt. Technol. Lett. 35, 397–400 (2002).
[CrossRef]

A. Lakhtakia, “Electrically switchable exhibition of circular Bragg phenomenon by an isotropic slab,” Microw. Opt. Technol. Lett. 48, 2148–2153 (2006).
[CrossRef]

A. Lakhtakia, “Bragg-regime absorption in axially excited slabs of dielectric thin-film helicoidal bianisotropic media,” Microw. Opt. Technol. Lett. 22, 243–247 (1999).
[CrossRef]

A. Lakhtakia, “Pseudo-isotropic and maximum-bandwidth points for axially excited chiral sculptured thin films,” Microw. Opt. Technol. Lett. 34, 367–371 (2002).
[CrossRef]

A. Lakhtakia and V. C. Venugopal, “Dielectric thin-film helicoidal bianistropic medium bilayers as tunable polarization-independent laser mirrors and notch filters,” Microw. Opt. Technol. Lett. 17, 135–140 (1998).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Pulse-coded information transmission across an axially excited chiral-sculptured thin film in the Bragg regime,” Microw. Opt. Technol. Lett. 28, 59–62 (2001).
[CrossRef]

J. B. Geddes and A. Lakhtakia, “Swamping of circular Bragg phenomenon and shaping of videopulses,” Microw. Opt. Technol. Lett. 49, 776–779 (2007).
[CrossRef]

A. Lakhtakia, “On radiation from canonical source configurations embedded in structurally chiral materials,” Microw. Opt. Technol. Lett. 37, 37–40 (2003).
[CrossRef]

A. Lakhtakia, “Stepwise chirping of chiral sculptured thin films for Bragg bandwidth enhancement,” Microw. Opt. Technol. Lett. 28, 323–326 (2001).
[CrossRef]

F. Chiadini and A. Lakhtakia, “Design of wideband circular-polarization filters made of chiral sculptured thin films,” Microw. Opt. Technol. Lett. 42, 135–138 (2004).
[CrossRef]

Mol. Cryst. Liq. Cryst. (4)

T. H. Sterling and C. F. Hayes, “Optical rotatory power of a cholesteric liquid crystal for obliquely incident light using multiple scattering,” Mol. Cryst. Liq. Cryst. 43, 279–286 (1977).
[CrossRef]

W. J. Haas, “Liquid crystal display research: the first fifteen years,” Mol. Cryst. Liq. Cryst. 94, 1–31 (1983).
[CrossRef]

H. Takezoe, K. Hashimoto, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, “Experimental study on higher order reflection by monodomain cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 101, 329–340 (1983).
[CrossRef]

R. Nityananda, “On the theory of light propagation in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 21, 315–331 (1973).
[CrossRef]

Monat. Chem. (Wien) (1)

F. Reinitzer, “Beiträge zur Kenntiss des Cholesterins,” Monat. Chem. (Wien) 9, 421–441 (1888). See Sluckin et al. [85] for an English translation.

Nat. Mater. (1)

N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzuki, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals,” Nat. Mater. 7, 43–47 (2008).
[CrossRef]

Nature (2)

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[CrossRef]

N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959).
[CrossRef]

Opt. Commun. (25)

I. J. Hodgkinson, A. Lakhtakia, Q. h. Wu, L. De Silva, and M. W. McCall, “Ambichiral, equichiral and finely chiral layered structures,” Opt. Commun. 239, 353–358 (2004).
[CrossRef]

I. Abdulhalim, “Light propagation along the helix of chiral smectics and twisted nematics,” Opt. Commun. 64, 443–448 (1987).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Comparison of two methods for oblique propagation in helicoidal bianisotropic mediums,” Opt. Commun. 230, 369–386 (2004).
[CrossRef]

A. H. Gevorgyan, “Chiral photonic crystals with an anisotropic defect layer: oblique incidence,” Opt. Commun. 281, 5097–5103 (2008).
[CrossRef]

M. Dixit and A. Lakhtakia, “Selection strategy for circular-polarization-sensitive rejection characteristics of electro-optic ambichiral Reusch piles,” Opt. Commun. 281, 4812–4823 (2008).
[CrossRef]

J. B. Geddes, M. W. Meredith, and A. Lakhtakia, “Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals,” Opt. Commun. 182, 45–57 (2000).
[CrossRef]

A. Lakhtakia and I. J. Hodgkinson, “Spectral response of dielectric thin-film helicoidal bianisotropic medium bilayer,” Opt. Commun. 167, 191–202 (1999).
[CrossRef]

J. A. Polo and A. Lakhtakia, “Tilt-modulated chiral sculptured thin films: an alternative to quarter-wave stacks,” Opt. Commun. 242, 13–21 (2004).
[CrossRef]

F. Wang and A. Lakhtakia, “Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films,” Opt. Commun. 235, 107–132 (2004).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “On selective absorption in an axially excited slab of an absorbing dielectric thin-film helicoidal bianisotropic medium,” Opt. Commun. 145, 171–187 (1998).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “On selective absorption in an axially excited slab of an absorbing dielectric thin-film helicoidal bianisotropic medium: erratum,” Opt. Commun. 161, 370 (1999).
[CrossRef]

F. Babaei, A. Esfandiar, and H. Savaloni, “Optical spectra of graded nanostructured TiO2 chiral sculptured thin films,” Opt. Commun. 283, 2849–2856 (2010).
[CrossRef]

F. Wang and A. Lakhtakia, “Third method for generation of spectral holes in chiral sculptured thin films,” Opt. Commun. 250, 105–110 (2005).
[CrossRef]

A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun. 168, 457–465 (1999).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Commun. 177, 79–84 (2000).
[CrossRef]

A. Lakhtakia, V. C. Venugopal, and M. W. McCall, “Spectral holes in Bragg reflection from chiral sculptured thin films: circular polarization filters,” Opt. Commun. 177, 57–68 (2000).
[CrossRef]

A. Lakhtakia, “Generation of spectral holes by inserting central structurally chiral layer defects in periodic structurally chiral materials,” Opt. Commun. 275, 283–287 (2007).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57–66 (2000).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33–46 (2001).
[CrossRef]

F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79–92 (2003).
[CrossRef]

J. Xu, A. Lakhtakia, J. Liou, A. Chen, and I. J. Hodgkinson, “Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors,” Opt. Commun. 264, 235–239 (2006).
[CrossRef]

S. S. Jamaian and T. G. Mackay, “On chemiluminescent emission from an infiltrated chiral sculptured thin film,” Opt. Commun. 284, 2382–2392 (2011).
[CrossRef]

S. S. Jamaian and T. G. Mackay, “Erratum to ‘On chemiluminescent emission from an infiltrated chiral sculptured thin film’,” Opt. Commun. 284, 3488–3489 (2011).
[CrossRef]

E. E. Steltz and A. Lakhtakia, “Theory of second-harmonic-generated radiation from chiral sculptured thin films for bio-sensing,” Opt. Commun. 216, 139–150 (2003).
[CrossRef]

A. Lakhtakia, “On bioluminescent emission from chiral sculptured thin films,” Opt. Commun. 188, 313–320 (2001).
[CrossRef]

Opt. Eng. (5)

I. J. Hodgkinson, A. Lakhtakia, and Q. h. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000).
[CrossRef]

T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010).
[CrossRef]

Q. Wu, I. J. Hodgkinson, and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39, 1863–1868 (2000).
[CrossRef]

P. L. Swart, P. V. Bulkin, and B. M. Lacquet, “Rugate filter manufacturing by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiNx,” Opt. Eng. 36, 1214–1219 (1997).
[CrossRef]

A. Othonos, X. Lee, and D. P. Tsai, “Spectrally broadband Bragg grating mirror for an erbium-doped fiber laser,” Opt. Eng. 35, 1088–1092 (1996).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. (Amsterdam) (1)

J. Gospodyn and J. C. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. (Amsterdam) 29, 318–325 (2006).
[CrossRef]

Optik (10)

M. W. Meredith and A. Lakhtakia, “Time-domain signature of an axially excited cholesteric liquid crystal. Part I: narrow-extent pulses,” Optik 111, 443–453 (2000).

J. B. Geddes and A. Lakhtakia, “Time-domain signature of an axially excited cholesteric liquid crystal. Part II: Rectangular wide-extent pulses,” Optik 112, 62–66 (2001). Videos associated with this paper are available at http://www.esm.psu.edu/~axl4/Lakhtakia/TimeBragg/TDBragg.html .
[CrossRef]

M. D. Pickett and A. Lakhtakia, “On gyrotropic chiral sculptured thin films for magneto-optics,” Optik 113, 367–371 (2002).
[CrossRef]

A. Lakhtakia and J. Xu, “Planewave remittances of an axially excited chiral sculptured thin film with gain,” Optik 118, 94–99 (2007).
[CrossRef]

A. Lakhtakia, “Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 145–148 (2001).
[CrossRef]

A. Lakhtakia, “Correction to: Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions,” Optik 112, 544 (2001).
[CrossRef]

A. Lakhtakia and J. A. Reyes, “Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material—Part 1: Axial dc electric field,” Optik 119, 253–268 (2008).
[CrossRef]

A. Lakhtakia and J. A. Reyes, “Theory of electrically controlled exhibition of circular Bragg phenomenon by an obliquely excited structurally chiral material—Part 2: Arbitrary dc electric field,” Optik 119, 269–275 (2008).
[CrossRef]

W. S. Weiglhofer and A. Lakhtakia, “Oblique propagation in a cholesteric liquid crystal: 4 × 4 matrix perturbational solution,” Optik 102, 111–114 (1995).

J. Wang, A. Lakhtakia, and J. B. Geddes, “Multiple Bragg regimes exhibited by a chiral sculptured thin film half-space on axial excitation,” Optik 113, 213–221 (2002).
[CrossRef]

Orig. Life Evol. Biosph. (1)

J. Bailey, “Astronomical sources of circularly polarized light and the origin of homochirality,” Orig. Life Evol. Biosph. 31, 167–183 (2001).
[CrossRef]

Phil. Trans. R. Soc. A (1)

T. J. Dingemans, L. A. Madsen, N. A. Zafiropoulos, W. Lin, and E. T. Samulski, “Uniaxial and biaxial nematic liquid crystals,” Phil. Trans. R. Soc. A 364, 2681–2696 (2006).
[CrossRef]

Phys. Lett. A (2)

A. Lakhtakia, “Ambichiral, electro-optic, circular-polarization rejection filters: theory,” Phys. Lett. A 354, 330–334 (2006).
[CrossRef]

A. Lakhtakia, “Reflection of an obliquely incident plane wave by a half space filled by a helicoidal bianisotropic medium,” Phys. Lett. A 374, 3887–3894 (2010).
[CrossRef]

Phys. Rev. A (2)

R. Dreher and G. Meier, “Optical properties of cholesteric liquid crystals,” Phys. Rev. A 8, 1616–1623 (1973).
[CrossRef]

G. D. Gillen, M. A. Walker, and L. D. Van Woerkom, “Enhanced double ionization with circularly polarized light,” Phys. Rev. A 64, 043413 (2001).
[CrossRef]

Phys. Rev. B (2)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Phys. Rev. E (4)

T. Matsui, T. Ozaki, and K. Yoshino, “Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix,” Phys. Rev. E 69, 061715 (2004).
[CrossRef]

A. H. Gevorgyan and M. Z. Harutyunyan, “Chiral photonic crystals with an anisotropic defect layer,” Phys. Rev. E 76, 031701 (2007).
[CrossRef]

W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995).
[CrossRef]

Y.-C. Yang, C.-S. Kee, J.-E. Kim, and H. Y. Park, “Photonic defect modes of cholesteric liquid crystals,” Phys. Rev. E 60, 6852–6854 (1999).
[CrossRef]

Phys. Rev. Lett. (6)

V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002).
[CrossRef]

D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970).
[CrossRef]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef]

D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Observation of the Dyakonov–Tamm wave,” Phys. Rev. Lett. 111, 243902 (2013).
[CrossRef]

I. J. Hodgkinson, Q. h. Wu, L. De Silva, M. Arnold, M. W. McCall, and A. Lakhtakia, “Supermodes of chiral photonic filters with combined twist and layer defects,” Phys. Rev. Lett. 91, 223901 (2003).
[CrossRef]

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

Phys. Scr. (1)

A. Lakhtakia, “Polarization-universal rejection filtering by ambichiral structures made of indefinite dielectric-magnetic materials,” Phys. Scr. 77, 055401 (2008).
[CrossRef]

Phys. Status Solidi A (1)

M. Schubert and C. M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A 188, 1563–1575 (2001).
[CrossRef]

Phys. Z. (1)

G. Borrmann, “Über Extinktionsdiagramme von Quarz,” Phys. Z. 42, 157–162 (1941).

Physica E (1)

A. Esfandiar, H. Savaloni, and F. Placido, “On the fabrication and characterization of graded slanted chiral nano-sculptured silver thin films,” Physica E 50, 88–96 (2013).
[CrossRef]

Prama¯n?a (3)

R. Nityananda, U. D. Kini, S. Chandrasekhar, and K. A. Suresh, “Anomalous transmission (Borrmann effect) in absorbing cholesteric liquid crystals,” Pramāṇa Suppl. 1, 325–340 (1975).

S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, “Liquid crystals of disc-like molecules,” Pramāṇa 9, 471–480 (1977).
[CrossRef]

R. Nityananda and U. D. Kini, “The theory of reflexion and transmission by plane parallel cholesteric films,” Pramāṇa Suppl. 1, 311–323 (1975).

Proc. R. Soc. A (9)

A. Lakhtakia and W. S. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. A 448, 419–437 (1995).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “Corrections on: On light propagation in helicoidal bianisotropic mediums,” Proc. R. Soc. A 454, 3275 (1998).

A. Lakhtakia and W. S. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation,” Proc. R. Soc. A 453, 93–105 (1997).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “Corrections for: Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation,” Proc. R. Soc. A 454, 3275 (1998).

V. C. Venugopal and A. Lakhtakia, “Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. A 454, 1535–1571 (1998).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “Correction for: Second harmonic emission from an axially excited slab of a dielectric thin-film helicoidal bianisotropic medium,” Proc. R. Soc. A 455, 4383 (1999).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums,” Proc. R. Soc. A 456, 125–161 (2000).
[CrossRef]

F. Wang and A. Lakhtakia, “Optical crossover phenomenon due to a central 90°-twist defect in a chiral sculptured thin film or chiral liquid crystal,” Proc. R. Soc. A 461, 2985–3004 (2005).
[CrossRef]

J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. A 465, 87–107 (2009).
[CrossRef]

Proc. R. Soc. Lond. (1)

J. C. Bose, “On the rotation of plane of polarisation of electric waves by a twisted structure,” Proc. R. Soc. Lond. 63, 146–152 (1898).
[CrossRef]

Proc. SPIE (6)

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. Tait, “Fiber Bragg grating multichemical sensor,” Proc. SPIE 6371, 637109 (2006).
[CrossRef]

J. A. Wheatley, R. A. Lewis, W. J. Schrenk, W. Lutz, and G. A. Motter, “Rapid production of large area polymeric cold mirror via a simultaneous layer formation process,” Proc. SPIE 2262, 262–275 (1994).
[CrossRef]

P. Boher, T. Leroux, T. Bignon, and V. Collomb-Patton, “Multispectral polarization viewing angle analysis of circular polarized stereoscopic 3D displays,” Proc. SPIE 7524, 75240R (2010).
[CrossRef]

K. Bjorknas, P. Raynes, S. Gilmour, V. Christou, and K. Look, “Circularly polarized luminescence from an organoterbium emitter embedded in a chiral polymer,” Proc. SPIE 4806, 240–247 (2002).
[CrossRef]

T. G. Mackay, A. Lakhtakia, and S. S. Jamaian, “Chiral sculptured thin films as integrated dual-modality optical sensors,” Proc. SPIE 8465, 84650X (2012).
[CrossRef]

B. Szeto, P. C. P. Hrudey, M. Taschuk, and M. J. Brett, “Circularly polarized luminescence from chiral thin films,” Proc. SPIE 6135, 613511 (2008).
[CrossRef]

Prog. Opt. (1)

T. G. Mackay and A. Lakhtakia, “Electromagnetic fields in linear bianisotropic mediums,” Prog. Opt. 51, 121–209 (2008).
[CrossRef]

Rep. Prog. Phys. (2)

S. Chandrasekhar and G. S. Ranganath, “Discotic liquid crystals,” Rep. Prog. Phys. 53, 57–84 (1990).
[CrossRef]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

Rev. Mod. Phys. (1)

P. P. Ewald, “Crystal optics for visible light and x rays,” Rev. Mod. Phys. 37, 46–56 (1965).
[CrossRef]

Rev. Sci. Instrum. (1)

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Sci. Am. (1)

J. L. Fergason, “Liquid crystals,” Sci. Am. 211(2), 76–85 (1964).
[CrossRef]

Sci. Rep. (1)

S. E. Swiontek, D. P. Pulsifer, and A. Lakhtakia, “Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform,” Sci. Rep. 3, 1409 (2013).
[CrossRef]

Sens. Actuators A Phys. (1)

F. Wang, A. Lakhtakia, and R. Messier, “Towards piezoelectrically tunable sculptured thin film lasers,” Sens. Actuators A Phys. 102, 31–35 (2002).
[CrossRef]

Sens. Actuators B Chem. (2)

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B Chem. 156, 593–598 (2011).
[CrossRef]

A. Lakhtakia, “On determining gas concentrations using dielectric thin-film helicoidal bianisotropic medium bilayers,” Sens. Actuators B Chem. 52, 243–250 (1998).
[CrossRef]

Sov. J. Quantum Electron. (1)

L. P. Gevorkyan, V. A. Makarov, and E. B. Cherepetskaya, “Compression of laser pulses during dynamic scattering in a nonlinear cholesteric liquid crystal,” Sov. J. Quantum Electron. 19, 1604–1605 (1989).
[CrossRef]

Sov. Phys. JETP (2)

R. S. Akopyan, B. Ya. Zel’dovich, and N. V. Tabiryan, “Optics of a chiral liquid crystal far from a Bragg resonance,” Sov. Phys. JETP 56, 1024–1027 (1982).

E. I. Kats, “Optical properties of cholesteric liquid crystals,” Sov. Phys. JETP 32, 1004–1007 (1971).

SPIE Rev. (1)

T. G. Mackay and A. Lakhtakia, “Negatively refracting chiral metamaterials: a review,” SPIE Rev. 1, 018003 (2010).

Thin Solid Films (1)

G. R. Luckhurst, “Biaxial nematic liquid crystals: fact or fiction?” Thin Solid Films 393, 40–52 (2001).
[CrossRef]

Other (29)

T. J. Sluckin, D. A. Dunmur, and H. Stegemeyer, Crystals That Flow: Classic Papers From the History of Liquid Crystals (Taylor & Francis, 2004).

C. F. Bohren and D. F. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, 2013).

S. Chandrasekhar, Liquid Crystals, 2nd ed. (Cambridge University, 1992).

P. G. de Gennes and J. A. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).

A. Lakhtakia, “The editor’s apology,” in Selected Papers on Natural Optical Activity, A. Lakhtakia, ed. (SPIE, 1990), pp. xiii–xxiv.

B. H. Billings, ed., Selected Papers on Applications of Polarized Light (SPIE, 1992).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

R. F. Lyon, “Prism-based color separation for professional digital photography,” in Proceedings PICS 2000: Image Processing, Image Quality, Image Capture Systems Conference (Society for Imaging Science and Technology, 2000), pp. 50–54.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).

P. W. Baumeister, Optical Coating Technology (SPIE, 2004).

I. J. Hodgkinson and Q. h. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).

E. Charney, The Molecular Basis of Optical Activity (Krieger, 1985).

T. G. Mackay and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide (World Scientific, 2010).

J. I. Gersten and F. W. Smith, The Physics and Chemistry of Materials (Wiley, 2001).

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

https://commons.wikimedia.org/wiki/File:REALD.JPG (accessed June27, 2013).

H. C. Chen, Theory of Electromagnetic Waves: A Coordinate-Free Approach (McGraw–Hill, 1983).

A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach, 2001).

N. Dushkina and A. Lakhtakia, “Structural colors,” in Engineered Biomimicry, A. Lakhtakia and R. J. Martín-Palma, eds. (Elsevier, 2013), pp. 267–303.

P. P. Ewald, On the Foundations of Crystal Optics, Document No.  (Air Force Cambridge Research Laboratories, 1970).

A. Lakhtakia and M. W. McCall, “Circular polarization filters,” in Encyclopedia of Optical Engineering, R. Driggers, ed. (Marcel Dekker, 2003), Vol. 1, pp. 230–236.

W. L. Bragg, “The diffraction of X-rays by crystals,” Nobel Lecture (September 6, 1922), http://www.nobelprize.org/nobel_prizes/physics/laureates/1915/wl-bragg-lecture.html (accessed June 25, 2013).

I.-C. Khoo and S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

R. W. Boyd, Nonlinear Optics (Academic, 1992), Chap. 10.

P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields (Pergamon, 1966).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1999), Appendix III.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (33)

Figure 1
Figure 1

The electric field vectors of LCP and RCP plane waves trace clockwise and counterclockwise circles, respectively, with time at any specific location. This convention is used in this article.

Figure 2
Figure 2

(a) Schematic of the boundary-value problem of reflection and transmission of a plane wave by a slab of an anisotropic dielectric material that may be periodically nonhomogeneous in the thickness direction. The medium of incidence and reflection has a refractive index n1, and the medium of transmission has a refractive index n2. (b) Propagation direction of an incident plane wave in the Cartesian coordinates.

Figure 3
Figure 3

Co-polarized linear reflectances calculated as functions of λ0 and θinc for a periodic bilayer of homogeneous, isotropic dielectric materials described by Eqs. (42) and (43), with na=1.8, nb=1.5, La=83.3nm, Lb=100nm, and Np=20. All cross-polarized linear remittances are zero. All linear reflectances are independent of ψ. The refractive indexes of both constituent materials were taken to be independent of the free-space wavelength.

Figure 4
Figure 4

Same as Fig. 3, but for cross-polarized circular reflectances.

Figure 5
Figure 5

Co-polarized linear transmittances calculated as functions of λ0 when θinc=0° and ψ=0°, for a periodic bilayer of homogeneous, uniaxial dielectric materials described by Eqs. (45)–(47). Cross-polarized linear transmittances and reflectances are zero. Both refractive indexes of both constituent materials were taken to be independent of the free-space wavelength. (a) noa=1.7, nea=1.58, nob=1.62, neb=1.50, La=91.5nm, Lb=96nm, and Np=40. (b) noa=1.7, nea=neb=1.6, nob=1.54, La=90.9nm, Lb=95.5nm, and Np=20.

Figure 6
Figure 6

Co-polarized circular remittances calculated as functions of λ0 and θinc for a Reusch pile described by Eqs. (48)–(50), when h=1, εa=2.7, εb=3.3, q=4, M=80, and D=43.4nm, and ψ=0°. The relative permittivity scalars εa and εb were taken to be independent of the free-space wavelength.

Figure 7
Figure 7

Measured co-polarized circular transmittances of a left-handed Reusch pile constructed with 40 identical CTFs of titanium oxide, with q=4. Light was normally incident on the Reusch pile during the experiment. Two circular Bragg regimes are clearly evident. Adapted from Hodgkinson et al. [90].

Figure 8
Figure 8

Schematics of four different types of liquid crystals.

Figure 9
Figure 9

Co-polarized circular remittances calculated as functions of λ0 and θinc for a CLC with εa=2.56, εb=3.24, Ω=200nm, h=1, and L=40Ω, when ψ=0°. Cross-polarized reflectances (not shown) are less than 0.2 for θinc<70°. Cross-polarized transmittances (not shown) are less than 0.2 only for θinc<30° and increase as θinc increases. The relative permittivity scalars εa and εb were taken to be independent of the free-space wavelength.

Figure 10
Figure 10

Measured reflectance spectrums of a 6-μm-thick, structurally left-handed CLC for θinc{38°,46°,54°,62°}. The CLC used was a mixture of active and racemic N-(p-ethoxybenzylidene)-p-2-methylbutylaniline (EBMBA) of period 2Ω=261nm. Adapted with permission from Takezoe et al. [106].

Figure 11
Figure 11

(a) Cross-sectional SEM image of a zinc-selenide chiral STF. (b) Schematic of the helical morphology of a chiral STF. A collimated vapor flux is directed at an angle χv toward a steadily rotating substrate on which nanohelixes grow with χχv as the angle of rise.

Figure 12
Figure 12

Co-polarized circular remittances calculated as functions of λ0 and θinc for a chiral STF described by Eq. (59) with εa=2.7, εb=3.3, εc=2.8, χ=30°, γ=0°, h=1, Ω=160nm, and L=40Ω, when ψ=0°. The relative permittivity scalars εa, εb, and εc were taken to be independent of the free-space wavelength.

Figure 13
Figure 13

Same as Fig. 12 except that the cross-polarized circular remittances are plotted.

Figure 14
Figure 14

Reflectance RRR calculated as a function of λ0 and ψ for a chiral STF described by Eq. (59) with εa=2.7, εb=3.3, εc=2.8, χ=30°, γ=0°, h=1, L=40Ω, and Ω=160nm, when θinc=25°. The relative permittivity scalars εa, εb, and εc were taken to be independent of the free-space wavelength.

Figure 15
Figure 15

Reflectance RRR calculated as a function of λ0 and either (a) L/Ω when Ω=160nm or (b) Ω when L=40Ω, for a chiral STF described by Eq. (59) with εa=2.7, εb=3.3, εc=2.8, χ=30°, γ=0°, and h=1, when θinc=25° and ψ=0°. The relative permittivity scalars εa, εb, and εc were taken to be independent of the free-space wavelength.

Figure 16
Figure 16

Co-polarized circular reflectances calculated as functions of λ0 and χv for a chiral STF described by Eqs. (59) and (66) with γ=0°, h=1, Ω=160nm, and L=40Ω, when θinc=25° and ψ=0°. The relative permittivity scalars εa, εb, and εc were taken to be independent of the free-space wavelength.

Figure 17
Figure 17

Circular reflectances calculated as functions of λ0 and θinc for the half space z>0 occupied by a chiral STF described by Eq. (59) with εa=2.7(1+0.1i), εb=3.3(1+0.1i), εc=2.8(1+0.1i), χ=30°, γ=0°, h=1, and Ω=160nm when ψ=0°. The relative permittivity scalars εa, εb, and εc were taken to be independent of the free-space wavelength.

Figure 18
Figure 18

Co-polarized circular reflectances calculated as functions of λ0 and θinc for a dispersive chiral STF described by Eqs. (59) and (69) with pa=0.8, pb=1.04, pc=0.84, λ0a=λ0c=280nm, λ0b=290nm, Ma=Mb=Mc=100, χ=20°, h=1, γ=0°, Ω=90nm, and L=40Ω, when ψ=0°.

Figure 19
Figure 19

Measured circular transmittances as functions of λ0 for a tilt-modulated chiral STF fabricated with χ¯v=25° and (a) δv=0, (b) δv=5°, (c) δv=10°, (d) δv=15°, and (e) δv=20°. The tilt-modulated chiral STF was made by evaporating zinc selenide; γ=0°, h=1, Ω=165nm, L=2.97μm, and Nmod=1. Measurements were made for normally incident light. Adapted from Swiontek et al. [151].

Figure 20
Figure 20

Schematic for the fabrication of spatially modulated chiral STFs.

Figure 21
Figure 21

A snapshot of the video [168] showing the propagation of an initially rectangular pulse g1(t) of duration tp=90.1fs through a structurally right-handed CLC of finite thickness. The vertical axis is P˜z(z,t) (in arbitrary units) and the horizontal axis is z (in micrometers). The incident pulse modulates the amplitude of either (top) a normally incident LCP plane wave or (bottom) a normally incident RCP plane wave of wavelength λ0car=515nm. The CLC is described by Eqs. (75) and (76) with pa=pc=0.40, pb=0.52, λ0a=λ0c=280nm, λ0b=290nm, Ma=Mb=Mc=100, χ=0°, h=1, γ=0°, Ω=100nm, and L=4μm, so that λ02Br=515nm and (Δλ0)Br=30nm [168]. The CLC is shifted to z(50,54)μm. By kind permission of Joseph B. Geddes III.

Figure 22
Figure 22

Snapshots of two videos [169] showing the propagation of a pulse g2(t) of duration 8 fs through a structurally right-handed chiral STF of finite thickness. The vertical axis is P˜z(z,t) (in arbitrary units) and the horizontal axis is z (in micrometers). The incident pulse modulates the amplitude of either (a) a normally incident LCP plane wave or (b) a normally incident RCP plane wave of wavelength λ0car=516nm. The chiral STF is described by Eqs. (75) and (76) with pa=0.40, pb=0.52, pc=0.42, λ0a=λ0c=280nm, λ0b=290nm, Ma=Mb=Mc=100, χ=20°, h=1, γ=0°, Ω=200nm, and L=4μm, so that λ02Br=516nm and (Δλ0)Br=27nm [169,170]. The chiral STF is shifted to z(12,16)μm. The bottom panel in each snapshot is a zoomed in version of the top panel. By kind permission of Joseph B. Geddes III.

Figure 23
Figure 23

Measured circular transmittances of a left-handed chiral STF fabricated by evaporating titanium oxide. Light was normally incident on the chiral STF during the experiment. Adapted from Wu et al. [130].

Figure 24
Figure 24

Circular transmittances for normal incidence (θinc=0°) calculated as functions of λ0 for the cascade of two chiral STFs described by Eq. (59) (with εa=2.267, εb=2.733, εc=2.499, χ=60°, γ=0°, Ω=175nm, and L=40Ω) that differ only in structural handedness. The relative permittivity scalars εa, εb, and εc were taken to be independent of the free-space wavelength. A schematic representation of the band-rejection filter’s performance in the circular Bragg regime is also shown.

Figure 25
Figure 25

Measured transmittance of a cascade of two identical CLCs that differ only in structural handedness. The right-handed CLC comprised 83 wt. % cholesteryl chloride and 17 wt. % olelyl cholesteryl carbonate. The left-handed CLC was made of 12 wt. % cholesteryl chloride and 88 wt. % olelyl cholesteryl carbonate. Unpolarized light was normally incident on the cascade during the experiment. This structure was intended as a laser-blocking notch filter. Reprinted with permission from: J. Adams, W. Haas, and J. Daily, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096–4098 (1971) [180].

Figure 26
Figure 26

Schematics of central structural defects in a structurally chiral material. The incorporation of an appropriate defect makes the structuraly chiral material perform as a spectral-hole filter.

Figure 27
Figure 27

Co-polarized transmittances calculated as functions of λ0 for a chiral STF central 90°-twist defect when θinc=ψ=0°. The constitutive parameters of the chiral STF are as follows: εa=2.267, εb=2.733, εc=2.499, χ=60°, h=1, and Ω=175nm. Whereas γ=0° for one half of the chiral STF, γ=90° for the other half. The relative permittivity scalars εa, εb, and εc were taken to be independent of the free-space wavelength.

Figure 28
Figure 28

Co-handed and co-polarized reflectance RRR calculated as a function of λ0 for a titanium-oxide chiral STF when the refractive index of infiltrating fluid is n[1,1.5]. The uninfiltrated chiral STF is described by Eqs. (59) and (66) with χv=15°, h=1, γ=0°, Ω=185nm, and L=40Ω. The direction of propagation of the incident plane wave is specified by θinc=10° and ψ=0°. The relative permittivity scalars εa, εb, and εc were taken to be independent of the free-space wavelength [206].

Figure 29
Figure 29

Same as Fig. 28 except that the co-handed and co-polarized transmittance is plotted when the chiral STF has a central 90°-twist defect and θinc=0°. Only the spike in the center of each circular Bragg regime is shown.

Figure 30
Figure 30

Emission efficiencies defined by Eq. (93) calculated as functions of λ0 for canonical current sources identified in Eq. (91) embedded in a dispersive chiral STF described by Eqs. (59) and (69) with pa=1.6, pb=2.0, pc=1.7, λ0a=λ0b=λ0c=180nm, Ma=Mb=Mc=50/π, χ=30°, h=1, γ=0°, Ω=150nm, and L=60Ω. The spectral range of the circular Bragg regime for normal incidence is λ0[513.3,531.8] nm, and the source current density is localized to the layer z[20Ω,22Ω]. Adapted from Lakhtakia [227].

Figure 31
Figure 31

Projections of (a), (b) PLCP×1013 and (c), (d) PRCP×1013 of the far-field (robs=105λ0) onto the plane z=L/2 for the region zobs>L for a dipole current source embedded at d=L/2 in a right-handed chiral STF when (a), (c) λ0=652nm and (b), (d) λ0=727nm. The dispersive chiral STF is described by Eqs. (59) and (69) with pa=2.0, pb=2.6, pc=2.1, λ0a=λ0c=180nm, λb=150nm, Ma=Mb=Mc=250/π, χ=30°, h=1, γ=0°, Ω=200nm, and L=60Ω. Adapted from Mackay and Lakhtakia [223].

Figure 32
Figure 32

Cross-sectional SEM image of a titanium-oxide chiral STF with a central layer defect comprising a sublayer of CdSe–CdS core-shell quantum dots sandwiched between two silicon-oxide sublayers. The chiral STF is structurally left-handed. Reprinted with permission from: F. Zhang, J. Xu, A. Lakhtakia, S. M. Pursel, M. W. Horn, and A. Wang, “Circularly polarized emission from colloidal nanocrystal quantum dots confined in microcavities formed by chiral mirrors,” Appl. Phys. Lett. 91, 023102 (2007) [190].

Figure 33
Figure 33

(a) Measured spectrum of RLL+RRL for normal incidence on the structure shown in Fig. 32. (b) Measured LCP and RCP emission spectrums of the same structure. Adapted with permission from: F. Zhang, J. Xu, A. Lakhtakia, S. M. Pursel, M. W. Horn, and A. Wang, “Circularly polarized emission from colloidal nanocrystal quantum dots confined in microcavities formed by chiral mirrors,” Appl. Phys. Lett. 91, 023102 (2007) [190].

Equations (96)

Equations on this page are rendered with MathJax. Learn more.

λ0mBr=4Ωmnavgcosθinc,m{1,2,3,},
navg(λ0)mλ04Ωcosθinc=0,m{1,2,3,},
ε̳Diel(z,ω)=ε̳Diel(z±2Ω,ω),
Einc(r,ω)=(ass+appinc)exp(ikincr),z0,
Eref(r,ω)=(rss+rppref)exp(ikrefr),z0,
Etr(r,ω)=(tss+tpptr)exp[iktr(rLu^z)],zL,
kinc=k0n1[(u^xcosψ+u^ysinψ)sinθinc+u^zcosθinc],
kref=k0n1[(u^xcosψ+u^ysinψ)sinθincu^zcosθinc],
ktr=k0n2[(u^xcosψ+u^ysinψ)sinθtr+u^zcosθtr],
s=u^xsinψ+u^ycosψ,
pinc=(u^xcosψ+u^ysinψ)cosθinc+u^zsinθinc,
pref=(u^xcosψ+u^ysinψ)cosθinc+u^zsinθinc,
ptr=(u^xcosψ+u^ysinψ)cosθtr+u^zsinθtr,
n2sinθtr=n1sinθinc
[rsrp]=[rssrsprpsrpp][asap],[tstp]=[tsstsptpstpp][asap],
Rsp=|rsp|2,
Tsp=|tsp|2Re(n2cosθtr)n1cosθinc.
as=12i(aLaR),ap=12(aL+aR),
rs=12i(rL+rR),rp=12(rL+rR),
ts=12i(tLtR),tp=12(tL+tR),
[rLrR]=[rLLrLRrRLrRR][aLaR],[tLtR]=[tLLtLRtRLtRR][aLaR],
RLR=|rLR|2,
TLR=|tLR|2Re(n2cosθtr)n1cosθinc.
Rss+Rps+Tss+Tps1,
Rpp+Rsp+Tpp+Tsp1,
RLL+RRL+TLL+TRL1,
RRR+RLR+TRR+TLR1,
E(r,ω)=e(z,κ,ψ,ω)exp[iκ(xcosψ+ysinψ)]H(r,ω)=h(z,κ,ψ,ω)exp[iκ(xcosψ+ysinψ)]},0<z<L,
×E(r,ω)=iωμ0H(r,ω),
×H(r,ω)=iωε0ε̳Diel(z,ω)E(r,ω)
[f(z,κ,ψ,ω)]=[ex(z,κ,ψ,ω)ey(z,κ,ψ,ω)hx(z,κ,ψ,ω)hy(z,κ,ψ,ω)],
ddz[f(z,κ,ψ,ω)]=i[(z,κ,ψ,ω)][f(z,κ,ψ,ω)],
[f(0,κ,ψ,ω)]=[(n1,θinc,ψ)][asaprsrp]
[f(L,κ,ψ,ω)]=[(n2,θtr,ψ)][tstp00],
[(ν,θ,ψ)]=[sinψcosψcosθsinψcosψcosθcosψsinψcosθcosψsinψcosθνη01cosψcosθνη01sinψνη01cosψcosθνη01sinψνη01sinψcosθνη01cosψνη01sinψcosθνη01cosψ].
[tstp00]=[][asaprsrp],
[]=[(n2,θtr,ψ)]1[(L,κ,ψ,ω)][(n1,θinc,ψ)]
[tLtR00]=12[i100i10000i100i1][][ii00110000ii0011][aLaRrLrR]
[(κ,ψ,ω)]=exp{i[(z1+z2,κ,ψ,ω)](zz1)},[1,M],
[(L,κ,ψ,ω)][M(κ,ψ,ω)][M1(κ,ψ,ω)][2(κ,ψ,ω)][1(κ,ψ,ω)].
[(2σΩ,κ,ψ,ω)]={[(2Ω,κ,ψ,ω)]}σ,σ{1,2,3,}.
ε̳Diel(z,ω)=niso2(z,ω),
niso(z,ω)={na(ω),z(0,La),nb(ω),z(La,La+Lb),
niso(z,ω)=nα(ω)+nβ(ω)sin(πzΩ),0<z<L,
ε̳Diel(z,ω)=(u^yu^y+u^zu^z)no2(z,ω)+u^xu^xne2(z,ω),
no(z,ω)={noa(ω),z(0,La),nob(ω),z(La,La+Lb),
ne(z,ω)={nea(ω),z(0,La),neb(ω),z(La,La+Lb),
ε̳Reusch(z,ω)=z(hξ)ε̳ref(ω)z1(hξ),(1)D<z<D,[1,M],
z(ξ)=(u^xu^x+u^yu^y)cosξ+(u^yu^xu^xu^y)sinξ+u^zu^z
ε̳ref(ω)=(u^yu^y+u^zu^z)εa(ω)+u^xu^xεb(ω).
λ0=λ02Brpq+1=4Ω2(εa+εb2)pq+1,p{0,1,2,3,},
={600,120,67,}nm
λ0=λ02Brpq+q1=4Ω2(εa+εb2)pq+q1,p{0,1,2,3,},
={200,86,55,}nm
ε̳ref(ω)=u^zu^zεa(ω)+u^xu^xεb(ω)+u^yu^yεc(ω)
ε̳ref(ω)=y(χ)[u^zu^zεa(ω)+u^xu^xεb(ω)+u^yu^yεc(ω)]y1(χ),
y(χ)=(u^xu^x+u^zu^z)cosχ+(u^zu^xu^xu^z)sinχ+u^yu^y
ε̳CLC(z,ω)=z(hπzΩ)[(u^yu^y+u^zu^z)εa(ω)+u^xu^xεb(ω)]z1(hπzΩ),
ε̳ChiralSTF(z,ω)=z(γ+hπzΩ)y(χ)[εa(ω)u^zu^z+εb(ω)u^xu^x+εc(ω)u^yu^y]y1(χ)z1(γ+hπzΩ),
λ0mBr2Ωm(εc+εd)cos1/2θinc,
εd=εaεbεacos2χ+εbsin2χ,
λ0mBr2Ωm(|εc|+|εd|)cos1/2θinc.
(Δλ02)Br2Ω|εcεd|
(Δλ02)Br2Ω|εcεd|cos1/2θinc,
LΩ>εc+εd|εcεd|
εa=[1.0443+2.7394(2χvπ)1.3697(2χvπ)2]2εb=[1.6765+1.5649(2χvπ)0.7825(2χvπ)2]2εc=[1.3586+2.1109(2χvπ)1.0554(2χvπ)2]2χ=tan1[2.8818tanχv]},χv[20°,50°],
εc<εd,χv<16.621°εc>εd,χv>16.621°}.
(Δλ0)Br2Ω||εc||εd||cos1/2θinc
εσ(λ0)=1+pσ[1+(12πMσiλ0σλ0)]1,σ{a,b,c}.
λresσ=λ0σ[1+(12πMσ)2]1/2,σ{a,b,c},
(Δλres)σ=λ0σ2πMσ,σ{a,b,c}.
λ0Ω[|εc(λ0)|+|εd(λ0)|]=0.
ε̳(z,ω)=z(γ+hπzΩ)y[χ(z)][εa(z,ω)u^zu^z+εb(z,ω)u^xu^x+εc(z,ω)u^yu^y]y1[χ(z)]z1(γ+hπzΩ),
χv(z)=χ¯v+δvsin(2NmodπzΩ).
ε̳˜ChiralSTF(z,t)=z(γ+hπzΩ)y(χ)[ε˜a(t)u^zu^z+ε˜b(t)u^xu^x+ε˜c(t)u^yu^y]y1(χ)z1(γ+hπzΩ),z(0,L).
ε˜σ(t)=δ(t)+pσ(2πc0λ0σ)sin(2πc0λ0σt)exp(c0tMσλ0σ)U(t),σ{a,b,c},
×E˜(r,t)=μ0tH˜(r,t)×H˜(r,t)=tD˜(r,t)},t>0,
D˜(r,t)={ε0E˜(r,t),z(0,L)ε00dτε̳˜ChiralSTF(z,τ)E˜(r,tτ),z(0,L)
g(t)=g1(t)=12[U(t)U(ttp)]
P˜z(z,t)=u^z[E˜(z,t)×H˜(z,t)]
g(t)=g2(t)=c0t2λ0carexp(c0tλ0car)
×H(r,ω)=iωε0ε̳Diel(z,ω)E(r,ω)+J(r,ω),z(0,L).
J(r,ω)=14π20dκκ02πdψj(z,κ,ψ,ω)exp[iκ(xcosψ+ysinψ)]
ddz[f(z,κ,ψ,ω)]=i[(z,κ,ψ,ω)][f(z,κ,ψ,ω)]+[g(z,κ,ψ,ω)],z(0,L),
[f(L,κ,ψ,ω)]=[(L,0,κ,ψ,ω)][f(0,κ,ψ,ω)]+0Ldzs[(L,zs,κ,ψ,ω)][g(zs,κ,ψ,ω)],
[(z,zs,κ,ψ,ω)]=[(z,κ,ψ,ω)][(zs,κ,ψ,ω)]1
ddz[(z,κ,ψ,ω)]=i[(z,κ,ψ,ω)][(z,κ,ψ,ω)],z(0,L),
E(r,ω)=14π20dκκ02πdψ(bLisp2+bRis+p2)exp(iα0z)×exp[iκ(xcosψ+ysinψ)],z<0,
E(r,ω)=14π20dκκ02πdψ(cLisp+2cRis+p+2)exp[iα0(zL)]×exp[iκ(xcosψ+ysinψ)],z>L.
p±=α0κ(u^xcosψ+u^ysinψ)+κk0u^z.
J(z,ω)=z(γ+hπzΩ)[Jτ0co(ω)u^τ+Jn0co(ω)u^n+Jb0co(ω)u^b]+z(γhπzΩ)[Jτ0cr(ω)u^τ+Jn0cr(ω)u^n+Jb0cr(ω)u^b],z(zp,zq),
u^τ=u^xcosχ+u^zsinχu^n=u^xsinχ+u^zcosχu^b=u^y}
BR,L=12η0(|bR,L|2|J(zp,ω)|2),CR,L=12η0(|cR,L|2|J(zp,ω)|2)
PLCP(robs,ω){12η0(|bLobs|2)(cosθobs2πk0r˜obs)2r^obs,zobs<012η0(|cLobs|2)(cosθobs2πk0r˜+obs)2r^obs,zobs>L
PRCP(robs,ω){12η0(|bRobs|2)(cosθobs2πk0r˜obs)2r^obs,zobs<012η0(|cRobs|2)(cosθobs2πk0r˜+obs)2r^obs,zobs>L,
Pj(robs,ω)=|Pj(robs,ω)|ω2|p|2,j{LCP,RCP}.

Metrics