Abstract

Real photonic waveguides are affected by structural imperfections due to fabrication tolerances that cause scattering phenomena when the light propagates through. These effects result in extrinsic propagation losses associated with the excitation of radiation and backscattering modes. In this work, we present a comprehensive review on the extrinsic loss mechanisms occurring in optical waveguides, identifying the main origins of scattering loss and pointing out the relationships between the loss and the geometrical and physical parameters of the waveguides. Theoretical models and experimental results, supported by statistical analysis, are presented for two widespread classes of waveguides: waveguides based on total internal reflection (TIR) affected by surface roughness, and disordered photonic crystal slab waveguides (PhCWs). In both structures extrinsic losses are strongly related to the waveguide group index, but the mode shape and its interaction with waveguide imperfections must also be considered to accurately model the scattering loss process. It is shown that as long as the group index of PhCWs is relatively low (ng<30), many analogies exist in the radiation and backscattering loss mechanisms with TIR waveguides; conversely, in the high ng regime, multiple scattering and localization effects arise in PhCWs that dramatically modify the waveguide behavior. The presented results enable the development of reliable circuit models of photonic waveguides, which can be used for a realistic performance evaluation of optical circuits.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491–498 (1961).
    [CrossRef]
  2. E. R. Schineller, R. P. Flam, and D. W. Wilmot, “Optical waveguides formed by proton irradiation of fused silica,” J. Opt. Soc. Am. 58, 1171–1173 (1968).
    [CrossRef]
  3. P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
    [CrossRef]
  4. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
    [CrossRef]
  5. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
    [CrossRef]
  6. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
    [CrossRef]
  7. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
    [CrossRef]
  8. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
    [CrossRef]
  9. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12, 1551–1561 (2004).
    [CrossRef]
  10. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [CrossRef]
  11. A. Y. Cho, A. Yariv, and P. Yeh, “Observation of confined propagation in Bragg waveguides,” Appl. Phys. Lett. 30, 471–472 (1977).
    [CrossRef]
  12. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
    [CrossRef]
  13. G. Pandraud, E. Margallo-Balbas, C.-K. Yang, and P. French, “Experimental characterization of roughness induced scattering losses in PECVD SiC waveguides,” J. Lightwave Technol. 29, 744–749 (2011).
    [CrossRef]
  14. J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17, 12470–12480 (2009).
    [CrossRef]
  15. F. Ladouceur, J. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron. 141, 242–248 (1994).
    [CrossRef]
  16. F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
    [CrossRef]
  17. F. Ladouceur and J. Love, Silica-Based Buried Channel Waveguides and Devices, Optical and Quantum Electronics Series (Chapman & Hall, 1996).
  18. M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
    [CrossRef]
  19. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
    [CrossRef]
  20. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
    [CrossRef]
  21. J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).
  22. J. A. Ogilvy and J. R. Foster, “Rough surfaces: Gaussian or exponential statistics?” J. Phys. D 22, 1243–1251 (1989).
    [CrossRef]
  23. J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282–288 (1990).
    [CrossRef]
  24. F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
    [CrossRef]
  25. F. Ladouceur, J. Love, and T. Senden, “Measurement of surface roughness in buried channel waveguides,” Electron. Lett. 28, 1321–1322 (1992).
    [CrossRef]
  26. M. Gottlieb, G. Brandt, and J. Conroy, “Out-of-plane scattering in optical waveguides,” IEEE Trans. Circuits Syst. 26, 1029–1035 (1979).
    [CrossRef]
  27. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO[sub 2] waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
    [CrossRef]
  28. S. Afifi and R. Dusséaux, “Statistical study of radiation loss from planar optical waveguides: the curvilinear coordinate method and the small perturbation method,” J. Opt. Soc. Am. A 27, 1171–1184 (2010).
    [CrossRef]
  29. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16, 1661–1663 (2004).
    [CrossRef]
  30. T. Barwicz and H. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005).
    [CrossRef]
  31. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
    [CrossRef]
  32. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [CrossRef]
  33. X. Fengnian, S. Lidija, and V. Yurii, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
    [CrossRef]
  34. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
    [CrossRef]
  35. B. Kim, B. T. Lee, and J. G. Han, “Surface roughness of silicon oxynitride etching in {C2F6} inductively coupled plasma,” Solid-State Electron. 51, 366–370 (2007).
    [CrossRef]
  36. W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, “Effect of mask thickness on the nanoscale sidewall roughness and optical scattering losses of deep-etched InP/InGaAsP high mesa waveguides,” J. Vac. Sci. Technol. B 23, 2041–2045 (2005).
    [CrossRef]
  37. J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
    [CrossRef]
  38. L. Li, T. Abe, and M. Esashi, “Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases,” J. Vac. Sci. Technol. B 21, 2545–2549 (2003).
    [CrossRef]
  39. D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
    [CrossRef]
  40. D. Marcuse, “Radiation losses of dielectric waveguides in terms of the power spectrum of the wall distortion function,” Bell Syst. Tech. J. 48, 3233–3242 (1969).
    [CrossRef]
  41. D. Marcuse, Light Transmission Optics, Bell Laboratories Series (Van Nostrand Reinhold, 1982).
  42. A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771–1776 (1994).
    [CrossRef]
  43. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
    [CrossRef]
  44. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
    [CrossRef]
  45. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971).
    [CrossRef]
  46. M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19, 1505–1514 (1983).
    [CrossRef]
  47. C. Ciminelli, F. Dell’Olio, V. Passaro, and M. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41, 285–298 (2009).
    [CrossRef]
  48. S. Johnson, M. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
    [CrossRef]
  49. D. Lenz, D. Erni, and W. Bächtold, “Modal power loss coefficients for highly overmoded rectangular dielectric waveguides based on free space modes,” Opt. Express 12, 1150–1156 (2004).
    [CrossRef]
  50. D. G. Hall, “Scattering of optical guided waves by waveguide surface roughness: a three-dimensional treatment,” Opt. Lett. 6, 601–603 (1981).
    [CrossRef]
  51. J. M. Elson, “Propagation in planar waveguides and the effects of wall roughness,” Opt. Express 9, 461–475 (2001).
    [CrossRef]
  52. K. P. Yap, A. Delage, J. Lapointe, B. Lamontagne, J. Schmid, P. Waldron, B. Syrett, and S. Janz, “Correlation of scattering loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides,” J. Lightwave Technol. 27, 3999–4008 (2009).
    [CrossRef]
  53. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).
    [CrossRef]
  54. H. Kogelnik and H. P. Weber, “Rays, stored energy, and power flow in dielectric waveguides,” J. Opt. Soc. Am. 64, 174–185 (1974).
    [CrossRef]
  55. F. Ladouceur and L. Poladian, “Surface roughness and backscattering,” Opt. Lett. 21, 1833–1835 (1996).
    [CrossRef]
  56. P. Verly, R. Tremblay, and J. W. Y. Lit, “Application of the effective-index method to the study of distributed feedback in corrugated waveguides: TM polarization,” J. Opt. Soc. Am. 70, 1218–1221 (1980).
    [CrossRef]
  57. U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
    [CrossRef]
  58. A. Canciamilla, F. Morichetti, A. Artuso, and A. Melloni, “Modelling backscattering in optical waveguides,” in 18th International Workshop on Optical Waveguide Theory and Numerical Modelling (2010).
  59. D. Melati, F. Morichetti, A. Canciamilla, D. Roncelli, F. Soares, A. Bakker, and A. Melloni, “Validation of the building-block-based approach for the design of photonic integrated circuits,” J. Lightwave Technol. 30, 3610–3616 (2012).
    [CrossRef]
  60. E. Kleijn, P. J. Williams, N. D. Whitbread, M. J. Wale, M. K. Smit, and X. J. Leijtens, “Sidelobes in the response of arrayed waveguide gratings caused by polarization rotation,” Opt. Express 20, 22660–22668 (2012).
    [CrossRef]
  61. W. Sorin and D. Baney, “Measurement of Rayleigh backscattering at 1.55  μm with 32  μm spatial resolution,” IEEE Photon. Technol. Lett. 4, 374–376 (1992).
    [CrossRef]
  62. F. Morichetti, A. Melloni, M. Martinelli, R. Heideman, A. Leinse, D. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics?” J. Lightwave Technol. 25, 2579–2589 (2007).
    [CrossRef]
  63. A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34, 421–437 (2009).
    [CrossRef]
  64. M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,” Opt. Express 13, 2487–2502 (2005).
    [CrossRef]
  65. M. Patterson and S. Hughes, Optical Properties of Photonic Structures: Interplay of Order and Disorder (CRC Press, 2012).
  66. W. Bogaerts, P. Bienstman, and R. Baets, “Scattering at sidewall roughness in photonic crystal slabs,” Opt. Lett. 28, 689–691 (2003).
    [CrossRef]
  67. M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84, 3639–3641 (2004).
    [CrossRef]
  68. D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29, 1897–1899 (2004).
    [CrossRef]
  69. L. C. Andreani and D. Gerace, “Light matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244, 3528–3539 (2007).
    [CrossRef]
  70. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007).
    [CrossRef]
  71. S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009).
    [CrossRef]
  72. V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83, 085301 (2011).
    [CrossRef]
  73. V. Savona, “Erratum: electromagnetic modes of a disordered photonic crystal [Phys. Rev. B 83, 085301 (2011)],” Phys. Rev. B 86, 079907 (2012).
    [CrossRef]
  74. M. Minkov and V. Savona, “Effect of hole-shape irregularities on photonic crystal waveguides,” Opt. Lett. 37, 3108–3110 (2012).
    [CrossRef]
  75. T. N. Langtry, A. A. Asatryan, L. C. Botten, C. M. de Sterke, R. C. McPhedran, and P. A. Robinson, “Effects of disorder in two-dimensional photonic crystal waveguides,” Phys. Rev. E 68, 026611 (2003).
    [CrossRef]
  76. K.-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Effects due to disorder on photonic crystal-based waveguides,” Appl. Phys. Lett. 82, 4414–4416 (2003).
    [CrossRef]
  77. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
    [CrossRef]
  78. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
    [CrossRef]
  79. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
    [CrossRef]
  80. M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
    [CrossRef]
  81. M. Patterson and S. Hughes, “Theory of disorder-induced coherent scattering and light localization in slow-light photonic crystal waveguides,” J. Opt. 12, 104013 (2010).
    [CrossRef]
  82. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
    [CrossRef]
  83. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef]
  84. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [CrossRef]
  85. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [CrossRef]
  86. D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004).
    [CrossRef]
  87. L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. De La Rue, and T. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
    [CrossRef]
  88. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458–17481 (2007).
    [CrossRef]
  89. F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. D. L. Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett. 96, 081112 (2010).
    [CrossRef]
  90. A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
    [CrossRef]
  91. A. Parini, P. Hamel, A. D. Rossi, S. Combrié, N.-V.-Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008).
    [CrossRef]
  92. C. Canavesi, F. Morichetti, A. Canciamilla, F. Persia, and A. Melloni, “Polarization- and phase-sensitive low-coherence interferometry setup for the characterization of integrated optical components,” J. Lightwave Technol. 27, 3062–3074 (2009).
    [CrossRef]
  93. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
    [CrossRef]
  94. L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007).
    [CrossRef]
  95. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006).
    [CrossRef]
  96. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
    [CrossRef]
  97. P. Pottier, M. Gnan, and R. M. D. L. Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15, 6569–6575 (2007).
    [CrossRef]
  98. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32, 2638–2640 (2007).
    [CrossRef]
  99. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
    [CrossRef]
  100. A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
    [CrossRef]
  101. J. Li, L. O’Faolain, S. Schulz, and T. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
    [CrossRef]
  102. M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102, 253903 (2009).
    [CrossRef]
  103. A. Petrov, M. Krause, and M. Eich, “Backscattering and disorder limits in slow light photonic crystal waveguides,” Opt. Express 17, 8676–8684 (2009).
    [CrossRef]
  104. F. Wang, J. S. Jensen, J. Mørk, and O. Sigmund, “Systematic design of loss-engineered slow-light waveguides,” J. Opt. Soc. Am. A 29, 2657–2666 (2012).
    [CrossRef]
  105. B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
    [CrossRef]
  106. W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: an analytic approach,” Phys. Rev. B 82, 235306 (2010).
    [CrossRef]
  107. A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE/OUP Series on Electromagnetic Wave Theory (Academic, 1978).
  108. P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic, 1995).
  109. N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
    [CrossRef]
  110. L. Ryzhik, G. Papanicolaou, and J. B. Keller, “Transport equations for elastic and other waves in random media,” Wave Motion 24, 327–370 (1996).
    [CrossRef]
  111. M. P. V. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
    [CrossRef]
  112. P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
    [CrossRef]
  113. M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
    [CrossRef]
  114. B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
    [CrossRef]
  115. S. Mazoyer, A. Baron, J.-P. Hugonin, P. Lalanne, and A. Melloni, “Slow pulses in disordered photonic-crystal waveguides,” Appl. Opt. 50, G113–G117 (2011).
    [CrossRef]
  116. A. Baron, S. Mazoyer, W. Smigaj, and P. Lalanne, “Attenuation coefficient of single-mode periodic waveguides,” Phys. Rev. Lett. 107, 153901 (2011).
    [CrossRef]
  117. J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
    [CrossRef]
  118. S. Combrié, N.-V.-Q. Tran, E. Weidner, A. D. Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90, 231104 (2007).
    [CrossRef]
  119. M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
    [CrossRef]
  120. T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 484–491 (2004).
    [CrossRef]
  121. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
    [CrossRef]
  122. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
    [CrossRef]
  123. M. Schneider and S. Mookherjea, “Modeling transmission time of silicon nanophotonic waveguides,” IEEE Photon. Technol. Lett. 24, 1418–1420 (2012).
    [CrossRef]
  124. P. Healey, “Statistics of Rayleigh backscatter from a single-mode fiber,” IEEE Trans. Commun. 35, 210–214 (1987).
    [CrossRef]
  125. P. Gysel and R. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8, 561–567 (1990).
    [CrossRef]
  126. F. Morichetti, A. Canciamilla, and A. Melloni, “Statistics of backscattering in optical waveguides,” Opt. Lett. 35, 1777–1779 (2010).
    [CrossRef]
  127. W. Yun-ping and Z. Dian-lin, “Reshaping, path uncertainty, and superluminal traveling,” Phys. Rev. A 52, 2597–2600 (1995).
    [CrossRef]
  128. Aspic by Filarete, www.aspicdesign.com .
  129. S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18, 14654–14663 (2010).
    [CrossRef]
  130. P. Pradhan and N. Kumar, “Localization of light in coherently amplifying random media,” Phys. Rev. B 50, 9644–9647 (1994).
    [CrossRef]
  131. Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60, 1555–1562 (1999).
    [CrossRef]
  132. P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103 (2010).
    [CrossRef]
  133. S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing the statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
    [CrossRef]
  134. M. Spasenović, D. M. Beggs, P. Lalanne, T. F. Krauss, and L. Kuipers, “Measuring the spatial extent of individual localized photonic states,” Phys. Rev. B 86, 155153 (2012).
    [CrossRef]
  135. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
    [CrossRef]
  136. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [CrossRef]
  137. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
    [CrossRef]
  138. G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, and J. T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
    [CrossRef]
  139. J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. 242, 182–185 (2006).
    [CrossRef]
  140. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
    [CrossRef]
  141. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
    [CrossRef]
  142. B. E. Little, J.-P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4–6 (1997).
    [CrossRef]
  143. B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
    [CrossRef]
  144. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
    [CrossRef]
  145. J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).
    [CrossRef]
  146. G. C. Ballesteros, J. Matres, J. Martí, and C. J. Oton, “Characterizing and modeling backscattering in silicon microring resonators,” Opt. Express 19, 24980–24985 (2011).
    [CrossRef]
  147. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
    [CrossRef]
  148. A. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “Impact of sidewall roughness on integrated Bragg gratings,” J. Lightwave Technol. 29, 3693–3704 (2011).
    [CrossRef]
  149. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
    [CrossRef]
  150. F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
    [CrossRef]
  151. J. Goeckeritz and S. Blair, “Optical characterization of coupled resonator slow-light rib waveguides,” Opt. Express 18, 18190–18199 (2010).
    [CrossRef]
  152. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15, 11934–11941 (2007).
    [CrossRef]
  153. M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
    [CrossRef]
  154. A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32, 409–411 (2007).
    [CrossRef]
  155. S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008).
    [CrossRef]
  156. T. Karle, D. Brown, R. Wilson, M. Steer, and T. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
    [CrossRef]
  157. A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35, 365–379 (2003).
    [CrossRef]
  158. A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20, 296–303 (2002).
    [CrossRef]
  159. S. Mookherjea and A. Oh, “Effect of disorder on slow light velocity in optical slow-wave structures,” Opt. Lett. 32, 289–291 (2007).
    [CrossRef]
  160. C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupled-resonator optical waveguides,” J. Opt. Soc. Am. B 26, 858–866 (2009).
    [CrossRef]
  161. H.-Y. Ryu, J.-K. Hwang, and Y.-H. Lee, “Effect of size nonuniformities on the band gap of two-dimensional photonic crystals,” Phys. Rev. B 59, 5463–5469 (1999).
    [CrossRef]
  162. A. H. Firester, M. E. Heller, and P. Sheng, “Knife-edge scanning measurements of subwavelength focused light beams,” Appl. Opt. 16, 1971–1974 (1977).
    [CrossRef]
  163. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18, 26505–26516 (2010).
    [CrossRef]
  164. A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).
    [CrossRef]
  165. S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett. 11, 688–690 (1999).
    [CrossRef]
  166. D. K. Sparacin, C.-Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K. Gleason, “Trimming of microring resonators by photo-oxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett. 30, 2251–2253 (2005).
    [CrossRef]
  167. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16, 3738–3743 (2008).
    [CrossRef]
  168. A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J. Hu, J. D. Musgraves, K. Richardson, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass,” Opt. Lett. 36, 4002–4004 (2011).
    [CrossRef]
  169. Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36, 2668–2670 (2011).
    [CrossRef]
  170. A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20, 15807–15817 (2012).
    [CrossRef]
  171. S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37, 3114–3116 (2012).
    [CrossRef]
  172. A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21, 14139–14145 (2013).
    [CrossRef]

2013 (1)

2012 (11)

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20, 15807–15817 (2012).
[CrossRef]

S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37, 3114–3116 (2012).
[CrossRef]

D. Melati, F. Morichetti, A. Canciamilla, D. Roncelli, F. Soares, A. Bakker, and A. Melloni, “Validation of the building-block-based approach for the design of photonic integrated circuits,” J. Lightwave Technol. 30, 3610–3616 (2012).
[CrossRef]

E. Kleijn, P. J. Williams, N. D. Whitbread, M. J. Wale, M. K. Smit, and X. J. Leijtens, “Sidelobes in the response of arrayed waveguide gratings caused by polarization rotation,” Opt. Express 20, 22660–22668 (2012).
[CrossRef]

V. Savona, “Erratum: electromagnetic modes of a disordered photonic crystal [Phys. Rev. B 83, 085301 (2011)],” Phys. Rev. B 86, 079907 (2012).
[CrossRef]

M. Minkov and V. Savona, “Effect of hole-shape irregularities on photonic crystal waveguides,” Opt. Lett. 37, 3108–3110 (2012).
[CrossRef]

J. Li, L. O’Faolain, S. Schulz, and T. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
[CrossRef]

F. Wang, J. S. Jensen, J. Mørk, and O. Sigmund, “Systematic design of loss-engineered slow-light waveguides,” J. Opt. Soc. Am. A 29, 2657–2666 (2012).
[CrossRef]

M. Schneider and S. Mookherjea, “Modeling transmission time of silicon nanophotonic waveguides,” IEEE Photon. Technol. Lett. 24, 1418–1420 (2012).
[CrossRef]

M. Spasenović, D. M. Beggs, P. Lalanne, T. F. Krauss, and L. Kuipers, “Measuring the spatial extent of individual localized photonic states,” Phys. Rev. B 86, 155153 (2012).
[CrossRef]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[CrossRef]

2011 (11)

G. C. Ballesteros, J. Matres, J. Martí, and C. J. Oton, “Characterizing and modeling backscattering in silicon microring resonators,” Opt. Express 19, 24980–24985 (2011).
[CrossRef]

A. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “Impact of sidewall roughness on integrated Bragg gratings,” J. Lightwave Technol. 29, 3693–3704 (2011).
[CrossRef]

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing the statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[CrossRef]

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

S. Mazoyer, A. Baron, J.-P. Hugonin, P. Lalanne, and A. Melloni, “Slow pulses in disordered photonic-crystal waveguides,” Appl. Opt. 50, G113–G117 (2011).
[CrossRef]

A. Baron, S. Mazoyer, W. Smigaj, and P. Lalanne, “Attenuation coefficient of single-mode periodic waveguides,” Phys. Rev. Lett. 107, 153901 (2011).
[CrossRef]

V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83, 085301 (2011).
[CrossRef]

G. Pandraud, E. Margallo-Balbas, C.-K. Yang, and P. French, “Experimental characterization of roughness induced scattering losses in PECVD SiC waveguides,” J. Lightwave Technol. 29, 744–749 (2011).
[CrossRef]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
[CrossRef]

A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J. Hu, J. D. Musgraves, K. Richardson, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass,” Opt. Lett. 36, 4002–4004 (2011).
[CrossRef]

Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36, 2668–2670 (2011).
[CrossRef]

2010 (17)

M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18, 26505–26516 (2010).
[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).
[CrossRef]

S. Afifi and R. Dusséaux, “Statistical study of radiation loss from planar optical waveguides: the curvilinear coordinate method and the small perturbation method,” J. Opt. Soc. Am. A 27, 1171–1184 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[CrossRef]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
[CrossRef]

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: an analytic approach,” Phys. Rev. B 82, 235306 (2010).
[CrossRef]

M. Patterson and S. Hughes, “Theory of disorder-induced coherent scattering and light localization in slow-light photonic crystal waveguides,” J. Opt. 12, 104013 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. D. L. Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett. 96, 081112 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, and A. Melloni, “Statistics of backscattering in optical waveguides,” Opt. Lett. 35, 1777–1779 (2010).
[CrossRef]

S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18, 14654–14663 (2010).
[CrossRef]

P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

J. Goeckeritz and S. Blair, “Optical characterization of coupled resonator slow-light rib waveguides,” Opt. Express 18, 18190–18199 (2010).
[CrossRef]

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
[CrossRef]

2009 (12)

C. Canavesi, F. Morichetti, A. Canciamilla, F. Persia, and A. Melloni, “Polarization- and phase-sensitive low-coherence interferometry setup for the characterization of integrated optical components,” J. Lightwave Technol. 27, 3062–3074 (2009).
[CrossRef]

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102, 253903 (2009).
[CrossRef]

A. Petrov, M. Krause, and M. Eich, “Backscattering and disorder limits in slow light photonic crystal waveguides,” Opt. Express 17, 8676–8684 (2009).
[CrossRef]

J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17, 12470–12480 (2009).
[CrossRef]

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34, 421–437 (2009).
[CrossRef]

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009).
[CrossRef]

K. P. Yap, A. Delage, J. Lapointe, B. Lamontagne, J. Schmid, P. Waldron, B. Syrett, and S. Janz, “Correlation of scattering loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides,” J. Lightwave Technol. 27, 3999–4008 (2009).
[CrossRef]

C. Ciminelli, F. Dell’Olio, V. Passaro, and M. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41, 285–298 (2009).
[CrossRef]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
[CrossRef]

C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupled-resonator optical waveguides,” J. Opt. Soc. Am. B 26, 858–866 (2009).
[CrossRef]

2008 (10)

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008).
[CrossRef]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16, 3738–3743 (2008).
[CrossRef]

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef]

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[CrossRef]

A. Parini, P. Hamel, A. D. Rossi, S. Combrié, N.-V.-Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, and J. T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

2007 (15)

A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32, 409–411 (2007).
[CrossRef]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15, 11934–11941 (2007).
[CrossRef]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458–17481 (2007).
[CrossRef]

P. Pottier, M. Gnan, and R. M. D. L. Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15, 6569–6575 (2007).
[CrossRef]

J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32, 2638–2640 (2007).
[CrossRef]

L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007).
[CrossRef]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

S. Combrié, N.-V.-Q. Tran, E. Weidner, A. D. Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90, 231104 (2007).
[CrossRef]

B. Kim, B. T. Lee, and J. G. Han, “Surface roughness of silicon oxynitride etching in {C2F6} inductively coupled plasma,” Solid-State Electron. 51, 366–370 (2007).
[CrossRef]

X. Fengnian, S. Lidija, and V. Yurii, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[CrossRef]

F. Morichetti, A. Melloni, M. Martinelli, R. Heideman, A. Leinse, D. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics?” J. Lightwave Technol. 25, 2579–2589 (2007).
[CrossRef]

L. C. Andreani and D. Gerace, “Light matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244, 3528–3539 (2007).
[CrossRef]

G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007).
[CrossRef]

S. Mookherjea and A. Oh, “Effect of disorder on slow light velocity in optical slow-wave structures,” Opt. Lett. 32, 289–291 (2007).
[CrossRef]

2006 (6)

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[CrossRef]

Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006).
[CrossRef]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. De La Rue, and T. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[CrossRef]

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. 242, 182–185 (2006).
[CrossRef]

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).
[CrossRef]

2005 (10)

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[CrossRef]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef]

W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, “Effect of mask thickness on the nanoscale sidewall roughness and optical scattering losses of deep-etched InP/InGaAsP high mesa waveguides,” J. Vac. Sci. Technol. B 23, 2041–2045 (2005).
[CrossRef]

T. Barwicz and H. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005).
[CrossRef]

M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,” Opt. Express 13, 2487–2502 (2005).
[CrossRef]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

S. Johnson, M. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[CrossRef]

D. K. Sparacin, C.-Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K. Gleason, “Trimming of microring resonators by photo-oxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett. 30, 2251–2253 (2005).
[CrossRef]

2004 (12)

D. Lenz, D. Erni, and W. Bächtold, “Modal power loss coefficients for highly overmoded rectangular dielectric waveguides based on free space modes,” Opt. Express 12, 1150–1156 (2004).
[CrossRef]

M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84, 3639–3641 (2004).
[CrossRef]

D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29, 1897–1899 (2004).
[CrossRef]

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16, 1661–1663 (2004).
[CrossRef]

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12, 1551–1561 (2004).
[CrossRef]

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004).
[CrossRef]

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 484–491 (2004).
[CrossRef]

2003 (7)

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
[CrossRef]

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

L. Li, T. Abe, and M. Esashi, “Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases,” J. Vac. Sci. Technol. B 21, 2545–2549 (2003).
[CrossRef]

W. Bogaerts, P. Bienstman, and R. Baets, “Scattering at sidewall roughness in photonic crystal slabs,” Opt. Lett. 28, 689–691 (2003).
[CrossRef]

T. N. Langtry, A. A. Asatryan, L. C. Botten, C. M. de Sterke, R. C. McPhedran, and P. A. Robinson, “Effects of disorder in two-dimensional photonic crystal waveguides,” Phys. Rev. E 68, 026611 (2003).
[CrossRef]

K.-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Effects due to disorder on photonic crystal-based waveguides,” Appl. Phys. Lett. 82, 4414–4416 (2003).
[CrossRef]

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35, 365–379 (2003).
[CrossRef]

2002 (4)

A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20, 296–303 (2002).
[CrossRef]

T. Karle, D. Brown, R. Wilson, M. Steer, and T. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[CrossRef]

2001 (2)

2000 (3)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO[sub 2] waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
[CrossRef]

1999 (6)

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
[CrossRef]

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60, 1555–1562 (1999).
[CrossRef]

M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

H.-Y. Ryu, J.-K. Hwang, and Y.-H. Lee, “Effect of size nonuniformities on the band gap of two-dimensional photonic crystals,” Phys. Rev. B 59, 5463–5469 (1999).
[CrossRef]

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett. 11, 688–690 (1999).
[CrossRef]

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

1997 (2)

1996 (3)

1995 (2)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

W. Yun-ping and Z. Dian-lin, “Reshaping, path uncertainty, and superluminal traveling,” Phys. Rev. A 52, 2597–2600 (1995).
[CrossRef]

1994 (5)

P. Pradhan and N. Kumar, “Localization of light in coherently amplifying random media,” Phys. Rev. B 50, 9644–9647 (1994).
[CrossRef]

F. Ladouceur, J. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron. 141, 242–248 (1994).
[CrossRef]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[CrossRef]

A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771–1776 (1994).
[CrossRef]

1993 (1)

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

1992 (3)

W. Sorin and D. Baney, “Measurement of Rayleigh backscattering at 1.55  μm with 32  μm spatial resolution,” IEEE Photon. Technol. Lett. 4, 374–376 (1992).
[CrossRef]

F. Ladouceur, J. Love, and T. Senden, “Measurement of surface roughness in buried channel waveguides,” Electron. Lett. 28, 1321–1322 (1992).
[CrossRef]

B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
[CrossRef]

1990 (2)

P. Gysel and R. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8, 561–567 (1990).
[CrossRef]

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282–288 (1990).
[CrossRef]

1989 (1)

J. A. Ogilvy and J. R. Foster, “Rough surfaces: Gaussian or exponential statistics?” J. Phys. D 22, 1243–1251 (1989).
[CrossRef]

1987 (1)

P. Healey, “Statistics of Rayleigh backscatter from a single-mode fiber,” IEEE Trans. Commun. 35, 210–214 (1987).
[CrossRef]

1985 (2)

M. P. V. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
[CrossRef]

P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[CrossRef]

1983 (1)

M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19, 1505–1514 (1983).
[CrossRef]

1981 (1)

1980 (1)

1979 (1)

M. Gottlieb, G. Brandt, and J. Conroy, “Out-of-plane scattering in optical waveguides,” IEEE Trans. Circuits Syst. 26, 1029–1035 (1979).
[CrossRef]

1977 (2)

A. Y. Cho, A. Yariv, and P. Yeh, “Observation of confined propagation in Bragg waveguides,” Appl. Phys. Lett. 30, 471–472 (1977).
[CrossRef]

A. H. Firester, M. E. Heller, and P. Sheng, “Knife-edge scanning measurements of subwavelength focused light beams,” Appl. Opt. 16, 1971–1974 (1977).
[CrossRef]

1974 (1)

1971 (1)

1969 (4)

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).
[CrossRef]

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
[CrossRef]

D. Marcuse, “Radiation losses of dielectric waveguides in terms of the power spectrum of the wall distortion function,” Bell Syst. Tech. J. 48, 3233–3242 (1969).
[CrossRef]

1968 (1)

1961 (1)

Abe, T.

L. Li, T. Abe, and M. Esashi, “Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases,” J. Vac. Sci. Technol. B 21, 2545–2549 (2003).
[CrossRef]

Abeles, J. H.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Adesida, I.

W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, “Effect of mask thickness on the nanoscale sidewall roughness and optical scattering losses of deep-etched InP/InGaAsP high mesa waveguides,” J. Vac. Sci. Technol. B 23, 2041–2045 (2005).
[CrossRef]

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Adibi, A.

Aers, G. C.

Afifi, S.

Agarwal, A.

Albada, M. P. V.

M. P. V. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
[CrossRef]

Alerhand, O. L.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

Andreani, L. C.

L. C. Andreani and D. Gerace, “Light matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244, 3528–3539 (2007).
[CrossRef]

D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29, 1897–1899 (2004).
[CrossRef]

Anetsberger, G.

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, and J. T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

Arcizet, O.

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, and J. T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

Armenise, M.

C. Ciminelli, F. Dell’Olio, V. Passaro, and M. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41, 285–298 (2009).
[CrossRef]

Artuso, A.

A. Canciamilla, F. Morichetti, A. Artuso, and A. Melloni, “Modelling backscattering in optical waveguides,” in 18th International Workshop on Optical Waveguide Theory and Numerical Modelling (2010).

Asatryan, A. A.

T. N. Langtry, A. A. Asatryan, L. C. Botten, C. M. de Sterke, R. C. McPhedran, and P. A. Robinson, “Effects of disorder in two-dimensional photonic crystal waveguides,” Phys. Rev. E 68, 026611 (2003).
[CrossRef]

Askari, M.

Assefa, S.

Astratov, V. N.

Atabaki, A. H.

Attema, I.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef]

Ayotte, N.

Baba, T.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[CrossRef]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef]

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 484–491 (2004).
[CrossRef]

D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004).
[CrossRef]

Bächtold, W.

Bae, J. W.

W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, “Effect of mask thickness on the nanoscale sidewall roughness and optical scattering losses of deep-etched InP/InGaAsP high mesa waveguides,” J. Vac. Sci. Technol. B 23, 2041–2045 (2005).
[CrossRef]

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Baets, R.

Bakker, A.

Ballesteros, G. C.

Bandaru, P. R.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008).
[CrossRef]

Baney, D.

W. Sorin and D. Baney, “Measurement of Rayleigh backscattering at 1.55  μm with 32  μm spatial resolution,” IEEE Photon. Technol. Lett. 4, 374–376 (1992).
[CrossRef]

Barclay, P. E.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

Baron, A.

S. Mazoyer, A. Baron, J.-P. Hugonin, P. Lalanne, and A. Melloni, “Slow pulses in disordered photonic-crystal waveguides,” Appl. Opt. 50, G113–G117 (2011).
[CrossRef]

A. Baron, S. Mazoyer, W. Smigaj, and P. Lalanne, “Attenuation coefficient of single-mode periodic waveguides,” Phys. Rev. Lett. 107, 153901 (2011).
[CrossRef]

Barton, J. S.

Barwicz, T.

Basov, D. N.

Bauters, J. F.

Beckx, S.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Bedard, S.

Beggs, D. M.

M. Spasenović, D. M. Beggs, P. Lalanne, T. F. Krauss, and L. Kuipers, “Measuring the spatial extent of individual localized photonic states,” Phys. Rev. B 86, 155153 (2012).
[CrossRef]

S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18, 14654–14663 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

Bégin, G.

Bienstman, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

W. Bogaerts, P. Bienstman, and R. Baets, “Scattering at sidewall roughness in photonic crystal slabs,” Opt. Lett. 28, 689–691 (2003).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Blair, S.

Blumenthal, D. J.

Bock, P. J.

Bogaerts, W.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

W. Bogaerts, P. Bienstman, and R. Baets, “Scattering at sidewall roughness in photonic crystal slabs,” Opt. Lett. 28, 689–691 (2003).
[CrossRef]

Borel, P. I.

Borreman, A.

Borselli, M.

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

Botten, L. C.

T. N. Langtry, A. A. Asatryan, L. C. Botten, C. M. de Sterke, R. C. McPhedran, and P. A. Robinson, “Effects of disorder in two-dimensional photonic crystal waveguides,” Phys. Rev. E 68, 026611 (2003).
[CrossRef]

Bowers, J. E.

Brandt, G.

M. Gottlieb, G. Brandt, and J. Conroy, “Out-of-plane scattering in optical waveguides,” IEEE Trans. Circuits Syst. 26, 1029–1035 (1979).
[CrossRef]

Brinkmeyer, E.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

Brongersma, M. L.

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. 242, 182–185 (2006).
[CrossRef]

Brown, D.

T. Karle, D. Brown, R. Wilson, M. Steer, and T. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Canavesi, C.

Canciamilla, A.

D. Melati, F. Morichetti, A. Canciamilla, D. Roncelli, F. Soares, A. Bakker, and A. Melloni, “Validation of the building-block-based approach for the design of photonic integrated circuits,” J. Lightwave Technol. 30, 3610–3616 (2012).
[CrossRef]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[CrossRef]

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20, 15807–15817 (2012).
[CrossRef]

A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J. Hu, J. D. Musgraves, K. Richardson, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass,” Opt. Lett. 36, 4002–4004 (2011).
[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. D. L. Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett. 96, 081112 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, and A. Melloni, “Statistics of backscattering in optical waveguides,” Opt. Lett. 35, 1777–1779 (2010).
[CrossRef]

C. Canavesi, F. Morichetti, A. Canciamilla, F. Persia, and A. Melloni, “Polarization- and phase-sensitive low-coherence interferometry setup for the characterization of integrated optical components,” J. Lightwave Technol. 27, 3062–3074 (2009).
[CrossRef]

A. Canciamilla, F. Morichetti, A. Artuso, and A. Melloni, “Modelling backscattering in optical waveguides,” in 18th International Workshop on Optical Waveguide Theory and Numerical Modelling (2010).

Cardenas, J.

Cassan, E.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16, 1661–1663 (2004).
[CrossRef]

Cassette, S.

S. Combrié, N.-V.-Q. Tran, E. Weidner, A. D. Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90, 231104 (2007).
[CrossRef]

Cerjak, I.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef]

Cerrina, F.

Chan, C. T.

K.-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Effects due to disorder on photonic crystal-based waveguides,” Appl. Phys. Lett. 82, 4414–4416 (2003).
[CrossRef]

Cheben, P.

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Chen, L.

Chen, R. T.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

Cho, A. Y.

A. Y. Cho, A. Yariv, and P. Yeh, “Observation of confined propagation in Bragg waveguides,” Appl. Phys. Lett. 30, 471–472 (1977).
[CrossRef]

Chong, H.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. De La Rue, and T. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

Chu, S. T.

Ciminelli, C.

C. Ciminelli, F. Dell’Olio, V. Passaro, and M. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41, 285–298 (2009).
[CrossRef]

Combrié, S.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102, 253903 (2009).
[CrossRef]

A. Parini, P. Hamel, A. D. Rossi, S. Combrié, N.-V.-Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008).
[CrossRef]

S. Combrié, N.-V.-Q. Tran, E. Weidner, A. D. Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90, 231104 (2007).
[CrossRef]

Conroy, J.

M. Gottlieb, G. Brandt, and J. Conroy, “Out-of-plane scattering in optical waveguides,” IEEE Trans. Circuits Syst. 26, 1029–1035 (1979).
[CrossRef]

Cooper, M. L.

Costa, R.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34, 421–437 (2009).
[CrossRef]

Crescimanno, M.

Ctyroký, J.

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).
[CrossRef]

Cusmai, G.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34, 421–437 (2009).
[CrossRef]

Dai, D.

De La Rue, R.

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. De La Rue, and T. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

De La Rue, R. M.

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).
[CrossRef]

De Rossi, A.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102, 253903 (2009).
[CrossRef]

de Sterke, C. M.

T. N. Langtry, A. A. Asatryan, L. C. Botten, C. M. de Sterke, R. C. McPhedran, and P. A. Robinson, “Effects of disorder in two-dimensional photonic crystal waveguides,” Phys. Rev. E 68, 026611 (2003).
[CrossRef]

Dekker, H.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef]

Delage, A.

Delâge, A.

Dell’Olio, F.

C. Ciminelli, F. Dell’Olio, V. Passaro, and M. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41, 285–298 (2009).
[CrossRef]

Densmore, A.

Devenyi, A.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

Dian-lin, Z.

W. Yun-ping and Z. Dian-lin, “Reshaping, path uncertainty, and superluminal traveling,” Phys. Rev. A 52, 2597–2600 (1995).
[CrossRef]

Divliansky, I. B.

Dumon, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Dusséaux, R.

Eftekhar, A. A.

Eich, M.

Elson, J. M.

Engelen, R. J. P.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[CrossRef]

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef]

Erni, D.

Esashi, M.

L. Li, T. Abe, and M. Esashi, “Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases,” J. Vac. Sci. Technol. B 21, 2545–2549 (2003).
[CrossRef]

Fage-Pedersen, J.

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

Fengnian, X.

X. Fengnian, S. Lidija, and V. Yurii, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[CrossRef]

Ferrari, C.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[CrossRef]

A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J. Hu, J. D. Musgraves, K. Richardson, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass,” Opt. Lett. 36, 4002–4004 (2011).
[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupled-resonator optical waveguides,” J. Opt. Soc. Am. B 26, 858–866 (2009).
[CrossRef]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Firester, A. H.

Flam, R. P.

Foresi, J.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO[sub 2] waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Foster, J. R.

J. A. Ogilvy and J. R. Foster, “Rough surfaces: Gaussian or exponential statistics?” J. Phys. D 22, 1243–1251 (1989).
[CrossRef]

Frandsen, L. H.

French, P.

Freude, W.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[CrossRef]

Froufe-Pérez, L. S.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing the statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[CrossRef]

Fujii, M.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[CrossRef]

Gabet, R.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102, 253903 (2009).
[CrossRef]

A. Parini, P. Hamel, A. D. Rossi, S. Combrié, N.-V.-Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008).
[CrossRef]

S. Combrié, N.-V.-Q. Tran, E. Weidner, A. D. Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90, 231104 (2007).
[CrossRef]

García, P. D.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing the statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[CrossRef]

P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103 (2010).
[CrossRef]

Gerace, D.

L. C. Andreani and D. Gerace, “Light matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244, 3528–3539 (2007).
[CrossRef]

D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29, 1897–1899 (2004).
[CrossRef]

Geuzebroek, D.

Gleason, K. K.

Glombitza, U.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

Gnan, M.

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

P. Pottier, M. Gnan, and R. M. D. L. Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15, 6569–6575 (2007).
[CrossRef]

Goeckeritz, J.

Gomez-Iglesias, A.

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).

Gorodetsky, M. L.

Gottesman, Y.

Gottlieb, M.

M. Gottlieb, G. Brandt, and J. Conroy, “Out-of-plane scattering in optical waveguides,” IEEE Trans. Circuits Syst. 26, 1029–1035 (1979).
[CrossRef]

Green, W. M. J.

Grillanda, S.

Grillot, F.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16, 1661–1663 (2004).
[CrossRef]

Gupta, G.

Gysel, P.

P. Gysel and R. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8, 561–567 (1990).
[CrossRef]

Hall, D. G.

Hall, T. J.

Hamel, P.

A. Parini, P. Hamel, A. D. Rossi, S. Combrié, N.-V.-Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008).
[CrossRef]

S. Combrié, N.-V.-Q. Tran, E. Weidner, A. D. Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90, 231104 (2007).
[CrossRef]

Han, J. G.

B. Kim, B. T. Lee, and J. G. Han, “Surface roughness of silicon oxynitride etching in {C2F6} inductively coupled plasma,” Solid-State Electron. 51, 366–370 (2007).
[CrossRef]

Haus, H.

T. Barwicz and H. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005).
[CrossRef]

M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19, 1505–1514 (1983).
[CrossRef]

Healey, P.

P. Healey, “Statistics of Rayleigh backscatter from a single-mode fiber,” IEEE Trans. Commun. 35, 210–214 (1987).
[CrossRef]

Heck, M. J. R.

Heideman, R.

Heideman, R. G.

Heller, M. E.

Hong, C.-Y.

Hosseini, A.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

Hossein-Zadeh, M.

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
[CrossRef]

Houdré, R.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Hu, J.

Hughes, S.

M. Patterson and S. Hughes, “Theory of disorder-induced coherent scattering and light localization in slow-light photonic crystal waveguides,” J. Opt. 12, 104013 (2010).
[CrossRef]

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102, 253903 (2009).
[CrossRef]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

M. Patterson and S. Hughes, Optical Properties of Photonic Structures: Interplay of Order and Disorder (CRC Press, 2012).

Hugonin, J. P.

Hugonin, J.-P.

Hwang, J.-K.

H.-Y. Ryu, J.-K. Hwang, and Y.-H. Lee, “Effect of size nonuniformities on the band gap of two-dimensional photonic crystals,” Phys. Rev. B 59, 5463–5469 (1999).
[CrossRef]

Ibanescu, M.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Ilchenko, V. S.

Ilic, B.

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

Ilic, R.

Inoshita, K.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 484–491 (2004).
[CrossRef]

Integlia, R. A.

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: an analytic approach,” Phys. Rev. B 82, 235306 (2010).
[CrossRef]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE/OUP Series on Electromagnetic Wave Theory (Academic, 1978).

Jacobs, S.

S. Johnson, M. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[CrossRef]

Jágerská, J.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Jang, J. H.

W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, “Effect of mask thickness on the nanoscale sidewall roughness and optical scattering losses of deep-etched InP/InGaAsP high mesa waveguides,” J. Vac. Sci. Technol. B 23, 2041–2045 (2005).
[CrossRef]

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Janz, S.

Jaouën, Y.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102, 253903 (2009).
[CrossRef]

A. Parini, P. Hamel, A. D. Rossi, S. Combrié, N.-V.-Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008).
[CrossRef]

S. Combrié, N.-V.-Q. Tran, E. Weidner, A. D. Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90, 231104 (2007).
[CrossRef]

Jen, A. K.-Y.

Jensen, J. S.

Jiang, W.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: an analytic approach,” Phys. Rev. B 82, 235306 (2010).
[CrossRef]

Joannopoulos, J.

S. Johnson, M. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[CrossRef]

Joannopoulos, J. D.

M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84, 3639–3641 (2004).
[CrossRef]

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

John, D.

Johnson, S.

S. Johnson, M. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[CrossRef]

Johnson, S. G.

M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84, 3639–3641 (2004).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Johnson, T.

Kaliteevski, M. A.

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60, 1555–1562 (1999).
[CrossRef]

Kalkman, J.

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. 242, 182–185 (2006).
[CrossRef]

Kaneko, T.

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett. 11, 688–690 (1999).
[CrossRef]

Kapitonov, A. M.

Karalis, A.

S. Johnson, M. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[CrossRef]

Karle, T.

T. Karle, D. Brown, R. Wilson, M. Steer, and T. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Kash, K.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

Keller, J. B.

L. Ryzhik, G. Papanicolaou, and J. B. Keller, “Transport equations for elastic and other waves in random media,” Wave Motion 24, 327–370 (1996).
[CrossRef]

Kim, B.

B. Kim, B. T. Lee, and J. G. Han, “Surface roughness of silicon oxynitride etching in {C2F6} inductively coupled plasma,” Solid-State Electron. 51, 366–370 (2007).
[CrossRef]

Kimerling, L. C.

Kippenberg, J. T.

G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, and J. T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

Kippenberg, T.

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. 242, 182–185 (2006).
[CrossRef]

Kippenberg, T. J.

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[CrossRef]

Kleijn, E.

Kogelnik, H.

Kokubun, Y.

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett. 11, 688–690 (1999).
[CrossRef]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Koos, C.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[CrossRef]

Korterik, J. P.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef]

Krause, M.

Krauss, T.

J. Li, L. O’Faolain, S. Schulz, and T. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. De La Rue, and T. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

T. Karle, D. Brown, R. Wilson, M. Steer, and T. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Krauss, T. F.

M. Spasenović, D. M. Beggs, P. Lalanne, T. F. Krauss, and L. Kuipers, “Measuring the spatial extent of individual localized photonic states,” Phys. Rev. B 86, 155153 (2012).
[CrossRef]

S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18, 14654–14663 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32, 2638–2640 (2007).
[CrossRef]

L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007).
[CrossRef]

Kuipers, L.

M. Spasenović, D. M. Beggs, P. Lalanne, T. F. Krauss, and L. Kuipers, “Measuring the spatial extent of individual localized photonic states,” Phys. Rev. B 86, 155153 (2012).
[CrossRef]

S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18, 14654–14663 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[CrossRef]

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef]

Kumar, N.

P. Pradhan and N. Kumar, “Localization of light in coherently amplifying random media,” Phys. Rev. B 50, 9644–9647 (1994).
[CrossRef]

Kuramochi, E.

Kuroki, Y.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 484–491 (2004).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19, 1505–1514 (1983).
[CrossRef]

Kwakernaak, M.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Kwan, K.-C.

K.-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Effects due to disorder on photonic crystal-based waveguides,” Appl. Phys. Lett. 82, 4414–4416 (2003).
[CrossRef]

Kwong, D. N.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

Lacey, J.

F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[CrossRef]

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282–288 (1990).
[CrossRef]

Ladouceur, F.

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[CrossRef]

F. Ladouceur and L. Poladian, “Surface roughness and backscattering,” Opt. Lett. 21, 1833–1835 (1996).
[CrossRef]

F. Ladouceur, J. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron. 141, 242–248 (1994).
[CrossRef]

F. Ladouceur, J. Love, and T. Senden, “Measurement of surface roughness in buried channel waveguides,” Electron. Lett. 28, 1321–1322 (1992).
[CrossRef]

F. Ladouceur and J. Love, Silica-Based Buried Channel Waveguides and Devices, Optical and Quantum Electronics Series (Chapman & Hall, 1996).

Lagendijk, A.

B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
[CrossRef]

M. P. V. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
[CrossRef]

Laine, J.-P.

Lalanne, P.

M. Spasenović, D. M. Beggs, P. Lalanne, T. F. Krauss, and L. Kuipers, “Measuring the spatial extent of individual localized photonic states,” Phys. Rev. B 86, 155153 (2012).
[CrossRef]

S. Mazoyer, A. Baron, J.-P. Hugonin, P. Lalanne, and A. Melloni, “Slow pulses in disordered photonic-crystal waveguides,” Appl. Opt. 50, G113–G117 (2011).
[CrossRef]

A. Baron, S. Mazoyer, W. Smigaj, and P. Lalanne, “Attenuation coefficient of single-mode periodic waveguides,” Phys. Rev. Lett. 107, 153901 (2011).
[CrossRef]

S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18, 14654–14663 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009).
[CrossRef]

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32, 2638–2640 (2007).
[CrossRef]

G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007).
[CrossRef]

Lamontagne, B.

Langtry, T. N.

T. N. Langtry, A. A. Asatryan, L. C. Botten, C. M. de Sterke, R. C. McPhedran, and P. A. Robinson, “Effects of disorder in two-dimensional photonic crystal waveguides,” Phys. Rev. E 68, 026611 (2003).
[CrossRef]

Lapointe, J.

LaRochelle, S.

Laval, S.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16, 1661–1663 (2004).
[CrossRef]

Lavrinenko, A. V.

Le Thomas, N.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Lecamp, G.

Lee, B. T.

B. Kim, B. T. Lee, and J. G. Han, “Surface roughness of silicon oxynitride etching in {C2F6} inductively coupled plasma,” Solid-State Electron. 51, 366–370 (2007).
[CrossRef]

Lee, K. K.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[CrossRef]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO[sub 2] waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Lee, R. K.

Lee, Y.-H.

H.-Y. Ryu, J.-K. Hwang, and Y.-H. Lee, “Effect of size nonuniformities on the band gap of two-dimensional photonic crystals,” Phys. Rev. B 59, 5463–5469 (1999).
[CrossRef]

Lehmann, T. B.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing the statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[CrossRef]

Leijtens, X. J.

Leinse, A.

Lenz, D.

Lepore, A.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Leuthold, J.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[CrossRef]

Li, J.

J. Li, L. O’Faolain, S. Schulz, and T. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

Li, L.

L. Li, T. Abe, and M. Esashi, “Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases,” J. Vac. Sci. Technol. B 21, 2545–2549 (2003).
[CrossRef]

Lidija, S.

X. Fengnian, S. Lidija, and V. Yurii, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[CrossRef]

Lidorikis, E.

M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84, 3639–3641 (2004).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Lim, D. R.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[CrossRef]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO[sub 2] waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Lipson, M.

Lit, J. W. Y.

Little, B. E.

Lock, J. P.

Lodahl, P.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing the statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[CrossRef]

P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103 (2010).
[CrossRef]

Love, J.

F. Ladouceur, J. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron. 141, 242–248 (1994).
[CrossRef]

F. Ladouceur, J. Love, and T. Senden, “Measurement of surface roughness in buried channel waveguides,” Electron. Lett. 28, 1321–1322 (1992).
[CrossRef]

F. Ladouceur and J. Love, Silica-Based Buried Channel Waveguides and Devices, Optical and Quantum Electronics Series (Chapman & Hall, 1996).

Luan, H.-C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO[sub 2] waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

Luo, J.

Luyssaert, B.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Macintyre, D.

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).
[CrossRef]

Marcuse, D.

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
[CrossRef]

D. Marcuse, “Radiation losses of dielectric waveguides in terms of the power spectrum of the wall distortion function,” Bell Syst. Tech. J. 48, 3233–3242 (1969).
[CrossRef]

D. Marcuse, Light Transmission Optics, Bell Laboratories Series (Van Nostrand Reinhold, 1982).

Maret, G.

P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[CrossRef]

Margallo-Balbas, E.

Martí, J.

Martin, R. J.

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Martinelli, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. D. L. Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett. 96, 081112 (2010).
[CrossRef]

F. Morichetti, A. Melloni, M. Martinelli, R. Heideman, A. Leinse, D. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics?” J. Lightwave Technol. 25, 2579–2589 (2007).
[CrossRef]

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35, 365–379 (2003).
[CrossRef]

A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20, 296–303 (2002).
[CrossRef]

Matres, J.

Mazoyer, S.

McIntyre, D.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. De La Rue, and T. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

McNab, S.

McNab, S. J.

McPhedran, R. C.

T. N. Langtry, A. A. Asatryan, L. C. Botten, C. M. de Sterke, R. C. McPhedran, and P. A. Robinson, “Effects of disorder in two-dimensional photonic crystal waveguides,” Phys. Rev. E 68, 026611 (2003).
[CrossRef]

Meade, R. D.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

Melati, D.

Melloni, A.

D. Melati, F. Morichetti, A. Canciamilla, D. Roncelli, F. Soares, A. Bakker, and A. Melloni, “Validation of the building-block-based approach for the design of photonic integrated circuits,” J. Lightwave Technol. 30, 3610–3616 (2012).
[CrossRef]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[CrossRef]

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20, 15807–15817 (2012).
[CrossRef]

A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J. Hu, J. D. Musgraves, K. Richardson, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass,” Opt. Lett. 36, 4002–4004 (2011).
[CrossRef]

S. Mazoyer, A. Baron, J.-P. Hugonin, P. Lalanne, and A. Melloni, “Slow pulses in disordered photonic-crystal waveguides,” Appl. Opt. 50, G113–G117 (2011).
[CrossRef]

F. Morichetti, A. Canciamilla, and A. Melloni, “Statistics of backscattering in optical waveguides,” Opt. Lett. 35, 1777–1779 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. D. L. Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett. 96, 081112 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupled-resonator optical waveguides,” J. Opt. Soc. Am. B 26, 858–866 (2009).
[CrossRef]

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34, 421–437 (2009).
[CrossRef]

C. Canavesi, F. Morichetti, A. Canciamilla, F. Persia, and A. Melloni, “Polarization- and phase-sensitive low-coherence interferometry setup for the characterization of integrated optical components,” J. Lightwave Technol. 27, 3062–3074 (2009).
[CrossRef]

F. Morichetti, A. Melloni, M. Martinelli, R. Heideman, A. Leinse, D. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics?” J. Lightwave Technol. 25, 2579–2589 (2007).
[CrossRef]

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35, 365–379 (2003).
[CrossRef]

A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20, 296–303 (2002).
[CrossRef]

A. Canciamilla, F. Morichetti, A. Artuso, and A. Melloni, “Modelling backscattering in optical waveguides,” in 18th International Workshop on Optical Waveguide Theory and Numerical Modelling (2010).

Michel, J.

Miller, A.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

Minkov, M.

Mitsugi, S.

Moll, N.

Mookherjea, S.

Mori, D.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[CrossRef]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef]

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 484–491 (2004).
[CrossRef]

D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004).
[CrossRef]

Morichetti, F.

D. Melati, F. Morichetti, A. Canciamilla, D. Roncelli, F. Soares, A. Bakker, and A. Melloni, “Validation of the building-block-based approach for the design of photonic integrated circuits,” J. Lightwave Technol. 30, 3610–3616 (2012).
[CrossRef]

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[CrossRef]

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20, 15807–15817 (2012).
[CrossRef]

A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J. Hu, J. D. Musgraves, K. Richardson, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass,” Opt. Lett. 36, 4002–4004 (2011).
[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. D. L. Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett. 96, 081112 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, and A. Melloni, “Statistics of backscattering in optical waveguides,” Opt. Lett. 35, 1777–1779 (2010).
[CrossRef]

C. Canavesi, F. Morichetti, A. Canciamilla, F. Persia, and A. Melloni, “Polarization- and phase-sensitive low-coherence interferometry setup for the characterization of integrated optical components,” J. Lightwave Technol. 27, 3062–3074 (2009).
[CrossRef]

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34, 421–437 (2009).
[CrossRef]

C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupled-resonator optical waveguides,” J. Opt. Soc. Am. B 26, 858–866 (2009).
[CrossRef]

F. Morichetti, A. Melloni, M. Martinelli, R. Heideman, A. Leinse, D. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics?” J. Lightwave Technol. 25, 2579–2589 (2007).
[CrossRef]

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35, 365–379 (2003).
[CrossRef]

A. Canciamilla, F. Morichetti, A. Artuso, and A. Melloni, “Modelling backscattering in optical waveguides,” in 18th International Workshop on Optical Waveguide Theory and Numerical Modelling (2010).

Morita, M.

Mørk, J.

Musgraves, J. D.

Namavar, F.

A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771–1776 (1994).
[CrossRef]

Nieuwenhuizen, T. M.

M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
[CrossRef]

Nikolaev, V. V.

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60, 1555–1562 (1999).
[CrossRef]

Notomi, M.

O’Brien, D.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007).
[CrossRef]

O’Faolain, L.

J. Li, L. O’Faolain, S. Schulz, and T. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007).
[CrossRef]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. De La Rue, and T. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

Ogilvy, J. A.

J. A. Ogilvy and J. R. Foster, “Rough surfaces: Gaussian or exponential statistics?” J. Phys. D 22, 1243–1251 (1989).
[CrossRef]

Oh, A.

Oton, C. J.

Painchaud, Y.

Painter, O.

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

Pan, W.

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett. 11, 688–690 (1999).
[CrossRef]

Pandraud, G.

Papanicolaou, G.

L. Ryzhik, G. Papanicolaou, and J. B. Keller, “Transport equations for elastic and other waves in random media,” Wave Motion 24, 327–370 (1996).
[CrossRef]

Parini, A.

Park, J. S.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008).
[CrossRef]

Pascal, D.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16, 1661–1663 (2004).
[CrossRef]

Passaro, V.

C. Ciminelli, F. Dell’Olio, V. Passaro, and M. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41, 285–298 (2009).
[CrossRef]

Patterson, M.

M. Patterson and S. Hughes, “Theory of disorder-induced coherent scattering and light localization in slow-light photonic crystal waveguides,” J. Opt. 12, 104013 (2010).
[CrossRef]

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102, 253903 (2009).
[CrossRef]

M. Patterson and S. Hughes, Optical Properties of Photonic Structures: Interplay of Order and Disorder (CRC Press, 2012).

Payne, F.

F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[CrossRef]

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282–288 (1990).
[CrossRef]

Persia, F.

Petrov, A.

Petrov, A. Y.

S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37, 3114–3116 (2012).
[CrossRef]

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Pfrang, A.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[CrossRef]

Poitras, C. B.

Poladian, L.

Polman, A.

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. 242, 182–185 (2006).
[CrossRef]

Pottier, P.

Poulton, C. G.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[CrossRef]

Povinelli, M.

S. Johnson, M. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[CrossRef]

Povinelli, M. L.

M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84, 3639–3641 (2004).
[CrossRef]

Pradhan, P.

P. Pradhan and N. Kumar, “Localization of light in coherently amplifying random media,” Phys. Rev. B 50, 9644–9647 (1994).
[CrossRef]

Preston, K.

Prorok, S.

Pryamikov, A. D.

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef]

Reed, G.

A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771–1776 (1994).
[CrossRef]

Richardson, K.

Richter, I.

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).
[CrossRef]

Rickman, A.

A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771–1776 (1994).
[CrossRef]

Riviere, R.

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, and J. T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

Rix, K. R.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing the statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[CrossRef]

Robinson, J. T.

Robinson, P. A.

T. N. Langtry, A. A. Asatryan, L. C. Botten, C. M. de Sterke, R. C. McPhedran, and P. A. Robinson, “Effects of disorder in two-dimensional photonic crystal waveguides,” Phys. Rev. E 68, 026611 (2003).
[CrossRef]

Rodier, J. C.

Rommel, S. L.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Roncelli, D.

Rooks, M.

Rossi, A. D.

A. Parini, P. Hamel, A. D. Rossi, S. Combrié, N.-V.-Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008).
[CrossRef]

S. Combrié, N.-V.-Q. Tran, E. Weidner, A. D. Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90, 231104 (2007).
[CrossRef]

Rue, R. D. L.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

Rue, R. M. D. L.

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. D. L. Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett. 96, 081112 (2010).
[CrossRef]

P. Pottier, M. Gnan, and R. M. D. L. Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15, 6569–6575 (2007).
[CrossRef]

Ryu, H.

Ryu, H.-Y.

H.-Y. Ryu, J.-K. Hwang, and Y.-H. Lee, “Effect of size nonuniformities on the band gap of two-dimensional photonic crystals,” Phys. Rev. B 59, 5463–5469 (1999).
[CrossRef]

Ryzhik, L.

L. Ryzhik, G. Papanicolaou, and J. B. Keller, “Transport equations for elastic and other waves in random media,” Wave Motion 24, 327–370 (1996).
[CrossRef]

Sagnes, I.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Samarelli, A.

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. D. L. Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett. 96, 081112 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).
[CrossRef]

Sandtke, M.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef]

Sapienza, L.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing the statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[CrossRef]

Sato, S.

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett. 11, 688–690 (1999).
[CrossRef]

Savona, V.

M. Minkov and V. Savona, “Effect of hole-shape irregularities on photonic crystal waveguides,” Opt. Lett. 37, 3108–3110 (2012).
[CrossRef]

V. Savona, “Erratum: electromagnetic modes of a disordered photonic crystal [Phys. Rev. B 83, 085301 (2011)],” Phys. Rev. B 86, 079907 (2012).
[CrossRef]

V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83, 085301 (2011).
[CrossRef]

Scherer, A.

Schimmel, T.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[CrossRef]

Schineller, E. R.

Schliesser, A.

G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, and J. T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Schmid, J.

Schmid, J. H.

Schneider, M.

M. Schneider and S. Mookherjea, “Modeling transmission time of silicon nanophotonic waveguides,” IEEE Photon. Technol. Lett. 24, 1418–1420 (2012).
[CrossRef]

Schneider, M. A.

Schoenmaker, H.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef]

Schrauwen, J.

Schulz, S.

J. Li, L. O’Faolain, S. Schulz, and T. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
[CrossRef]

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

Schulz, S. A.

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Segerink, F. B.

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef]

Sekaric, L.

Selvanathan, D.

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Senden, T.

F. Ladouceur, J. Love, and T. Senden, “Measurement of surface roughness in buried channel waveguides,” Electron. Lett. 28, 1321–1322 (1992).
[CrossRef]

Senden, T. J.

F. Ladouceur, J. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron. 141, 242–248 (1994).
[CrossRef]

Settle, M. D.

Shen, Y.

Sheng, P.

Shin, J.

Shinya, A.

Sigmund, O.

Simard, A.

Singh, V.

Šinor, M.

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).
[CrossRef]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef]

Skorobogatiy, M.

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Smigaj, W.

A. Baron, S. Mazoyer, W. Smigaj, and P. Lalanne, “Attenuation coefficient of single-mode periodic waveguides,” Phys. Rev. Lett. 107, 153901 (2011).
[CrossRef]

Smit, M. K.

Smith, D. A.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

Smolka, S.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing the statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[CrossRef]

P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103 (2010).
[CrossRef]

Snitzer, E.

Soares, F.

Soljacic, M.

S. Johnson, M. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[CrossRef]

M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84, 3639–3641 (2004).
[CrossRef]

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

Song, W.

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: an analytic approach,” Phys. Rev. B 82, 235306 (2010).
[CrossRef]

Sorel, M.

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20, 15807–15817 (2012).
[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. D. L. Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett. 96, 081112 (2010).
[CrossRef]

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

Sorin, W.

W. Sorin and D. Baney, “Measurement of Rayleigh backscattering at 1.55  μm with 32  μm spatial resolution,” IEEE Photon. Technol. Lett. 4, 374–376 (1992).
[CrossRef]

Sparacin, D. K.

Spasenovic, M.

Spillane, S. M.

Srinivasan, K.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

Staubli, R.

P. Gysel and R. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8, 561–567 (1990).
[CrossRef]

Steer, M.

T. Karle, D. Brown, R. Wilson, M. Steer, and T. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Stobbe, S.

P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103 (2010).
[CrossRef]

Subbaraman, H.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

Syrett, B.

Taillaert, D.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Talneau, A.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

A. Parini, P. Hamel, A. D. Rossi, S. Combrié, N.-V.-Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008).
[CrossRef]

S. Combrié, N.-V.-Q. Tran, E. Weidner, A. D. Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90, 231104 (2007).
[CrossRef]

M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,” Opt. Express 13, 2487–2502 (2005).
[CrossRef]

Tanabe, T.

Taniyama, H.

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Thoms, S.

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. De La Rue, and T. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

Thyrrestrup, H.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing the statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[CrossRef]

Tien, M.-C.

Tien, P. K.

P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971).
[CrossRef]

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Tip, A.

B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
[CrossRef]

Topolancik, J.

J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17, 12470–12480 (2009).
[CrossRef]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

Torregiani, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).
[CrossRef]

Tran, N.-V.-Q.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102, 253903 (2009).
[CrossRef]

A. Parini, P. Hamel, A. D. Rossi, S. Combrié, N.-V.-Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008).
[CrossRef]

S. Combrié, N.-V.-Q. Tran, E. Weidner, A. D. Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90, 231104 (2007).
[CrossRef]

Tremblay, R.

Ulrich, R.

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Vadalà, G.

Vahala, K.

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. 242, 182–185 (2006).
[CrossRef]

Vahala, K. J.

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[CrossRef]

van Albada, M. P.

B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
[CrossRef]

Van Campenhout, J.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

van Rossum, M. C. W.

M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
[CrossRef]

Van Thourhout, D.

van Tiggelen, B. A.

B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
[CrossRef]

Velha, P.

Verly, P.

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

Vivien, L.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16, 1661–1663 (2004).
[CrossRef]

Vlasov, Y.

Vlasov, Y. A.

Vollmer, F.

J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17, 12470–12480 (2009).
[CrossRef]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

Waldron, P.

Wale, M. J.

Wang, B.

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

Wang, F.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Weber, H. P.

Weidner, E.

S. Combrié, N.-V.-Q. Tran, E. Weidner, A. D. Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90, 231104 (2007).
[CrossRef]

Whitbread, N. D.

White, T. P.

Wiaux, V.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Williams, P. J.

Wilmot, D. W.

Wilson, R.

T. Karle, D. Brown, R. Wilson, M. Steer, and T. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Wolf, P.-E.

P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[CrossRef]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

Xia, F.

Xu, D.-X.

Xu, X.

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

Xu, Y.

Yang, C.-K.

Yang, S.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008).
[CrossRef]

Yap, K. P.

Yariv, A.

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
[CrossRef]

A. Y. Cho, A. Yariv, and P. Yeh, “Observation of confined propagation in Bragg waveguides,” Appl. Phys. Lett. 30, 471–472 (1977).
[CrossRef]

Yeh, P.

A. Y. Cho, A. Yariv, and P. Yeh, “Observation of confined propagation in Bragg waveguides,” Appl. Phys. Lett. 30, 471–472 (1977).
[CrossRef]

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef]

Yuan, X.

L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007).
[CrossRef]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. De La Rue, and T. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

Yun-ping, W.

W. Yun-ping and Z. Dian-lin, “Reshaping, path uncertainty, and superluminal traveling,” Phys. Rev. A 52, 2597–2600 (1995).
[CrossRef]

Yurii, V.

X. Fengnian, S. Lidija, and V. Yurii, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[CrossRef]

Zabelin, V.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Zhang, H.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Zhang, X.

K.-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Effects due to disorder on photonic crystal-based waveguides,” Appl. Phys. Lett. 82, 4414–4416 (2003).
[CrossRef]

Zhang, Z.-Q.

K.-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Effects due to disorder on photonic crystal-based waveguides,” Appl. Phys. Lett. 82, 4414–4416 (2003).
[CrossRef]

Zhao, W.

W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, “Effect of mask thickness on the nanoscale sidewall roughness and optical scattering losses of deep-etched InP/InGaAsP high mesa waveguides,” J. Vac. Sci. Technol. B 23, 2041–2045 (2005).
[CrossRef]

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

S. Johnson, M. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293 (2005).
[CrossRef]

Appl. Phys. Lett. (13)

J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope,” Appl. Phys. Lett. 83, 4116–4118 (2003).
[CrossRef]

M. L. Povinelli, S. G. Johnson, E. Lidorikis, J. D. Joannopoulos, and M. Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84, 3639–3641 (2004).
[CrossRef]

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

A. Y. Cho, A. Yariv, and P. Yeh, “Observation of confined propagation in Bragg waveguides,” Appl. Phys. Lett. 30, 471–472 (1977).
[CrossRef]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO[sub 2] waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[CrossRef]

S. Combrié, N.-V.-Q. Tran, E. Weidner, A. D. Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90, 231104 (2007).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

K.-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Effects due to disorder on photonic crystal-based waveguides,” Appl. Phys. Lett. 82, 4414–4416 (2003).
[CrossRef]

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004).
[CrossRef]

F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. D. L. Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett. 96, 081112 (2010).
[CrossRef]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[CrossRef]

A. Hosseini, X. Xu, D. N. Kwong, H. Subbaraman, W. Jiang, and R. T. Chen, “On the role of evanescent modes and group index tapering in slow light photonic crystal waveguide coupling efficiency,” Appl. Phys. Lett. 98, 031107 (2011).
[CrossRef]

Bell Syst. Tech. J. (3)

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
[CrossRef]

D. Marcuse, “Radiation losses of dielectric waveguides in terms of the power spectrum of the wall distortion function,” Bell Syst. Tech. J. 48, 3233–3242 (1969).
[CrossRef]

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).
[CrossRef]

Electron. Lett. (3)

F. Ladouceur, J. Love, and T. Senden, “Measurement of surface roughness in buried channel waveguides,” Electron. Lett. 28, 1321–1322 (1992).
[CrossRef]

M. Gnan, S. Thoms, D. Macintyre, R. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. De La Rue, and T. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

IEE Proc. Optoelectron. (2)

F. Ladouceur, J. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron. 141, 242–248 (1994).
[CrossRef]

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282–288 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19, 1505–1514 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[CrossRef]

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 484–491 (2004).
[CrossRef]

M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16, 276–287 (2010).
[CrossRef]

T. Karle, D. Brown, R. Wilson, M. Steer, and T. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

IEEE Photon. J. (1)

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

M. Schneider and S. Mookherjea, “Modeling transmission time of silicon nanophotonic waveguides,” IEEE Photon. Technol. Lett. 24, 1418–1420 (2012).
[CrossRef]

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16, 1661–1663 (2004).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[CrossRef]

W. Sorin and D. Baney, “Measurement of Rayleigh backscattering at 1.55  μm with 32  μm spatial resolution,” IEEE Photon. Technol. Lett. 4, 374–376 (1992).
[CrossRef]

S. T. Chu, W. Pan, S. Sato, T. Kaneko, B. E. Little, and Y. Kokubun, “Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay,” IEEE Photon. Technol. Lett. 11, 688–690 (1999).
[CrossRef]

IEEE Trans. Circuits Syst. (1)

M. Gottlieb, G. Brandt, and J. Conroy, “Out-of-plane scattering in optical waveguides,” IEEE Trans. Circuits Syst. 26, 1029–1035 (1979).
[CrossRef]

IEEE Trans. Commun. (1)

P. Healey, “Statistics of Rayleigh backscatter from a single-mode fiber,” IEEE Trans. Commun. 35, 210–214 (1987).
[CrossRef]

Int. J. Mater. Prod. Technol. (1)

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol. 34, 421–437 (2009).
[CrossRef]

J. Appl. Phys. (2)

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

J. Lightwave Technol. (14)

A. Parini, P. Hamel, A. D. Rossi, S. Combrié, N.-V.-Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008).
[CrossRef]

C. Canavesi, F. Morichetti, A. Canciamilla, F. Persia, and A. Melloni, “Polarization- and phase-sensitive low-coherence interferometry setup for the characterization of integrated optical components,” J. Lightwave Technol. 27, 3062–3074 (2009).
[CrossRef]

P. Gysel and R. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8, 561–567 (1990).
[CrossRef]

A. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “Impact of sidewall roughness on integrated Bragg gratings,” J. Lightwave Technol. 29, 3693–3704 (2011).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[CrossRef]

G. Pandraud, E. Margallo-Balbas, C.-K. Yang, and P. French, “Experimental characterization of roughness induced scattering losses in PECVD SiC waveguides,” J. Lightwave Technol. 29, 744–749 (2011).
[CrossRef]

T. Barwicz and H. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005).
[CrossRef]

F. Morichetti, A. Melloni, M. Martinelli, R. Heideman, A. Leinse, D. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics?” J. Lightwave Technol. 25, 2579–2589 (2007).
[CrossRef]

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

D. Melati, F. Morichetti, A. Canciamilla, D. Roncelli, F. Soares, A. Bakker, and A. Melloni, “Validation of the building-block-based approach for the design of photonic integrated circuits,” J. Lightwave Technol. 30, 3610–3616 (2012).
[CrossRef]

K. P. Yap, A. Delage, J. Lapointe, B. Lamontagne, J. Schmid, P. Waldron, B. Syrett, and S. Janz, “Correlation of scattering loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides,” J. Lightwave Technol. 27, 3999–4008 (2009).
[CrossRef]

A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771–1776 (1994).
[CrossRef]

A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20, 296–303 (2002).
[CrossRef]

J. Opt. (3)

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits,” J. Opt. 12, 104008 (2010).
[CrossRef]

M. Patterson and S. Hughes, “Theory of disorder-induced coherent scattering and light localization in slow-light photonic crystal waveguides,” J. Opt. 12, 104013 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

J. A. Ogilvy and J. R. Foster, “Rough surfaces: Gaussian or exponential statistics?” J. Phys. D 22, 1243–1251 (1989).
[CrossRef]

J. Vac. Sci. Technol. B (2)

W. Zhao, J. W. Bae, I. Adesida, and J. H. Jang, “Effect of mask thickness on the nanoscale sidewall roughness and optical scattering losses of deep-etched InP/InGaAsP high mesa waveguides,” J. Vac. Sci. Technol. B 23, 2041–2045 (2005).
[CrossRef]

L. Li, T. Abe, and M. Esashi, “Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases,” J. Vac. Sci. Technol. B 21, 2545–2549 (2003).
[CrossRef]

Laser Photon. Rev. (1)

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).
[CrossRef]

Nat. Mater. (1)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

Nat. Photonics (3)

G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, and J. T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

X. Fengnian, S. Lidija, and V. Yurii, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[CrossRef]

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008).
[CrossRef]

Nat. Phys. (1)

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

New J. Phys. (1)

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Pérez, P. D. García, and P. Lodahl, “Probing the statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13, 063044 (2011).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. (1)

J. Kalkman, A. Polman, T. Kippenberg, K. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. 242, 182–185 (2006).
[CrossRef]

Opt. Express (29)

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[CrossRef]

J. Goeckeritz and S. Blair, “Optical characterization of coupled resonator slow-light rib waveguides,” Opt. Express 18, 18190–18199 (2010).
[CrossRef]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15, 11934–11941 (2007).
[CrossRef]

S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18, 14654–14663 (2010).
[CrossRef]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef]

A. Petrov, M. Krause, and M. Eich, “Backscattering and disorder limits in slow light photonic crystal waveguides,” Opt. Express 17, 8676–8684 (2009).
[CrossRef]

L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007).
[CrossRef]

P. Pottier, M. Gnan, and R. M. D. L. Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15, 6569–6575 (2007).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[CrossRef]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458–17481 (2007).
[CrossRef]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
[CrossRef]

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[CrossRef]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010).
[CrossRef]

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12, 1551–1561 (2004).
[CrossRef]

J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17, 12470–12480 (2009).
[CrossRef]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
[CrossRef]

J. M. Elson, “Propagation in planar waveguides and the effects of wall roughness,” Opt. Express 9, 461–475 (2001).
[CrossRef]

D. Lenz, D. Erni, and W. Bächtold, “Modal power loss coefficients for highly overmoded rectangular dielectric waveguides based on free space modes,” Opt. Express 12, 1150–1156 (2004).
[CrossRef]

E. Kleijn, P. J. Williams, N. D. Whitbread, M. J. Wale, M. K. Smit, and X. J. Leijtens, “Sidelobes in the response of arrayed waveguide gratings caused by polarization rotation,” Opt. Express 20, 22660–22668 (2012).
[CrossRef]

M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,” Opt. Express 13, 2487–2502 (2005).
[CrossRef]

G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007).
[CrossRef]

G. C. Ballesteros, J. Matres, J. Martí, and C. J. Oton, “Characterizing and modeling backscattering in silicon microring resonators,” Opt. Express 19, 24980–24985 (2011).
[CrossRef]

M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18, 26505–26516 (2010).
[CrossRef]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16, 3738–3743 (2008).
[CrossRef]

A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21, 14139–14145 (2013).
[CrossRef]

A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20, 15807–15817 (2012).
[CrossRef]

Opt. Lett. (20)

S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37, 3114–3116 (2012).
[CrossRef]

A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J. Hu, J. D. Musgraves, K. Richardson, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass,” Opt. Lett. 36, 4002–4004 (2011).
[CrossRef]

Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36, 2668–2670 (2011).
[CrossRef]

D. K. Sparacin, C.-Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K. Gleason, “Trimming of microring resonators by photo-oxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett. 30, 2251–2253 (2005).
[CrossRef]

A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32, 409–411 (2007).
[CrossRef]

S. Mookherjea and A. Oh, “Effect of disorder on slow light velocity in optical slow-wave structures,” Opt. Lett. 32, 289–291 (2007).
[CrossRef]

D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29, 1897–1899 (2004).
[CrossRef]

M. Minkov and V. Savona, “Effect of hole-shape irregularities on photonic crystal waveguides,” Opt. Lett. 37, 3108–3110 (2012).
[CrossRef]

D. G. Hall, “Scattering of optical guided waves by waveguide surface roughness: a three-dimensional treatment,” Opt. Lett. 6, 601–603 (1981).
[CrossRef]

F. Ladouceur and L. Poladian, “Surface roughness and backscattering,” Opt. Lett. 21, 1833–1835 (1996).
[CrossRef]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35, 2526–2528 (2010).
[CrossRef]

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
[CrossRef]

J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32, 2638–2640 (2007).
[CrossRef]

Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006).
[CrossRef]

W. Bogaerts, P. Bienstman, and R. Baets, “Scattering at sidewall roughness in photonic crystal slabs,” Opt. Lett. 28, 689–691 (2003).
[CrossRef]

F. Morichetti, A. Canciamilla, and A. Melloni, “Statistics of backscattering in optical waveguides,” Opt. Lett. 35, 1777–1779 (2010).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
[CrossRef]

B. E. Little, J.-P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4–6 (1997).
[CrossRef]

B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21, 1390–1392 (1996).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[CrossRef]

Opt. Quantum Electron. (4)

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).
[CrossRef]

F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[CrossRef]

C. Ciminelli, F. Dell’Olio, V. Passaro, and M. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41, 285–298 (2009).
[CrossRef]

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35, 365–379 (2003).
[CrossRef]

Photon. Nanostr. Fundam. Appl. (1)

J. Li, L. O’Faolain, S. Schulz, and T. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
[CrossRef]

Phys. Rev. A (1)

W. Yun-ping and Z. Dian-lin, “Reshaping, path uncertainty, and superluminal traveling,” Phys. Rev. A 52, 2597–2600 (1995).
[CrossRef]

Phys. Rev. B (15)

P. Pradhan and N. Kumar, “Localization of light in coherently amplifying random media,” Phys. Rev. B 50, 9644–9647 (1994).
[CrossRef]

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60, 1555–1562 (1999).
[CrossRef]

P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103 (2010).
[CrossRef]

B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
[CrossRef]

M. Spasenović, D. M. Beggs, P. Lalanne, T. F. Krauss, and L. Kuipers, “Measuring the spatial extent of individual localized photonic states,” Phys. Rev. B 86, 155153 (2012).
[CrossRef]

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: an analytic approach,” Phys. Rev. B 82, 235306 (2010).
[CrossRef]

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83, 085301 (2011).
[CrossRef]

V. Savona, “Erratum: electromagnetic modes of a disordered photonic crystal [Phys. Rev. B 83, 085301 (2011)],” Phys. Rev. B 86, 079907 (2012).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

H.-Y. Ryu, J.-K. Hwang, and Y.-H. Lee, “Effect of size nonuniformities on the band gap of two-dimensional photonic crystals,” Phys. Rev. B 59, 5463–5469 (1999).
[CrossRef]

Phys. Rev. E (2)

T. N. Langtry, A. A. Asatryan, L. C. Botten, C. M. de Sterke, R. C. McPhedran, and P. A. Robinson, “Effects of disorder in two-dimensional photonic crystal waveguides,” Phys. Rev. E 68, 026611 (2003).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Phys. Rev. Lett. (9)

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102, 253903 (2009).
[CrossRef]

M. P. V. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
[CrossRef]

P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[CrossRef]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef]

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008).
[CrossRef]

A. Baron, S. Mazoyer, W. Smigaj, and P. Lalanne, “Attenuation coefficient of single-mode periodic waveguides,” Phys. Rev. Lett. 107, 153901 (2011).
[CrossRef]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009).
[CrossRef]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[CrossRef]

Phys. Status Solidi B (1)

L. C. Andreani and D. Gerace, “Light matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244, 3528–3539 (2007).
[CrossRef]

Rev. Mod. Phys. (1)

M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time,” Rev. Sci. Instrum. 79, 013704 (2008).
[CrossRef]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef]

Solid-State Electron. (1)

B. Kim, B. T. Lee, and J. G. Han, “Surface roughness of silicon oxynitride etching in {C2F6} inductively coupled plasma,” Solid-State Electron. 51, 366–370 (2007).
[CrossRef]

Wave Motion (1)

L. Ryzhik, G. Papanicolaou, and J. B. Keller, “Transport equations for elastic and other waves in random media,” Wave Motion 24, 327–370 (1996).
[CrossRef]

Other (8)

A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE/OUP Series on Electromagnetic Wave Theory (Academic, 1978).

P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic, 1995).

Aspic by Filarete, www.aspicdesign.com .

J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).

F. Ladouceur and J. Love, Silica-Based Buried Channel Waveguides and Devices, Optical and Quantum Electronics Series (Chapman & Hall, 1996).

M. Patterson and S. Hughes, Optical Properties of Photonic Structures: Interplay of Order and Disorder (CRC Press, 2012).

A. Canciamilla, F. Morichetti, A. Artuso, and A. Melloni, “Modelling backscattering in optical waveguides,” in 18th International Workshop on Optical Waveguide Theory and Numerical Modelling (2010).

D. Marcuse, Light Transmission Optics, Bell Laboratories Series (Van Nostrand Reinhold, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (31)

Figure 1
Figure 1

(a) SEM photograph of an uncovered classical waveguide. Sidewall roughness is clearly visible at the sidewall of the core region (© 2011 IEEE. Reprinted, with permission, from G. Pandraud, E. Margallo-Balbas, C.-K. Yang, and P. French, J. Lightwave Technol. 29, 744–749 (2011) [13]). (b) Top-view SEM photograph of a PhCW showing typical disorder effects produced by fabrication tolerances. In this device the degree of disorder was intentionally enhanced to investigate the effect on light propagation. (Reprinted with permission from [14]. Copyright 2008 The Optical Society).

Figure 2
Figure 2

(a) Sketch of a waveguide with sidewall roughness and reference frame. The roughness is assumed y independent. The random function f(z) describes the corrugation profile. (b) Measured autocorrelation function of the sidewall roughness for a pedestal waveguide as function of the displacement uz and uy in the z direction (propagation direction) and y direction (vertical direction), respectively. The weak dependence on the vertical direction is clearly visible. (c) Autocorrelation functions along direction z for different vertical positions over the wall (shaded gray), average value of the set (dashed line), and fit with the exponential model (solid line) (© 2006 IEEE. Reprinted, with permission, from C.G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006) [20]).

Figure 3
Figure 3

Comparison between the losses predicted by the Payne–Lacey model (dots) and the nw model (dashed lines) for (a) slabs with different index contrast and fixed roughness parameters (σ=2nm, Lc=50nm) and (b) different modes of the slab with Δn=30% (σ=2nm, Lc=50nm).

Figure 4
Figure 4

Measurements (marks) and model predictions (solid lines) of the propagation losses versus width of different types of waveguides: (a) TE mode of a SOI rib waveguide fabricated by three different processes and application of the Payne–Lacey model with a scaling factor [© 2009 IEEE. Reprinted, with permission, from K. P. Yap, A. Delage, J. Lapointe, B. Lamontagne, J. Schmid, P. Waldron, B. Syrett, and S. Janz, J. Lightwave Technol. 27, 3999–4008 (2009) [52]]. (b) TE and TM modes of a channel SOI waveguide and application of the nw model (experimental data are taken from [19]).

Figure 5
Figure 5

Comparison between the backscattered power predicted by the Ladouceur–Poladian model [55] (symbols) and the nw model (dashed lines). Backscattering is shown as a function of the waveguide width normalized to the width of the single-mode operation limit (w0). The same three slab waveguides used in Fig. 3 with the same roughness parameters (σ=2nm, Lc=50nm) have been considered.

Figure 6
Figure 6

Measured (symbols) backscattering as a function of the normalized waveguide width for several technologies: SOI, black circles [19]; SiON, blue triangles [58]; rib InGaAsP wavegude, red diamonds [59]; ridge InP waveguide, red squares [60]. Data refer to the TE mode and are numerically fitted (dashed lines) with Eq. (24).

Figure 7
Figure 7

Measurements (circles) and model prediction (dashed line) of the backscattering for a SOI waveguide with different cladding material, which modifies the refractive index contrast.

Figure 8
Figure 8

(a) Channel- and (b) rib-shaped SOI waveguide geometrical parameters.

Figure 9
Figure 9

Measured backscattering of a channel SOI waveguide for TE (red circles) and TM (black diamonds) modes as function of the waveguide width. Dashed lines are the fit with the nw model.

Figure 10
Figure 10

(a) SEM picture and (b) model of the hole of a PhCW affected by fabrication imperfections. Both the large-scale deviation from the nominal circular shape and the local surface roughness at the boundary can be described assuming a perturbation of the actual radius r around the hole perimeter. Advance modeling can also take into account that (c) at a scale <2nm the hole edge cannot be represented by a single valued analytical function r(θ) and (d) edge roughness exhibits fractal behavior. (Reprinted with permission from [64]. Copyright 2005 The Optical Society).

Figure 11
Figure 11

(a) Top-view photograph of a dispersion-engineered PhCW obtained by laterally shifting the first and second rows of holes of a W1 PhCW by symmetric displacements s1 (red) and s2 (green). (b) Calculated dispersion curves for the fundamental mode of dispersion-engineered PhCWs with the following displacement parameters: s1=0.13a, s2=0 (dash-dotted curve), s1=0.1225a, s2=0.045a (dashed curve), and s1=0.1a, s2=0.085a (solid curve). The thick solid red line indicates the flat band slow-light region with group index ng. The dotted line indicates the dispersion relation of a W1 waveguide [83]. (c) Measured normalized transmission (Tx, blue) and backscatter (Rx, black) of a silicon membrane dispersion-engineered PhCW with s1=48nm, s2=16nm, a=410nm, and r=0.286a. (d) Measured group index of the PhCW of (c), exhibiting a flat group index of about 40 between 1560 and 1567 nm. [(a) and (b) reprinted with permission from [83]. Copyright 2008 The Optical Society. (c) Reproduced from [82]].

Figure 12
Figure 12

(a) Measured backscatter enhancement versus ng for several PhCWs: the black and the blue curves indicate a dispersion-engineered waveguide designed to have a low-dispersion region at group index of 30 and 40, respectively, while the red curve indicates a W1 waveguide. Dashed lines show the ng2 model for both kinds of waveguides. (b) Measured group index versus wavelength of the three PhCWs shown in (a).

Figure 13
Figure 13

(a) Dispersion relation (blue curve) of the fundamental mode of an engineered PhCW (s1=48nm, s2=16nm, a=410nm, and hole radius r=112nm). The region of near-constant group index (ng=40) is highlighted in cyan. (b) Electric-field distribution of the Bloch mode for the three wave vectors marked by red circles in (a). (c) Integral of the Bloch-mode intensity |ek(r)|2 over the hole surfaces as a function of group index ng for the dispersion-engineered structure shown in (a) (blue dashed curve), and for a conventional W1 waveguide (green solid curve). [Figures 3 and 4 reprinted with permission from M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, Phys. Rev. B 80, 195305 (2009) [80]. Copyright 2009 by the American Physical Society.]

Figure 14
Figure 14

Total loss of dispersion-engineered PhCWs with a group index of ng=38 in the low-dispersion region (displacement parameters s1=48nm, s2=16nm). The green dashed curve is the numerical fit obtained by assuming a zero correlation length (Lc=0), while the red solid curve assumes a coherence length equal to the entire hole perimeter. (Reproduced from [82]).

Figure 15
Figure 15

Experimental observation of the transition of the light transport through a disordered W1 PhCW across different regimes: dispersive (A to C), diffusive (C to D), and localization (E and beyond): (a) real-space images of the infrared field radiated at the top surface of the waveguide at different wavelengths, (b) angular spectrum profiles measured at different regimes, and (c) measured dispersion diagram of the waveguide. [Figure 3 reprinted with permission from N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, Phys. Rev. B 80, 125332 (2009) [109]. Copyright 2009 by the American Physical Society].

Figure 16
Figure 16

(a) Calculated average loss per unit cell (solid curves) of a 220 nm silicon membrane dispersion-engineered PhCW (s1=48nm, s1=16nm, a=410nm, r=112nm) as a function of the waveguide length for different group index regime: ng=62 (a1, blue curve), ng=42 (a2, green curve), ng=22 (a2, red curve), and ng=11 (a4, cyan curve). In each plot, the short and the long waveguide limits are indicated with the upper and lower dashed curves. [Figure 5 reprinted with permission from M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, Phys. Rev. B 80, 195305 (2009) [80]. Copyright 2009 by the American Physical Society]. (b) Comparison between the measured transmission spectrum of a W1 waveguide (black curve) and the spectrum calculated by using the Beer–Lambert model (light gray) and the incoherent multiple-scattering model [65]. (Copyright 2012. From M. Patterson and S. Hughes, Optical Properties of Photonic Structures: Interplay of Order and Disorder. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.)

Figure 17
Figure 17

Comparison between (a) measured transmission spectrum of a W1.1 PhCW and (b) theoretical spectrum calculated by using the incoherent (dashed red curve) and coherent (solid, blue) scattering approaches. The red curve in the inset shows that the actual value of the group index does not diverge like the ideal value (dashed, blue). Comparison between (c) simulated and (d) experimental time-frequency reflectance map of a 250 μm-long W1.1 waveguide. In the simulated map, the left blue dashed curve indicates the injection time of the light, and the right blue dashed curve indicates the expected roundtrip time in a disorder-free structure. The magenta curve shows the group index ng on the top scale. [Figures 2 and 4 reprinted with permission from M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, Phys. Rev. Lett. 102, 253903 (2009) [102]. Copyright 2009 by the American Physical Society].

Figure 18
Figure 18

(a) Schematic of the chirped PhCW: the radius of the holes linearly increases from the input section (left) to the output section (right), so that the dispersion curve of the PhCW shifts along the waveguide. (b) Near-field measurement of the electric-field amplitude along the chirped waveguide at a normalized angular frequency ω=0.2973 (b1, region I), ω=0.2961 (b2, region II), and ω=0.2950 (b3, region III). (c) Normalized intensity as a function of the group index. The green curve shows the expected intensity without losses. The red curve represents the best fit by using the measured data points with ng below 30 only, resulting in a ng2 curve. The histogram depicts at what ng local intensity minima were observed, indicative of multiple scattering. [Figures 1; 2(a), (e), (f); and 3 reprinted with permission from R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, Phys. Rev. Lett. 101, 103901 (2008) [93]. Copyright 2008 by the American Physical Society].

Figure 19
Figure 19

(a) Sketch of a waveguide with random sidewall roughness and width w, loss coefficient α, and length Lw. (b) Measured power spectral density of the backscattering of a 1-mm-long SOI waveguide with w=490nm for TE (solid curve) and TM (dotted curve) input polarization. (Reproduced from [126]).

Figure 20
Figure 20

Probability density function of the (a) real and (b) imaginary parts of the normalized backscattering for different waveguides: SOI channel waveguide (circles), SiON square buried waveguide (diamonds), box-shaped TriPleX waveguide (squares), and InP rib waveguide (triangles) for TE input polarization. (Reproduced from [126]).

Figure 21
Figure 21

PDF of the normalized backscattering length of 12-mm-long SOI waveguide for different waveguide width for TE mode. (Reproduced from [126]).

Figure 22
Figure 22

(a) Physical structure, (b) equivalent circuit, and (c) matrix description of a waveguide with sidewall roughness and length Lw. P is the propagation matrix, and R is the transmission matrix of a random mirror.

Figure 23
Figure 23

Measurement and simulation of a waveguide with sidewall roughness obtained with the proposed circuital model. (a) Spatial distribution of the backscattered power. The effect of distributed backscattering is visible inside the waveguide, while the high reflections at zero and 15 mm are generated by the chip facets. (b) PDF of the normalized (distributed) backscattering length (TE mode).

Figure 24
Figure 24

Simulated PDFs P(T) of the light transmitted through W1 PhCWs for (a) low-group-index (ng<20) and (b) high-group-index (ng>30) regimes. All the waveguides have T=0.5, corresponding to a length nearly equal to the effective mean-free path (Llm). The dotted curve in (a) is a log-normal distribution with the same standard deviation as the curve obtained for ng=13. (c),(d) Measured transmission spectrum of a suspended membrane dispersion-engineered PhCWs designed according to the scheme of Fig. 11 with a length of (c) 2 mm and (d) 180 μm. Design parameters (a=410nm, r=0.286a, s1=48nm, s2=16nm) are chosen to have an engineered group index of about 40. Dashed black rectangles mark a 4-nm-wide region where the average transmisison is around 0.5. (e),(f) Probability density of the transmitted light in the region with T=0.5 for (e) 2-mm-long PhCWs (ng=12) shown in (c), and for (f) 180-μm-long PhCWs (black bars, ng=43) shown in (d). Red bars refer to 300-μm-long PhCWs with ng=43 at T=0.5. [(a) and (b) reproduced from Figs. 4(a) and 4(b) in S. Mazoyer, J. P. Hugonin, and P. Lalanne, Phys. Rev. Lett. 103, 063903 (2009) [71]. Copyright 2009 by the American Physical Society].

Figure 25
Figure 25

Measured TFRM of the dispersion-engineered PhCWs of Fig. 11(a) with length of (a) 180 μm and (b) 2 mm. Dotted rectangles indicate the region of almost unitary transmission (T1) and low group index (ng=7). Dashed rectangles mark the wavelength range where T=0.5, this condition occurring at ng=45 in (a) and at ng=12 in (b). The dashed-dotted rectangle of (b) shows the region of localized states, where ng=45, T1, and the localization length l becomes much smaller than L. (c) In the low-group-index regime (ng=7) the probability density of the light intensity backscattered by the short PhCW (blue diamods) of (a) and by the long PhCW (green squares) of (b) follows the exponential law (dashed black line) of single-scattering systems. Red triangles show the probability density of the backscattering measured in a 5-mm-long silicon wire. (d) In the high-group-index regime (ng>40), multiple scattering makes the probability density of backscattering strongly deviate from the behavior of single-scattering systems (dashed black line). Measurements of four waveguides with increasing L and operating in the multiple-scattering regimes are shown: 180 μm (blue diamonds), 300 μm (red stars), 900 μm (black circles), and 2000 μm (green squares). White squares refer to the 2000-μm-long PhCWs in the low-group-index regime (ng=12).

Figure 26
Figure 26

Effect of the sidewall roughness on different types of optical resonators. (a) Disc. [Reprinted with permission from M. Borselli et al., Appl. Phys. Lett. 85, 3693–3695 (2004) [135]. Copyright 2004, AIP Publishing LLC]. (b) Doublet mode resonance for disc of radius 30 μm. (Reprinted with permission from [136]. Copyright 2005 The Optical Society). (c) Toroid. [Reprinted by permission from Macmillan Publishers Ltd: A. Schliesser et al., Nat. Phys. 4, 415–419 (2008) [137]. Copyright 2008]. (d) Transmission spectrum of a toroidal resonator showing optical mode-splitting. [Reprinted by permission from Macmillan Publishers Ltd: G. Anetsberger et al., Nat. Photonics 2, 627–633 (2008) [138]. Copyright 2008]. (e) Sphere. [Reprinted from J. Kalkman et al., “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. 242, 182–185 (2006) [139]. Copyright (2006), with permission from Elsevier]. (f) Spectral transmission and reflection of a 70 μm sphere. (Reprinted with permission from [140]. Copyright 2002 The Optical Society). (g) Ring [© 2005 IEEE. Reprinted, with permission, from W. Bogaerts et al., J. Lightwave Technol. 23, 401–412 (2005) [141]]. (h) Response of a ring-resonator filter for different values of backscattering. (Reprinted with permission from [142]. Copyright 1997 The Optical Society).

Figure 27
Figure 27

(a) Schematic of an integrated ring resonator with sidewall roughness on both bus and ring. (b) Measured transmission (|HT|2) and backreflection (|HR|2) for different coupling coefficients. (c) Backscattering enhancement at resonance due to the ring resonator as function of the group index: black squares, experiment; red diamonds, TMM simulations; blue dashed curve, numerical fit with a ng2 model. (Reproduced from [89]).

Figure 28
Figure 28

Simulation of a chirped Bragg grating with sidewall roughness standard deviation of 2 nm and length of (a) 300 nm and (b) 30 nm. (c) and (d) show, respectively, the distribution of the side lobe suppression ratio (the labels are the average SLSRs) and the central wavelength of a uniform grating for different roughness parameters. The dotted lines represent the results in the ideal case. [© 2011 IEEE. Reprinted, with permission, from A. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, J. Lightwave Technol. 29, 3693–3704 (2011) [148]].

Figure 29
Figure 29

Comparison between the group index of PhCWs and coupled resonator optical waveguides (CROWs): (a) measured group index versus wavelength of the W1 PhCW of Fig. 13. (b) Simulation of the typical frequency-domain behavior of the slowdown S of a CROW, corresponding to the enhancement factor of the CROW group index with respect to the group index of the waveguide realizing the CROW.

Figure 30
Figure 30

(a) Top-view photograph of an eight-ring CROW with a metal heater on each ring to independently control the resonance frequency of each resonator and set an arbitrary degree of phase disorder. The device is fabricated in 4.5% index contrast SiON technology. (b) Average backreflection of the eight-ring CROW for a phase disorder standard deviation σλ=12pm (solid blue curve) and 24 pm (solid black curve). Dashed curves show the results of numerical simulations performed through the transfer matrix method. [(a) and (b) reproduced from [160]]. (c) Top-view photograph of a tunable eight-ring CROW realized in SOI technology. (d) Measured Through port transmission (Tx) and In port backreflection of SOI CROWs with M=4 (red solid curves), 6 (blue dotted curves), and 8 (black dashed curve) coupled RRs. (e) In-band average backreflected power of SOI CROWs versus the number M of coupled RRs. [(c) reproduced from [147], (d) and (e) reproduced from [89]].

Figure 31
Figure 31

(a) Photograph of a SOI CROW consisting of 100 cuboid resonators realized along a silicon nanowaveguide. (b) Measured transmission of the CROW around the edge of a transmission band. The nominal transmission band is located at wavelengths above 1576 nm. (c) Measured profile of the optical field along the CROW at several wavelengths around the band edge: an extended field distribution is observed at λ>1576nm (lower ng); localized field distributions are observed at λ<1576nm (higher ng) [Reprinted by permission from Macmillan Publishers Ltd: S. Moorherjea, J. S. Park, S. Yang, and P. R. Bandaru, Nat. Photonics 2, 90–93 (2008) [155]. Copyright 2008].

Tables (2)

Tables Icon

Table 1. Typical Values of Refractive Index Contrast, Root-Mean-Square Roughness, and Correlation Length for Several Production Technologies

Tables Icon

Table 2. Typical Values of Losses and Backscattering for Several Technologies with Different Refractive Index Contrastsa

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

n(x,y¯,z)={n1,if|x|<w/2+f(z)n2,if|x|>w/2+f(z),
R(uz)=f(z)f(zuz),
R(uz)=limLw+1LwLw/2Lw/2f(z)f(z+uz)dz.
S(θ)=12π+R(uz)eiθuzduz,
R(uz)=σ2exp(uz2Lc2),
R(uz)=σ2exp(uzLc).
S(θ)=σ2πLc1+Lc2σ2.
IL=eαLw=e(αa+αr+αb)Lw,
ILe(αa+αr)Lw·(1αbLw),
αr=σ22k0(w/2)4n1gf,
αr=Aneffw
αr=σ22k0(w/2)4neffgfs,
s=neffr/wneffc/w,
αr=AneffnA[neffw+neffh],
V=ωcwn12n22,
ωneffω=wneffw.
ng=neff+ωneffω
neffw=ngneffw,
P=+dxdySz=+dxdy[E×E*+E*×H]z,
(ngneff)=2cP+dxdy[Ez·Ez*+Hz·Hz*],
rb=[U2W2(w/2)3β(1+W)]σ2Lcπ11+4β2Lc2,
U=w2(k02n12β2)1/2,W=w2(β2k02n22)1/2,
κ=πλBδneff=πλBneffwδw,
κ=πλBδww(ngneff),
rb=B(neffw)2=Bw2(ngneff)2.
δr(θm)δr(θm)=σ2exp(r|θmθm|Lc)δm,m,
αb=(aω2vg)2drdrΔε(r)Δε(r)[ek(r)·ek(r)][ek*(r)·ek*(r)]ei2k(xx)
αr=aωvgdrdrΔε(r)Δε(r)ek*(r)eikx·Im[G⃗rad(r,r,ω)]·ek(r)eikx,
α=αr+αb=c1ng+c2ng2,
α=c1γng+c2ρng2,
ρ=n|LcETET+(ε1)1DNDNdr|2,
γ=n|LcET+(ε1)1DNdr|2.
P(L)=P(0)e(αL),
dΨf(x)dx=(αb+αr)Ψf(x)+αbΨb(x),
dΨb(x)dx=(αb+αr)Ψb(x)αbΨf(x).
E(r,ω)=E0[ek(r)Ψf(x)eikx+ek*(r)Ψb(x)eikx]+Erad(r,ω),
vgdΨf(x)dx=icff(x)Ψf(x)+icfb(x)ei2kxΨb(x)+iCf,r(x),
vgdΨb(x)dx=icbb(x)Ψb(x)+icbf(x)ei2kxΨf(x)+iCb,r(x),
cff(x)=cbb(x)=ωa2ek*(r)·ek(r)Δε(r)dydz
cbf(x)=cfb*(x)=ωa2ek(r)·ek(r)Δε(r)dydz
I(x+dx)=I(x)e[Ang2(x)dx],
Leff=1e2αLw2α,
P=[ejθ00ejθ],
R=jT[1rBejφBrBejφB1],
l=LlnT,

Metrics