Abstract

The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively.With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Marieb and K. N. Hoehn, Human Anatomy & Physiology (Pearson, 2012).
  2. T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).
  3. B. Blundell and A. Schwarz, Volumetric Three Dimensional Display System (Wiley, 2000).
  4. D. Gabor, “Holography 1948–1971,” Proc. IEEE 60, 655–668 (1972).
    [CrossRef]
  5. S. Benton and M. Bove, Holographic Imaging (Wiley Interscience, 2008).
  6. E. Lueder, 3D Displays (Wiley, 2012).
  7. R. Hainich and O. Bimber, Displays: Fundamentals & Applications (Peters/CRC Press, 2011).
  8. M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (1996), pp. 31–42.
  9. W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23, 814–824 (2004).
    [CrossRef]
  10. N. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
    [CrossRef]
  11. G. Favalora, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
    [CrossRef]
  12. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three color, solid-state three dimensional display,” Science 273, 1185–1189 (1996).
    [CrossRef]
  13. A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” in SIGGRAPH 2007 Papers (2007), paper 40.
  14. B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer, 2011).
  15. J. Geng, “Volumetric 3D display for radiation therapy planning,” J. Disp. Technol. 4, 437–450 (2008).
    [CrossRef]
  16. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photon. 3, 128–160 (2011).
    [CrossRef]
  17. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18, 8824–8835 (2010).
    [CrossRef]
  18. S. Pastoor and M. Wöpking, “3-D displays: a review of current technologies,” Displays 17, 100–110 (1997).
    [CrossRef]
  19. J. Geng, “Multiview three-dimensional display using single projector,” Displays (submitted).
  20. A. Sullivan, “3 Deep: new displays render images you can almost reach out and touch,” IEEE Spectrum42(4), 30–35 (2005).
  21. D. MacFarlane, “Volumetric three dimensional display,” Appl. Opt. 33, 7453–7457 (1994).
    [CrossRef]
  22. J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” Proc. IEEE 94, 502–523 (2006).
    [CrossRef]
  23. J.-Y. Son, B. Javidi, S. Yano, and K.-H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6, 394–403 (2010).
    [CrossRef]
  24. H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011).
    [CrossRef]
  25. B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
    [CrossRef]
  26. N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans Broadcast. 57, 362–371 (2011).
    [CrossRef]
  27. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50, H87–H115 (2011).
    [CrossRef]
  28. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3):33, 1–30 (2008).
    [CrossRef]
  29. E. Adelson and J. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing (MIT, 1991), pp. 3–20.
  30. S. E. B. Sorensen, P. S. Hansen, and N. L. Sorensen, “Method for recording and viewing stereoscopic images in color using multichrome filters,” U.S. patent6,687,003 (February3, 2004).
  31. E. A. Edirisinghe and J. Jiang, “Stereo imaging, an emerging technology,” in Proceedings of SSGRR, L’Aquila, July31–August 6, 2000.
  32. M. Coltheart, “The persistences of vision,” Phil. Trans. R. Soc. B 290, 57–69 (1980).
    [CrossRef]
  33. “Persistence of vision,” http://en.wikipedia.org/wiki/Persistence_of_vision .
  34. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
    [CrossRef]
  35. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through headmounted display with a low f-number and large field of view using a free-form prism,” Appl. Opt. 48, 2655–2668 (2009).
    [CrossRef]
  36. T. Honda, Y. Kajiki, K. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3D images,” in Three-Dimensional Television, Video and Display Technology (Springer, 2010), pp. 461–487.
  37. M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
    [CrossRef]
  38. M. Faraday, “Thoughts on ray vibrations,” Philos. Mag. 28, 345–350 (1846).
  39. A. Gershun, “The light field,” Moscow, 1936, P. Moon and G. Timoshenko, translators, J. Math. Phys. XVIII, 51–151 (1939).
  40. S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH (1996), pp. 43–54.
  41. F. E. Ives, “A novel stereogram,” J. Franklin Inst. 153, 51–52 (1902).
    [CrossRef]
  42. T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14, 487–499 (2008).
    [CrossRef]
  43. “Nintendo 3DS,” Nintendo, http://www.nintendo.com/3ds/features/ .
  44. T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
    [CrossRef]
  45. D. S. St. John, “Holographic color television record system,” U.S. patent3,813,685 (May28, 1974).
  46. T. Endo, Y. Kajiki, T. Honda, and M. Sato, “Cylindrical 3-D video display observable from all directions,” in Proceedings of Pacific Graphics (2000), pp. 300–306.
  47. T. Yendo, N. Kawakami, and S. Tachi, “Seelinder: the cylindrical light field display,” in ACM SIGGRAPH (2005), paper 16.
  48. D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29, 163 (2010).
    [CrossRef]
  49. G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).
    [CrossRef]
  50. W. Hess, “Stereoscopic picture,” U.S. patent1,128,979 (February16, 1915).
  51. C. van Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D LCD,” Proc. SPIE 2653, 32 (1996).
    [CrossRef]
  52. C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179 (1997).
    [CrossRef]
  53. NLT, www.nlt-technologies.co.jp/en/ .
  54. A. Schwerdtner and H. Heidrich, “Dresden 3D display (D4D),” Proc. SPIE 3295, 203 (1998).
    [CrossRef]
  55. Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res. 1, 39–42 (2010).
    [CrossRef]
  56. G. Lippmann, “Épreuves réversibles. Photographies intégrales,” C. R. Acad. Sci. 146, 446–451 (1908).
  57. H. Takahashi, H. Fujinami, and K. Yamada, “Holographic lens array increases the viewing angle of 3D displays,” SPIE Newsroom (June6, 2006).
  58. A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
    [CrossRef]
  59. J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, “Three-dimensional display scheme based on integral imaging with three-dimensional information processing,” Opt. Express 12, 6020–6032 (2004).
    [CrossRef]
  60. H. Liao, T. Dohi, and K. Nomura, “Autostereoscopic 3D display with long visualization depth using referential viewing area based integral photography,” IEEE Trans. Vis. Comput. Graph. 17, 1690–1701 (2011).
    [CrossRef]
  61. O. S. Cossairt, M. Thomas, and R. K. Dorval, “Optical scanning assembly,” U.S. patent7,864,419 (June8, 2004).
  62. E. Goulanian and A. F. Zerrouk, “Apparatus and system for reproducing 3-dimensional images,” U.S. patent7,944,465 (May17, 2011).
  63. L. Bogaert, Y. Meuret, S. Roelandt, A. Avci, H. De Smet, and H. Thienpont, “Demonstration of a multiview projection display using decentered microlens arrays,” Opt. Express 18, 26092–26106 (2010).
    [CrossRef]
  64. G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer tracking autostereoscopic 3D display systems,” Proc. SPIE 3012, 187 (1997).
    [CrossRef]
  65. M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “A liquid crystal display based implementation of a real-time ICVision holographic stereogram display,” Proc. SPIE 2406, 154 (1995).
    [CrossRef]
  66. T. Toda, S. Takahashi, and F. Iwata, “3D video system using grating image,” in Proc. SPIE 2406, 191 (1995).
    [CrossRef]
  67. E. Schulze, “Synthesis of moving holographic stereograms with high-resolution spatial light modulators,” Proc. SPIE 2406, 124 (1995).
    [CrossRef]
  68. D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
    [CrossRef]
  69. O. S. Cossairt, J. Napoli, S. L. Hill, R. K. Dorval, and G. E. Favalora, “Occlusion-capable multiview volumetric three-dimensional display,” Appl. Opt. 46, 1244–1250 (2007).
    [CrossRef]
  70. Actuality 3D Display, http://actuality-medical.com .
  71. Holografika, www.holografika.com .
  72. T. Balogh and P. T. Kovács, “Real-time 3D light field transmission,” Proc. SPIE 7724, 772406 (2010).
    [CrossRef]
  73. G. Favalora and O. Cossairt, “Theta-parallax-only (TPO) displays,” U.S. patent7,364,300 B2 (April24, 2008).
  74. S. Uchida and Y. Takaki, “360-degree, three-dimensional table-screen display using small array of high-speed projectors,” Proc. SPIE 8288, 82880D (2012).
    [CrossRef]
  75. C. H. Krah, “Three-dimensional display system,” U.S. patent7,843,449 (November30, 2010).
  76. Y.-H. Tao, Q.-H. Wang, J. Gu, and W.-X. Zhao, “Autostereoscopic three-dimensional projector based on two parallax barriers,” Opt. Lett. 34, 3220–3222 (2009).
    [CrossRef]
  77. Y. Kim, K. Hong, J. Yeom, J. Hong, J.-H. Jung, Y. W. Lee, J.-H. Park, and B. Lee, “A frontal projection-type three-dimensional display,” Opt. Express 20, 20130–20138 (2012).
    [CrossRef]
  78. Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154 (1997).
    [CrossRef]
  79. S. Hentschke, “Autostereoscopic reproduction system for 3-D displays,” U.S. patent7,839,430 (November232010).
  80. N.-Y. Wang, H.-J. Lee, and C.-H. Tsai, “Parallax barrier type autostereoscopic display device,” U.S. patent6,727,866 (April27, 2004).
  81. B. Si, “Stereoscopic image display system and method of controlling the same,” U. S. patent8,427,746 B2 (April23, 2013).
  82. http://www.hhi.fraunhofer.de/fields-of-competence/interactive-media-human-factors/products-services/stereoscopic-displays/free2c-desktop-display.html
  83. P. Surman, R. S. Brar, I. Sexton, and K. Hopf, “MUTED and HELIUM3D autostereoscopic displays,” in IEEE International Conference on Multimedia and Expo (ICME) (2010), pp. 1594–1599.
  84. S. H. Ju, M.-D. Kim, M.-S. Park, K.-T. Kim, J.-H. Park, and K.-M. Lim, “Viewer’s eye position estimation using single camera,” in SID Syposium Digest of Technical Papers (2013), pp. 671–674.
  85. H. Y. Wu, C. H. Chang, and C. L. Lin, “Dead-zone-free 2D/3D switchable barrier type 3D display,” in SID Syposium Digest of Technical Papers (2013), pp. 675–677.
  86. J. C. Schultz, R. Brott, M. Sykora, W. Bryan, and T. Fukami, “Full resolution autostereoscopic 3D display for mobile applications,” in SID Symposium Digest of Technical Papers (2009), Vol. 40, pp. 127–130.
  87. J. C. Schultz and M. J. Sykora, “Directional backlight with reduced crosstalk,” U.S. patent application2011/0285927 A1 (May24, 2010).
  88. M. Minami, K. Yokomizo, and Y. Shimpuku, “Glasses-free 2D/3D switchable display,” in SID Symposium Digest of Technical Papers (2011), pp. 468–471.
  89. M. Minami, “Light source device and display,” U.S. patent application2012/0195072 A1 (August2, 2012).
  90. C. W. Wei and Y. P. Huang, “240  Hz 4-zones sequential backlight,” in SID Symposium Digest (2010), p. 863.
  91. H. Kwon and H. J. Choi, “A time-sequential multiview autostereoscopic display without resolution loss using a multidirectional backlight unit and a LCD panel,” Proc. SPIE 8288, 82881Y (2012).
    [CrossRef]
  92. E. A. Downing, “Method and system for three-dimensional display of information based on two photon upconversion,” U.S. patent5,684,621 (November4, 1997).
  93. J. D. Lewis, C. M. Verber, and R. B. McGhee, “A true three-dimensional display,” IEEE Trans. Electron Devices 18, 724–732 (1971).
    [CrossRef]
  94. K. Langhans, C. Guill, E. Rieper, K. Oltmann, and D. Bahr, “Solid Felix: a static volume 3D-laser display,” IS&T Reporter 18(1), 1–9 (2003).
  95. E. J. Korevaar and B. Spiver, “Three dimensional display apparatus,” U.S. patent4,881,068 (November14, 1989).
  96. S. K. Nayar and V. N. Anand, “3D display using passive optical scatterers,” Computer 40(7), 54–63 (2007).
    [CrossRef]
  97. J. Geng, “Volumetric 3D display system with static screen,” NASA Tech Briefs (NASA, 2011), Vol. 35, p. 40, http://www.techbriefs.com/component/content/article/9432 .
  98. H. Kimura, T. Uchiyama, and H. Yoshikawa, “Laser produced 3D display in the air,” in ACM SIGGRAPH (2006), p. 20.
  99. M. Momiuchi and H. Kimura, “Device for forming visible image in air,” U.S. patent7,533,995 (May19, 2009).
  100. D. Wyatt, “A volumetric 3D LED display” (MIT, 2005), http://web.mit.edu/6.111/www/f2005/projects/wyatt_Project_Design_Presentation.pdf .
  101. L. Sadovnik and A. Rizkin, “3D volume visualization display,” U.S. patent5,764,317 (June9, 1998).
  102. A. Sullivan, “Multi-planar volumetric display system and method of operation using multi-planar interlacing,” U.S. patent6,806,849 (October19, 2004).
  103. LightSpace Technologies, www.lightspacetech.com .
  104. EuroLCDs, www.eurolcds.com .
  105. R. S. Gold and J. E. Freeman, “Layered display system and method for volumetric presentation,” U.S. patent5,813,742 (September29, 1998).
  106. M. S. Leung, N. A. Ives, and G. Eng, “Three-dimensional real-image volumetric display system and method,” U.S. patent5,745,197 (April28, 1998).
  107. J.-P. Koo and D.-S. Kim, “Volumetric three-dimensional (3D) display system using transparent flexible display panels,” U.S. patent application2007/0009222 A1 (January11, 2007).
  108. M. Hirsch, “Three dimensional display apparatus,” U.S. patent2,967,905 (January13, 1958).
  109. “3D Display from ITT Labs,” Aviation Week, 66–67 (October31, 1960).
  110. L. D. Sher, “Three-dimensional display,” U.S. patent4,130,832 (December19, 1978).
  111. R. Hartwig, “Vorrichtung zur Dreidimensionalen Abbildung in Einem Zylindersymmetrischen Abbildungsraum,” DE patent2622802 C2 (1976).
  112. F. Garcia and R. D. Williams, “Real time three dimensional display with angled rotating screen and method,” U.S. patent5,042,909 (August27, 1991).
  113. M. Lasher, P. Soltan, W. Dahlke, and N. Acantilado, “Laser projected 3D volumetric displays,” Proc. SPIE 2650, 285 (1996).
    [CrossRef]
  114. J. Geng, “A volumetric 3D display based on a DLP projection engine,” Displays 34, 39–48 (2013).
    [CrossRef]
  115. J. Geng, “Method and apparatus for high resolution three dimensional display,” U.S. patent6,064,423 (May16, 2000).
  116. J. Geng, “Method and apparatus for an interactive volumetric three dimensional display,” U.S. patent7,098,872 (August29, 2006).
  117. J. Geng, “Method and apparatus for an interactive volumetric three dimensional display,” U.S. patent6,900,779 (May31, 2005).
  118. J. Geng, “Method and apparatus for generating structural pattern illumination,” U.S. patent6,937,348 (August30, 2005).
  119. R. J. Schipper, “Three-dimensional display,” U.S. patent3,097,261 (July9, 1963).
  120. E. P. Berlin, “Three-dimensional display,” U.S. patent4,160,973 (July10, 1979).
  121. R. D. Ketchpel, “Three-dimensional display cathode ray tube,” U.S. patent3,140,415 (July7, 1964).
  122. B. Blundell and A. Schwarz, Volumetric Three-Dimensional Display Systems (Wiley, 2000).
  123. B. G. Blundell, “Three dimensional display system,” U.S. patent5,703,606 (December30, 1997).
  124. R. Stahl and M. Jayapala, “Holographic displays and smart lenses,” Opt. Photon. 6, 39–42 (2011).
    [CrossRef]
  125. Y.-P. Huang, “Auto-stereoscopic 3D display and its future developments,” http://www.cdr.ust.hk/Webinar (SID, 2012).
  126. D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove, “Holographic video display based on guided-wave acousto-optic devices,” in Proc. SPIE 6488, 64880L (2007).
    [CrossRef]
  127. D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
    [CrossRef]
  128. M. Klug, T. Burnett, A. Fancello, A. Heath, K. Gardner, S. O’Connell, C. Newswanger, “A scalable, collaborative, interactive light-field display system,” in SID Symposium Digest of Technical Papers (2013), Vol. 44, Issue 1, pp. 412–415.
  129. Zebra Imaging, www.zebraimaging.com .
  130. M. Lucente, “The first 20 years of holographic video—and the next 20,” in SMPTE 2nd Annual International Conference on Stereoscopic 3D for Media and Entertainment, New York, June21–23, 2011.
  131. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
    [CrossRef]
  132. QinetiQ, www.qinetiq.com .
  133. SeeReal, http://www.seereal.com/ .
  134. S. Reichelt, R. Häussler, N. Leister, G. Fütterer, H. Stolle, and A. Schwerdtner, “Holographic 3-D displays—electro-holography within the grasp of commercialization,” in Advances in Lasers and Electro Optics, N. Costa and A. Cartaxo, eds. (INTECH, 2012), Chap. 29.
  135. S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B (2010).
    [CrossRef]
  136. IMEC Holographic Display, http://www.imec.be/ScientificReport/SR2010/2010/1159126.html .
  137. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
    [CrossRef]
  138. CNN, www.cnn.com .
  139. Holographic screen, http://en.wikipedia.org/wiki/Holographic_screen .
  140. Vermeer, http://research.microsoft.com/en-us/projects/vermeer/ .
  141. Musion Eyeliner, http://www.eyeliner3d.com/ .
  142. ViZoo, http://www.vizoo.com .
  143. P. Simonson and M. Corell, “Method and arrangement for projecting images,” U.S. patent7,184,209 (February27, 2007).
  144. Musion Systems Ltd, http://www.musion.co.uk .
  145. “Pepper’s ghost,” http://en.wikipedia.org/wiki/Pepper%27s_ghost .
  146. FogScreen, http://www.fogscreen.com/ .
  147. UK FogScreen, http://ukfogscreen.com/ .
  148. A. Kataoka and Y. Kasahara, “Method and apparatus for a fog screen and image-forming method using the same,” U.S. patent5,270,752 (December14, 1993).
  149. H. Hasegawa, A. Yamamoto, T. Fujimori, and N. Uchibori, “Image display system and method, and screen device,” U.S. patent8,157,382 (April17, 2012).
  150. C. D. Dyner, “Method and system for free-space imaging display and interface,” U.S. patent6,857,746 (February22, 2005).
  151. S. H. Pevnick, “Water supply method and apparatus for a fountain,” U.S. patent6,557,777 (May6, 2003).
  152. Graphical Waterfalls, http://pevnickdesign.com/ .
  153. P. Richards, “MIT architects design building with digital water walls,” MIT News Office (July12, 2007).
  154. O. Hilliges, D. Kim, S. Izadi, M. Weiss, and A. Wilson, “HoloDesk: direct 3D interactions with a situated see-through display,” in Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems (2012), pp. 2421–2430.
  155. N. Holliman, Three-Dimensional Display Systems (Taylor and Francis, 2006).

2013

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[CrossRef]

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

J. Geng, “A volumetric 3D display based on a DLP projection engine,” Displays 34, 39–48 (2013).
[CrossRef]

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[CrossRef]

2012

S. Uchida and Y. Takaki, “360-degree, three-dimensional table-screen display using small array of high-speed projectors,” Proc. SPIE 8288, 82880D (2012).
[CrossRef]

Y. Kim, K. Hong, J. Yeom, J. Hong, J.-H. Jung, Y. W. Lee, J.-H. Park, and B. Lee, “A frontal projection-type three-dimensional display,” Opt. Express 20, 20130–20138 (2012).
[CrossRef]

H. Kwon and H. J. Choi, “A time-sequential multiview autostereoscopic display without resolution loss using a multidirectional backlight unit and a LCD panel,” Proc. SPIE 8288, 82881Y (2012).
[CrossRef]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).
[CrossRef]

2011

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans Broadcast. 57, 362–371 (2011).
[CrossRef]

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50, H87–H115 (2011).
[CrossRef]

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011).
[CrossRef]

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photon. 3, 128–160 (2011).
[CrossRef]

H. Liao, T. Dohi, and K. Nomura, “Autostereoscopic 3D display with long visualization depth using referential viewing area based integral photography,” IEEE Trans. Vis. Comput. Graph. 17, 1690–1701 (2011).
[CrossRef]

R. Stahl and M. Jayapala, “Holographic displays and smart lenses,” Opt. Photon. 6, 39–42 (2011).
[CrossRef]

2010

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B (2010).
[CrossRef]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

L. Bogaert, Y. Meuret, S. Roelandt, A. Avci, H. De Smet, and H. Thienpont, “Demonstration of a multiview projection display using decentered microlens arrays,” Opt. Express 18, 26092–26106 (2010).
[CrossRef]

T. Balogh and P. T. Kovács, “Real-time 3D light field transmission,” Proc. SPIE 7724, 772406 (2010).
[CrossRef]

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18, 8824–8835 (2010).
[CrossRef]

J.-Y. Son, B. Javidi, S. Yano, and K.-H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6, 394–403 (2010).
[CrossRef]

Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res. 1, 39–42 (2010).
[CrossRef]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29, 163 (2010).
[CrossRef]

2009

2008

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14, 487–499 (2008).
[CrossRef]

T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
[CrossRef]

J. Geng, “Volumetric 3D display for radiation therapy planning,” J. Disp. Technol. 4, 437–450 (2008).
[CrossRef]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3):33, 1–30 (2008).
[CrossRef]

2007

O. S. Cossairt, J. Napoli, S. L. Hill, R. K. Dorval, and G. E. Favalora, “Occlusion-capable multiview volumetric three-dimensional display,” Appl. Opt. 46, 1244–1250 (2007).
[CrossRef]

S. K. Nayar and V. N. Anand, “3D display using passive optical scatterers,” Computer 40(7), 54–63 (2007).
[CrossRef]

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove, “Holographic video display based on guided-wave acousto-optic devices,” in Proc. SPIE 6488, 64880L (2007).
[CrossRef]

2006

J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” Proc. IEEE 94, 502–523 (2006).
[CrossRef]

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
[CrossRef]

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

2005

N. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
[CrossRef]

G. Favalora, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
[CrossRef]

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[CrossRef]

2004

W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23, 814–824 (2004).
[CrossRef]

J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, “Three-dimensional display scheme based on integral imaging with three-dimensional information processing,” Opt. Express 12, 6020–6032 (2004).
[CrossRef]

2003

K. Langhans, C. Guill, E. Rieper, K. Oltmann, and D. Bahr, “Solid Felix: a static volume 3D-laser display,” IS&T Reporter 18(1), 1–9 (2003).

1998

A. Schwerdtner and H. Heidrich, “Dresden 3D display (D4D),” Proc. SPIE 3295, 203 (1998).
[CrossRef]

1997

C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179 (1997).
[CrossRef]

S. Pastoor and M. Wöpking, “3-D displays: a review of current technologies,” Displays 17, 100–110 (1997).
[CrossRef]

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154 (1997).
[CrossRef]

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer tracking autostereoscopic 3D display systems,” Proc. SPIE 3012, 187 (1997).
[CrossRef]

1996

M. Lasher, P. Soltan, W. Dahlke, and N. Acantilado, “Laser projected 3D volumetric displays,” Proc. SPIE 2650, 285 (1996).
[CrossRef]

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three color, solid-state three dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

C. van Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D LCD,” Proc. SPIE 2653, 32 (1996).
[CrossRef]

M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
[CrossRef]

1995

M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “A liquid crystal display based implementation of a real-time ICVision holographic stereogram display,” Proc. SPIE 2406, 154 (1995).
[CrossRef]

T. Toda, S. Takahashi, and F. Iwata, “3D video system using grating image,” in Proc. SPIE 2406, 191 (1995).
[CrossRef]

E. Schulze, “Synthesis of moving holographic stereograms with high-resolution spatial light modulators,” Proc. SPIE 2406, 124 (1995).
[CrossRef]

1994

1980

M. Coltheart, “The persistences of vision,” Phil. Trans. R. Soc. B 290, 57–69 (1980).
[CrossRef]

1972

D. Gabor, “Holography 1948–1971,” Proc. IEEE 60, 655–668 (1972).
[CrossRef]

1971

J. D. Lewis, C. M. Verber, and R. B. McGhee, “A true three-dimensional display,” IEEE Trans. Electron Devices 18, 724–732 (1971).
[CrossRef]

1939

A. Gershun, “The light field,” Moscow, 1936, P. Moon and G. Timoshenko, translators, J. Math. Phys. XVIII, 51–151 (1939).

1908

G. Lippmann, “Épreuves réversibles. Photographies intégrales,” C. R. Acad. Sci. 146, 446–451 (1908).

1902

F. E. Ives, “A novel stereogram,” J. Franklin Inst. 153, 51–52 (1902).
[CrossRef]

1846

M. Faraday, “Thoughts on ray vibrations,” Philos. Mag. 28, 345–350 (1846).

Acantilado, N.

M. Lasher, P. Soltan, W. Dahlke, and N. Acantilado, “Laser projected 3D volumetric displays,” Proc. SPIE 2650, 285 (1996).
[CrossRef]

Adelson, E.

E. Adelson and J. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing (MIT, 1991), pp. 3–20.

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3):33, 1–30 (2008).
[CrossRef]

Anand, V. N.

S. K. Nayar and V. N. Anand, “3D display using passive optical scatterers,” Computer 40(7), 54–63 (2007).
[CrossRef]

Avci, A.

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Bahr, D.

K. Langhans, C. Guill, E. Rieper, K. Oltmann, and D. Bahr, “Solid Felix: a static volume 3D-laser display,” IS&T Reporter 18(1), 1–9 (2003).

Balogh, T.

T. Balogh and P. T. Kovács, “Real-time 3D light field transmission,” Proc. SPIE 7724, 772406 (2010).
[CrossRef]

Banks, M. S.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3):33, 1–30 (2008).
[CrossRef]

Barabas, J.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[CrossRef]

Beausoleil, R. G.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Benton, S.

S. Benton and M. Bove, Holographic Imaging (Wiley Interscience, 2008).

Bergen, J.

E. Adelson and J. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing (MIT, 1991), pp. 3–20.

Berlin, E. P.

E. P. Berlin, “Three-dimensional display,” U.S. patent4,160,973 (July10, 1979).

Bimber, O.

R. Hainich and O. Bimber, Displays: Fundamentals & Applications (Peters/CRC Press, 2011).

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Blundell, B.

B. Blundell and A. Schwarz, Volumetric Three-Dimensional Display Systems (Wiley, 2000).

B. Blundell and A. Schwarz, Volumetric Three Dimensional Display System (Wiley, 2000).

Blundell, B. G.

B. G. Blundell, “Three dimensional display system,” U.S. patent5,703,606 (December30, 1997).

Bogaert, L.

Bolas, M.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” in SIGGRAPH 2007 Papers (2007), paper 40.

Bove, M.

S. Benton and M. Bove, Holographic Imaging (Wiley Interscience, 2008).

Bove, V. M.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[CrossRef]

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove, “Holographic video display based on guided-wave acousto-optic devices,” in Proc. SPIE 6488, 64880L (2007).
[CrossRef]

Brar, R. S.

P. Surman, R. S. Brar, I. Sexton, and K. Hopf, “MUTED and HELIUM3D autostereoscopic displays,” in IEEE International Conference on Multimedia and Expo (ICME) (2010), pp. 1594–1599.

Brott, R.

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, and T. Fukami, “Full resolution autostereoscopic 3D display for mobile applications,” in SID Symposium Digest of Technical Papers (2009), Vol. 40, pp. 127–130.

Brug, J.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Bryan, W.

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, and T. Fukami, “Full resolution autostereoscopic 3D display for mobile applications,” in SID Symposium Digest of Technical Papers (2009), Vol. 40, pp. 127–130.

Burnett, T.

M. Klug, T. Burnett, A. Fancello, A. Heath, K. Gardner, S. O’Connell, C. Newswanger, “A scalable, collaborative, interactive light-field display system,” in SID Symposium Digest of Technical Papers (2013), Vol. 44, Issue 1, pp. 412–415.

Cakmakci, O.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
[CrossRef]

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[CrossRef]

Chang, C. H.

H. Y. Wu, C. H. Chang, and C. L. Lin, “Dead-zone-free 2D/3D switchable barrier type 3D display,” in SID Syposium Digest of Technical Papers (2013), pp. 675–677.

Chellappan, K. V.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011).
[CrossRef]

Chen, C.-W.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res. 1, 39–42 (2010).
[CrossRef]

Chen, N.

Cheng, D.

Choi, H. J.

H. Kwon and H. J. Choi, “A time-sequential multiview autostereoscopic display without resolution loss using a multidirectional backlight unit and a LCD panel,” Proc. SPIE 8288, 82881Y (2012).
[CrossRef]

Choi, H.-J.

Choi, K.-H.

J.-Y. Son, B. Javidi, S. Yano, and K.-H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6, 394–403 (2010).
[CrossRef]

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Clarke, J. A.

C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179 (1997).
[CrossRef]

Cohen, M.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH (1996), pp. 43–54.

Coltheart, M.

M. Coltheart, “The persistences of vision,” Phil. Trans. R. Soc. B 290, 57–69 (1980).
[CrossRef]

Corell, M.

P. Simonson and M. Corell, “Method and arrangement for projecting images,” U.S. patent7,184,209 (February27, 2007).

Cossairt, O.

G. Favalora and O. Cossairt, “Theta-parallax-only (TPO) displays,” U.S. patent7,364,300 B2 (April24, 2008).

Cossairt, O. S.

Dahlke, W.

M. Lasher, P. Soltan, W. Dahlke, and N. Acantilado, “Laser projected 3D volumetric displays,” Proc. SPIE 2650, 285 (1996).
[CrossRef]

De Smet, H.

Debevec, P.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” in SIGGRAPH 2007 Papers (2007), paper 40.

DeFanti, T. A.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14, 487–499 (2008).
[CrossRef]

Dodgson, N.

N. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
[CrossRef]

Dodgson, N. A.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans Broadcast. 57, 362–371 (2011).
[CrossRef]

Dohi, T.

H. Liao, T. Dohi, and K. Nomura, “Autostereoscopic 3D display with long visualization depth using referential viewing area based integral photography,” IEEE Trans. Vis. Comput. Graph. 17, 1690–1701 (2011).
[CrossRef]

Dorval, R. K.

Downing, E.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three color, solid-state three dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Downing, E. A.

E. A. Downing, “Method and system for three-dimensional display of information based on two photon upconversion,” U.S. patent5,684,621 (November4, 1997).

Dyner, C. D.

C. D. Dyner, “Method and system for free-space imaging display and interface,” U.S. patent6,857,746 (February22, 2005).

Edirisinghe, E. A.

E. A. Edirisinghe and J. Jiang, “Stereo imaging, an emerging technology,” in Proceedings of SSGRR, L’Aquila, July31–August 6, 2000.

Endo, T.

T. Endo, Y. Kajiki, T. Honda, and M. Sato, “Cylindrical 3-D video display observable from all directions,” in Proceedings of Pacific Graphics (2000), pp. 300–306.

T. Honda, Y. Kajiki, K. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3D images,” in Three-Dimensional Television, Video and Display Technology (Springer, 2010), pp. 461–487.

Eng, G.

M. S. Leung, N. A. Ives, and G. Eng, “Three-dimensional real-image volumetric display system and method,” U.S. patent5,745,197 (April28, 1998).

Erden, E.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011).
[CrossRef]

Ezra, D.

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer tracking autostereoscopic 3D display systems,” Proc. SPIE 3012, 187 (1997).
[CrossRef]

Fancello, A.

M. Klug, T. Burnett, A. Fancello, A. Heath, K. Gardner, S. O’Connell, C. Newswanger, “A scalable, collaborative, interactive light-field display system,” in SID Symposium Digest of Technical Papers (2013), Vol. 44, Issue 1, pp. 412–415.

Faraday, M.

M. Faraday, “Thoughts on ray vibrations,” Philos. Mag. 28, 345–350 (1846).

Fattal, D.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Favalora, G.

G. Favalora, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
[CrossRef]

G. Favalora and O. Cossairt, “Theta-parallax-only (TPO) displays,” U.S. patent7,364,300 B2 (April24, 2008).

Favalora, G. E.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans Broadcast. 57, 362–371 (2011).
[CrossRef]

O. S. Cossairt, J. Napoli, S. L. Hill, R. K. Dorval, and G. E. Favalora, “Occlusion-capable multiview volumetric three-dimensional display,” Appl. Opt. 46, 1244–1250 (2007).
[CrossRef]

Fiorentino, M.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Franklin, A. R.

C. van Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D LCD,” Proc. SPIE 2653, 32 (1996).
[CrossRef]

Freeman, J. E.

R. S. Gold and J. E. Freeman, “Layered display system and method for volumetric presentation,” U.S. patent5,813,742 (September29, 1998).

Fujii, T.

T. Honda, Y. Kajiki, K. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3D images,” in Three-Dimensional Television, Video and Display Technology (Springer, 2010), pp. 461–487.

Fujimori, T.

H. Hasegawa, A. Yamamoto, T. Fujimori, and N. Uchibori, “Image display system and method, and screen device,” U.S. patent8,157,382 (April17, 2012).

Fujinami, H.

H. Takahashi, H. Fujinami, and K. Yamada, “Holographic lens array increases the viewing angle of 3D displays,” SPIE Newsroom (June6, 2006).

Fukami, T.

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, and T. Fukami, “Full resolution autostereoscopic 3D display for mobile applications,” in SID Symposium Digest of Technical Papers (2009), Vol. 40, pp. 127–130.

Fütterer, G.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B (2010).
[CrossRef]

S. Reichelt, R. Häussler, N. Leister, G. Fütterer, H. Stolle, and A. Schwerdtner, “Holographic 3-D displays—electro-holography within the grasp of commercialization,” in Advances in Lasers and Electro Optics, N. Costa and A. Cartaxo, eds. (INTECH, 2012), Chap. 29.

Gabor, D.

D. Gabor, “Holography 1948–1971,” Proc. IEEE 60, 655–668 (1972).
[CrossRef]

Garcia, F.

F. Garcia and R. D. Williams, “Real time three dimensional display with angled rotating screen and method,” U.S. patent5,042,909 (August27, 1991).

Gardner, K.

M. Klug, T. Burnett, A. Fancello, A. Heath, K. Gardner, S. O’Connell, C. Newswanger, “A scalable, collaborative, interactive light-field display system,” in SID Symposium Digest of Technical Papers (2013), Vol. 44, Issue 1, pp. 412–415.

Geng, J.

J. Geng, “A volumetric 3D display based on a DLP projection engine,” Displays 34, 39–48 (2013).
[CrossRef]

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photon. 3, 128–160 (2011).
[CrossRef]

J. Geng, “Volumetric 3D display for radiation therapy planning,” J. Disp. Technol. 4, 437–450 (2008).
[CrossRef]

J. Geng, “Multiview three-dimensional display using single projector,” Displays (submitted).

J. Geng, “Method and apparatus for high resolution three dimensional display,” U.S. patent6,064,423 (May16, 2000).

J. Geng, “Method and apparatus for an interactive volumetric three dimensional display,” U.S. patent7,098,872 (August29, 2006).

J. Geng, “Method and apparatus for an interactive volumetric three dimensional display,” U.S. patent6,900,779 (May31, 2005).

J. Geng, “Method and apparatus for generating structural pattern illumination,” U.S. patent6,937,348 (August30, 2005).

Gershun, A.

A. Gershun, “The light field,” Moscow, 1936, P. Moon and G. Timoshenko, translators, J. Math. Phys. XVIII, 51–151 (1939).

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3):33, 1–30 (2008).
[CrossRef]

Gold, R. S.

R. S. Gold and J. E. Freeman, “Layered display system and method for volumetric presentation,” U.S. patent5,813,742 (September29, 1998).

Gortler, S. J.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH (1996), pp. 43–54.

Goulanian, E.

E. Goulanian and A. F. Zerrouk, “Apparatus and system for reproducing 3-dimensional images,” U.S. patent7,944,465 (May17, 2011).

Grzeszczuk, R.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH (1996), pp. 43–54.

Gu, J.

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Guill, C.

K. Langhans, C. Guill, E. Rieper, K. Oltmann, and D. Bahr, “Solid Felix: a static volume 3D-laser display,” IS&T Reporter 18(1), 1–9 (2003).

Hahn, J.

Hainich, R.

R. Hainich and O. Bimber, Displays: Fundamentals & Applications (Peters/CRC Press, 2011).

Hamaguchi, T.

T. Honda, Y. Kajiki, K. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3D images,” in Three-Dimensional Television, Video and Display Technology (Springer, 2010), pp. 461–487.

Hanrahan, P.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (1996), pp. 31–42.

Hansen, P. S.

S. E. B. Sorensen, P. S. Hansen, and N. L. Sorensen, “Method for recording and viewing stereoscopic images in color using multichrome filters,” U.S. patent6,687,003 (February3, 2004).

Harrold, J.

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer tracking autostereoscopic 3D display systems,” Proc. SPIE 3012, 187 (1997).
[CrossRef]

Hartwig, R.

R. Hartwig, “Vorrichtung zur Dreidimensionalen Abbildung in Einem Zylindersymmetrischen Abbildungsraum,” DE patent2622802 C2 (1976).

Hasegawa, H.

H. Hasegawa, A. Yamamoto, T. Fujimori, and N. Uchibori, “Image display system and method, and screen device,” U.S. patent8,157,382 (April17, 2012).

Hatada, T.

T. Honda, Y. Kajiki, K. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3D images,” in Three-Dimensional Television, Video and Display Technology (Springer, 2010), pp. 461–487.

Häussler, R.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B (2010).
[CrossRef]

S. Reichelt, R. Häussler, N. Leister, G. Fütterer, H. Stolle, and A. Schwerdtner, “Holographic 3-D displays—electro-holography within the grasp of commercialization,” in Advances in Lasers and Electro Optics, N. Costa and A. Cartaxo, eds. (INTECH, 2012), Chap. 29.

Heath, A.

M. Klug, T. Burnett, A. Fancello, A. Heath, K. Gardner, S. O’Connell, C. Newswanger, “A scalable, collaborative, interactive light-field display system,” in SID Symposium Digest of Technical Papers (2013), Vol. 44, Issue 1, pp. 412–415.

Heidrich, H.

A. Schwerdtner and H. Heidrich, “Dresden 3D display (D4D),” Proc. SPIE 3295, 203 (1998).
[CrossRef]

Hentschke, S.

S. Hentschke, “Autostereoscopic reproduction system for 3-D displays,” U.S. patent7,839,430 (November232010).

Hess, W.

W. Hess, “Stereoscopic picture,” U.S. patent1,128,979 (February16, 1915).

Hesselink, L.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three color, solid-state three dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Hill, S. L.

Hilliges, O.

O. Hilliges, D. Kim, S. Izadi, M. Weiss, and A. Wilson, “HoloDesk: direct 3D interactions with a situated see-through display,” in Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems (2012), pp. 2421–2430.

Hirsch, M.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).
[CrossRef]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29, 163 (2010).
[CrossRef]

M. Hirsch, “Three dimensional display apparatus,” U.S. patent2,967,905 (January13, 1958).

Hoehn, K. N.

E. N. Marieb and K. N. Hoehn, Human Anatomy & Physiology (Pearson, 2012).

Hoffman, D. M.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3):33, 1–30 (2008).
[CrossRef]

Holliman, N.

N. Holliman, Three-Dimensional Display Systems (Taylor and Francis, 2006).

Holliman, N. S.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans Broadcast. 57, 362–371 (2011).
[CrossRef]

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer tracking autostereoscopic 3D display systems,” Proc. SPIE 3012, 187 (1997).
[CrossRef]

Honda, T.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154 (1997).
[CrossRef]

T. Honda, Y. Kajiki, K. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3D images,” in Three-Dimensional Television, Video and Display Technology (Springer, 2010), pp. 461–487.

T. Endo, Y. Kajiki, T. Honda, and M. Sato, “Cylindrical 3-D video display observable from all directions,” in Proceedings of Pacific Graphics (2000), pp. 300–306.

Hong, J.

Hong, K.

Hopf, K.

P. Surman, R. S. Brar, I. Sexton, and K. Hopf, “MUTED and HELIUM3D autostereoscopic displays,” in IEEE International Conference on Multimedia and Expo (ICME) (2010), pp. 1594–1599.

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Hua, H.

Huang, J.-F.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res. 1, 39–42 (2010).
[CrossRef]

Huang, Y. P.

C. W. Wei and Y. P. Huang, “240  Hz 4-zones sequential backlight,” in SID Symposium Digest (2010), p. 863.

Huang, Y.-P.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res. 1, 39–42 (2010).
[CrossRef]

Ives, F. E.

F. E. Ives, “A novel stereogram,” J. Franklin Inst. 153, 51–52 (1902).
[CrossRef]

Ives, N. A.

M. S. Leung, N. A. Ives, and G. Eng, “Three-dimensional real-image volumetric display system and method,” U.S. patent5,745,197 (April28, 1998).

Iwata, F.

T. Toda, S. Takahashi, and F. Iwata, “3D video system using grating image,” in Proc. SPIE 2406, 191 (1995).
[CrossRef]

Izadi, S.

O. Hilliges, D. Kim, S. Izadi, M. Weiss, and A. Wilson, “HoloDesk: direct 3D interactions with a situated see-through display,” in Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems (2012), pp. 2421–2430.

Javidi, B.

J.-Y. Son, B. Javidi, S. Yano, and K.-H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6, 394–403 (2010).
[CrossRef]

J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” Proc. IEEE 94, 502–523 (2006).
[CrossRef]

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer, 2011).

Jayapala, M.

R. Stahl and M. Jayapala, “Holographic displays and smart lenses,” Opt. Photon. 6, 39–42 (2011).
[CrossRef]

Jiang, J.

E. A. Edirisinghe and J. Jiang, “Stereo imaging, an emerging technology,” in Proceedings of SSGRR, L’Aquila, July31–August 6, 2000.

Johnson, A.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14, 487–499 (2008).
[CrossRef]

Jolly, S.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[CrossRef]

Jones, A.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” in SIGGRAPH 2007 Papers (2007), paper 40.

Jones, G. R.

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer tracking autostereoscopic 3D display systems,” Proc. SPIE 3012, 187 (1997).
[CrossRef]

Jones, M. W.

M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “A liquid crystal display based implementation of a real-time ICVision holographic stereogram display,” Proc. SPIE 2406, 154 (1995).
[CrossRef]

Ju, S. H.

S. H. Ju, M.-D. Kim, M.-S. Park, K.-T. Kim, J.-H. Park, and K.-M. Lim, “Viewer’s eye position estimation using single camera,” in SID Syposium Digest of Technical Papers (2013), pp. 671–674.

Jung, J.-H.

Kajiki, Y.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154 (1997).
[CrossRef]

T. Endo, Y. Kajiki, T. Honda, and M. Sato, “Cylindrical 3-D video display observable from all directions,” in Proceedings of Pacific Graphics (2000), pp. 300–306.

T. Honda, Y. Kajiki, K. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3D images,” in Three-Dimensional Television, Video and Display Technology (Springer, 2010), pp. 461–487.

Kanebako, T.

T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
[CrossRef]

Kasahara, Y.

A. Kataoka and Y. Kasahara, “Method and apparatus for a fog screen and image-forming method using the same,” U.S. patent5,270,752 (December14, 1993).

Kataoka, A.

A. Kataoka and Y. Kasahara, “Method and apparatus for a fog screen and image-forming method using the same,” U.S. patent5,270,752 (December14, 1993).

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Kawakami, N.

T. Yendo, N. Kawakami, and S. Tachi, “Seelinder: the cylindrical light field display,” in ACM SIGGRAPH (2005), paper 16.

Ketchpel, R. D.

R. D. Ketchpel, “Three-dimensional display cathode ray tube,” U.S. patent3,140,415 (July7, 1964).

Kim, D.

O. Hilliges, D. Kim, S. Izadi, M. Weiss, and A. Wilson, “HoloDesk: direct 3D interactions with a situated see-through display,” in Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems (2012), pp. 2421–2430.

Kim, D.-S.

J.-P. Koo and D.-S. Kim, “Volumetric three-dimensional (3D) display system using transparent flexible display panels,” U.S. patent application2007/0009222 A1 (January11, 2007).

Kim, H.

Kim, J.

Kim, K.-T.

S. H. Ju, M.-D. Kim, M.-S. Park, K.-T. Kim, J.-H. Park, and K.-M. Lim, “Viewer’s eye position estimation using single camera,” in SID Syposium Digest of Technical Papers (2013), pp. 671–674.

Kim, M.-D.

S. H. Ju, M.-D. Kim, M.-S. Park, K.-T. Kim, J.-H. Park, and K.-M. Lim, “Viewer’s eye position estimation using single camera,” in SID Syposium Digest of Technical Papers (2013), pp. 671–674.

Kim, Y.

Kimura, H.

M. Momiuchi and H. Kimura, “Device for forming visible image in air,” U.S. patent7,533,995 (May19, 2009).

H. Kimura, T. Uchiyama, and H. Yoshikawa, “Laser produced 3D display in the air,” in ACM SIGGRAPH (2006), p. 20.

Klug, M.

M. Klug, T. Burnett, A. Fancello, A. Heath, K. Gardner, S. O’Connell, C. Newswanger, “A scalable, collaborative, interactive light-field display system,” in SID Symposium Digest of Technical Papers (2013), Vol. 44, Issue 1, pp. 412–415.

Koo, J.-P.

J.-P. Koo and D.-S. Kim, “Volumetric three-dimensional (3D) display system using transparent flexible display panels,” U.S. patent application2007/0009222 A1 (January11, 2007).

Kooima, R. L.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14, 487–499 (2008).
[CrossRef]

Korevaar, E. J.

E. J. Korevaar and B. Spiver, “Three dimensional display apparatus,” U.S. patent4,881,068 (November14, 1989).

Kovács, P. T.

T. Balogh and P. T. Kovács, “Real-time 3D light field transmission,” Proc. SPIE 7724, 772406 (2010).
[CrossRef]

Kowel, S. T.

M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “A liquid crystal display based implementation of a real-time ICVision holographic stereogram display,” Proc. SPIE 2406, 154 (1995).
[CrossRef]

Krah, C. H.

C. H. Krah, “Three-dimensional display system,” U.S. patent7,843,449 (November30, 2010).

Kulick, J. H.

M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “A liquid crystal display based implementation of a real-time ICVision holographic stereogram display,” Proc. SPIE 2406, 154 (1995).
[CrossRef]

Kwack, K.-D.

J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” Proc. IEEE 94, 502–523 (2006).
[CrossRef]

Kwon, H.

H. Kwon and H. J. Choi, “A time-sequential multiview autostereoscopic display without resolution loss using a multidirectional backlight unit and a LCD panel,” Proc. SPIE 8288, 82881Y (2012).
[CrossRef]

Langhans, K.

K. Langhans, C. Guill, E. Rieper, K. Oltmann, and D. Bahr, “Solid Felix: a static volume 3D-laser display,” IS&T Reporter 18(1), 1–9 (2003).

Lanman, D.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).
[CrossRef]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29, 163 (2010).
[CrossRef]

Lasher, M.

M. Lasher, P. Soltan, W. Dahlke, and N. Acantilado, “Laser projected 3D volumetric displays,” Proc. SPIE 2650, 285 (1996).
[CrossRef]

Lee, B.

Lee, H.-J.

N.-Y. Wang, H.-J. Lee, and C.-H. Tsai, “Parallax barrier type autostereoscopic display device,” U.S. patent6,727,866 (April27, 2004).

Lee, Y. W.

Leigh, J.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14, 487–499 (2008).
[CrossRef]

Leister, N.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B (2010).
[CrossRef]

S. Reichelt, R. Häussler, N. Leister, G. Fütterer, H. Stolle, and A. Schwerdtner, “Holographic 3-D displays—electro-holography within the grasp of commercialization,” in Advances in Lasers and Electro Optics, N. Costa and A. Cartaxo, eds. (INTECH, 2012), Chap. 29.

Leung, M. S.

M. S. Leung, N. A. Ives, and G. Eng, “Three-dimensional real-image volumetric display system and method,” U.S. patent5,745,197 (April28, 1998).

Levoy, M.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (1996), pp. 31–42.

Lewis, J. D.

J. D. Lewis, C. M. Verber, and R. B. McGhee, “A true three-dimensional display,” IEEE Trans. Electron Devices 18, 724–732 (1971).
[CrossRef]

Liao, H.

H. Liao, T. Dohi, and K. Nomura, “Autostereoscopic 3D display with long visualization depth using referential viewing area based integral photography,” IEEE Trans. Vis. Comput. Graph. 17, 1690–1701 (2011).
[CrossRef]

Lim, K.-M.

S. H. Ju, M.-D. Kim, M.-S. Park, K.-T. Kim, J.-H. Park, and K.-M. Lim, “Viewer’s eye position estimation using single camera,” in SID Syposium Digest of Technical Papers (2013), pp. 671–674.

Lin, C. L.

H. Y. Wu, C. H. Chang, and C. L. Lin, “Dead-zone-free 2D/3D switchable barrier type 3D display,” in SID Syposium Digest of Technical Papers (2013), pp. 675–677.

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Lindquist, R. G.

M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “A liquid crystal display based implementation of a real-time ICVision holographic stereogram display,” Proc. SPIE 2406, 154 (1995).
[CrossRef]

Lippmann, G.

G. Lippmann, “Épreuves réversibles. Photographies intégrales,” C. R. Acad. Sci. 146, 446–451 (1908).

Lucente, M.

M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
[CrossRef]

M. Lucente, “The first 20 years of holographic video—and the next 20,” in SMPTE 2nd Annual International Conference on Stereoscopic 3D for Media and Entertainment, New York, June21–23, 2011.

Lueder, E.

E. Lueder, 3D Displays (Wiley, 2012).

MacFarlane, D.

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three color, solid-state three dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Marieb, E. N.

E. N. Marieb and K. N. Hoehn, Human Anatomy & Physiology (Pearson, 2012).

Matusik, W.

W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23, 814–824 (2004).
[CrossRef]

McDowall, I.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” in SIGGRAPH 2007 Papers (2007), paper 40.

McGhee, R. B.

J. D. Lewis, C. M. Verber, and R. B. McGhee, “A true three-dimensional display,” IEEE Trans. Electron Devices 18, 724–732 (1971).
[CrossRef]

Meuret, Y.

Min, S.-W.

Minami, M.

M. Minami, K. Yokomizo, and Y. Shimpuku, “Glasses-free 2D/3D switchable display,” in SID Symposium Digest of Technical Papers (2011), pp. 468–471.

M. Minami, “Light source device and display,” U.S. patent application2012/0195072 A1 (August2, 2012).

Momiuchi, M.

M. Momiuchi and H. Kimura, “Device for forming visible image in air,” U.S. patent7,533,995 (May19, 2009).

Moseley, R. R.

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer tracking autostereoscopic 3D display systems,” Proc. SPIE 3012, 187 (1997).
[CrossRef]

Nago, N.

Napoli, J.

Nayar, S. K.

S. K. Nayar and V. N. Anand, “3D display using passive optical scatterers,” Computer 40(7), 54–63 (2007).
[CrossRef]

Newswanger, C.

M. Klug, T. Burnett, A. Fancello, A. Heath, K. Gardner, S. O’Connell, C. Newswanger, “A scalable, collaborative, interactive light-field display system,” in SID Symposium Digest of Technical Papers (2013), Vol. 44, Issue 1, pp. 412–415.

Nomura, K.

H. Liao, T. Dohi, and K. Nomura, “Autostereoscopic 3D display with long visualization depth using referential viewing area based integral photography,” IEEE Trans. Vis. Comput. Graph. 17, 1690–1701 (2011).
[CrossRef]

Nordin, G. P.

M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “A liquid crystal display based implementation of a real-time ICVision holographic stereogram display,” Proc. SPIE 2406, 154 (1995).
[CrossRef]

Norwood, R. A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

O’Connell, S.

M. Klug, T. Burnett, A. Fancello, A. Heath, K. Gardner, S. O’Connell, C. Newswanger, “A scalable, collaborative, interactive light-field display system,” in SID Symposium Digest of Technical Papers (2013), Vol. 44, Issue 1, pp. 412–415.

Okano, F.

B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer, 2011).

Okoshi, T.

T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).

Oltmann, K.

K. Langhans, C. Guill, E. Rieper, K. Oltmann, and D. Bahr, “Solid Felix: a static volume 3D-laser display,” IS&T Reporter 18(1), 1–9 (2003).

Park, J.-H.

Park, M.-S.

S. H. Ju, M.-D. Kim, M.-S. Park, K.-T. Kim, J.-H. Park, and K.-M. Lim, “Viewer’s eye position estimation using single camera,” in SID Syposium Digest of Technical Papers (2013), pp. 671–674.

Parker, D. W.

C. van Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D LCD,” Proc. SPIE 2653, 32 (1996).
[CrossRef]

Pastoor, S.

S. Pastoor and M. Wöpking, “3-D displays: a review of current technologies,” Displays 17, 100–110 (1997).
[CrossRef]

Peng, Z.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Peterka, T.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14, 487–499 (2008).
[CrossRef]

Pevnick, S. H.

S. H. Pevnick, “Water supply method and apparatus for a fountain,” U.S. patent6,557,777 (May6, 2003).

Peyghambarian, N.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Pfister, H.

W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23, 814–824 (2004).
[CrossRef]

Pockett, L.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans Broadcast. 57, 362–371 (2011).
[CrossRef]

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three color, solid-state three dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Raskar, R.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).
[CrossRef]

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29, 163 (2010).
[CrossRef]

Reichelt, S.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B (2010).
[CrossRef]

S. Reichelt, R. Häussler, N. Leister, G. Fütterer, H. Stolle, and A. Schwerdtner, “Holographic 3-D displays—electro-holography within the grasp of commercialization,” in Advances in Lasers and Electro Optics, N. Costa and A. Cartaxo, eds. (INTECH, 2012), Chap. 29.

Richards, P.

P. Richards, “MIT architects design building with digital water walls,” MIT News Office (July12, 2007).

Rieper, E.

K. Langhans, C. Guill, E. Rieper, K. Oltmann, and D. Bahr, “Solid Felix: a static volume 3D-laser display,” IS&T Reporter 18(1), 1–9 (2003).

Rizkin, A.

L. Sadovnik and A. Rizkin, “3D volume visualization display,” U.S. patent5,764,317 (June9, 1998).

Roelandt, S.

Rolland, J.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
[CrossRef]

Sadovnik, L.

L. Sadovnik and A. Rizkin, “3D volume visualization display,” U.S. patent5,764,317 (June9, 1998).

Sandin, D. J.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14, 487–499 (2008).
[CrossRef]

Sato, M.

T. Endo, Y. Kajiki, T. Honda, and M. Sato, “Cylindrical 3-D video display observable from all directions,” in Proceedings of Pacific Graphics (2000), pp. 300–306.

Schipper, R. J.

R. J. Schipper, “Three-dimensional display,” U.S. patent3,097,261 (July9, 1963).

Schultz, J. C.

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, and T. Fukami, “Full resolution autostereoscopic 3D display for mobile applications,” in SID Symposium Digest of Technical Papers (2009), Vol. 40, pp. 127–130.

J. C. Schultz and M. J. Sykora, “Directional backlight with reduced crosstalk,” U.S. patent application2011/0285927 A1 (May24, 2010).

Schulze, E.

E. Schulze, “Synthesis of moving holographic stereograms with high-resolution spatial light modulators,” Proc. SPIE 2406, 124 (1995).
[CrossRef]

Schwarz, A.

B. Blundell and A. Schwarz, Volumetric Three Dimensional Display System (Wiley, 2000).

B. Blundell and A. Schwarz, Volumetric Three-Dimensional Display Systems (Wiley, 2000).

Schwerdtner, A.

A. Schwerdtner and H. Heidrich, “Dresden 3D display (D4D),” Proc. SPIE 3295, 203 (1998).
[CrossRef]

S. Reichelt, R. Häussler, N. Leister, G. Fütterer, H. Stolle, and A. Schwerdtner, “Holographic 3-D displays—electro-holography within the grasp of commercialization,” in Advances in Lasers and Electro Optics, N. Costa and A. Cartaxo, eds. (INTECH, 2012), Chap. 29.

Sexton, I.

P. Surman, R. S. Brar, I. Sexton, and K. Hopf, “MUTED and HELIUM3D autostereoscopic displays,” in IEEE International Conference on Multimedia and Expo (ICME) (2010), pp. 1594–1599.

Shen, T.-C.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res. 1, 39–42 (2010).
[CrossRef]

Sher, L. D.

L. D. Sher, “Three-dimensional display,” U.S. patent4,130,832 (December19, 1978).

Shimpuku, Y.

M. Minami, K. Yokomizo, and Y. Shimpuku, “Glasses-free 2D/3D switchable display,” in SID Symposium Digest of Technical Papers (2011), pp. 468–471.

Si, B.

B. Si, “Stereoscopic image display system and method of controlling the same,” U. S. patent8,427,746 B2 (April23, 2013).

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Simonson, P.

P. Simonson and M. Corell, “Method and arrangement for projecting images,” U.S. patent7,184,209 (February27, 2007).

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[CrossRef]

Smalley, D. E.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[CrossRef]

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove, “Holographic video display based on guided-wave acousto-optic devices,” in Proc. SPIE 6488, 64880L (2007).
[CrossRef]

Smithwick, Q. Y.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[CrossRef]

Smithwick, Q. Y. J.

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove, “Holographic video display based on guided-wave acousto-optic devices,” in Proc. SPIE 6488, 64880L (2007).
[CrossRef]

Soltan, P.

M. Lasher, P. Soltan, W. Dahlke, and N. Acantilado, “Laser projected 3D volumetric displays,” Proc. SPIE 2650, 285 (1996).
[CrossRef]

Son, J.-Y.

J.-Y. Son, B. Javidi, S. Yano, and K.-H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6, 394–403 (2010).
[CrossRef]

J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” Proc. IEEE 94, 502–523 (2006).
[CrossRef]

Sorensen, N. L.

S. E. B. Sorensen, P. S. Hansen, and N. L. Sorensen, “Method for recording and viewing stereoscopic images in color using multichrome filters,” U.S. patent6,687,003 (February3, 2004).

Sorensen, S. E. B.

S. E. B. Sorensen, P. S. Hansen, and N. L. Sorensen, “Method for recording and viewing stereoscopic images in color using multichrome filters,” U.S. patent6,687,003 (February3, 2004).

Spiver, B.

E. J. Korevaar and B. Spiver, “Three dimensional display apparatus,” U.S. patent4,881,068 (November14, 1989).

St. John, D. S.

D. S. St. John, “Holographic color television record system,” U.S. patent3,813,685 (May28, 1974).

Stahl, R.

R. Stahl and M. Jayapala, “Holographic displays and smart lenses,” Opt. Photon. 6, 39–42 (2011).
[CrossRef]

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[CrossRef]

Stern, A.

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

Stolle, H.

S. Reichelt, R. Häussler, N. Leister, G. Fütterer, H. Stolle, and A. Schwerdtner, “Holographic 3-D displays—electro-holography within the grasp of commercialization,” in Advances in Lasers and Electro Optics, N. Costa and A. Cartaxo, eds. (INTECH, 2012), Chap. 29.

Sullivan, A.

A. Sullivan, “3 Deep: new displays render images you can almost reach out and touch,” IEEE Spectrum42(4), 30–35 (2005).

A. Sullivan, “Multi-planar volumetric display system and method of operation using multi-planar interlacing,” U.S. patent6,806,849 (October19, 2004).

Surman, P.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011).
[CrossRef]

P. Surman, R. S. Brar, I. Sexton, and K. Hopf, “MUTED and HELIUM3D autostereoscopic displays,” in IEEE International Conference on Multimedia and Expo (ICME) (2010), pp. 1594–1599.

Susami, K.

T. Honda, Y. Kajiki, K. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3D images,” in Three-Dimensional Television, Video and Display Technology (Springer, 2010), pp. 461–487.

Sykora, M.

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, and T. Fukami, “Full resolution autostereoscopic 3D display for mobile applications,” in SID Symposium Digest of Technical Papers (2009), Vol. 40, pp. 127–130.

Sykora, M. J.

J. C. Schultz and M. J. Sykora, “Directional backlight with reduced crosstalk,” U.S. patent application2011/0285927 A1 (May24, 2010).

Szeliski, R.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH (1996), pp. 43–54.

Tachi, S.

T. Yendo, N. Kawakami, and S. Tachi, “Seelinder: the cylindrical light field display,” in ACM SIGGRAPH (2005), paper 16.

Takahashi, H.

H. Takahashi, H. Fujinami, and K. Yamada, “Holographic lens array increases the viewing angle of 3D displays,” SPIE Newsroom (June6, 2006).

Takahashi, S.

T. Toda, S. Takahashi, and F. Iwata, “3D video system using grating image,” in Proc. SPIE 2406, 191 (1995).
[CrossRef]

Takaki, Y.

S. Uchida and Y. Takaki, “360-degree, three-dimensional table-screen display using small array of high-speed projectors,” Proc. SPIE 8288, 82880D (2012).
[CrossRef]

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18, 8824–8835 (2010).
[CrossRef]

T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
[CrossRef]

Talha, M. M.

Tao, Y.-H.

Thienpont, H.

Thomas, J.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Thomas, M.

O. S. Cossairt, M. Thomas, and R. K. Dorval, “Optical scanning assembly,” U.S. patent7,864,419 (June8, 2004).

Toda, T.

T. Toda, S. Takahashi, and F. Iwata, “3D video system using grating image,” in Proc. SPIE 2406, 191 (1995).
[CrossRef]

Tran, T.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Tsai, C.-H.

N.-Y. Wang, H.-J. Lee, and C.-H. Tsai, “Parallax barrier type autostereoscopic display device,” U.S. patent6,727,866 (April27, 2004).

Uchibori, N.

H. Hasegawa, A. Yamamoto, T. Fujimori, and N. Uchibori, “Image display system and method, and screen device,” U.S. patent8,157,382 (April17, 2012).

Uchida, S.

S. Uchida and Y. Takaki, “360-degree, three-dimensional table-screen display using small array of high-speed projectors,” Proc. SPIE 8288, 82880D (2012).
[CrossRef]

Uchiyama, T.

H. Kimura, T. Uchiyama, and H. Yoshikawa, “Laser produced 3D display in the air,” in ACM SIGGRAPH (2006), p. 20.

Urey, H.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011).
[CrossRef]

van Berkel, C.

C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179 (1997).
[CrossRef]

C. van Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D LCD,” Proc. SPIE 2653, 32 (1996).
[CrossRef]

Verber, C. M.

J. D. Lewis, C. M. Verber, and R. B. McGhee, “A true three-dimensional display,” IEEE Trans. Electron Devices 18, 724–732 (1971).
[CrossRef]

Vo, S.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Wang, N.-Y.

N.-Y. Wang, H.-J. Lee, and C.-H. Tsai, “Parallax barrier type autostereoscopic display device,” U.S. patent6,727,866 (April27, 2004).

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Wang, Q.-H.

Wang, Y.

Wei, C. W.

C. W. Wei and Y. P. Huang, “240  Hz 4-zones sequential backlight,” in SID Symposium Digest (2010), p. 863.

Weiss, M.

O. Hilliges, D. Kim, S. Izadi, M. Weiss, and A. Wilson, “HoloDesk: direct 3D interactions with a situated see-through display,” in Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems (2012), pp. 2421–2430.

Wetzstein, G.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).
[CrossRef]

Williams, R. D.

F. Garcia and R. D. Williams, “Real time three dimensional display with angled rotating screen and method,” U.S. patent5,042,909 (August27, 1991).

Wilson, A.

O. Hilliges, D. Kim, S. Izadi, M. Weiss, and A. Wilson, “HoloDesk: direct 3D interactions with a situated see-through display,” in Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems (2012), pp. 2421–2430.

Woodgate, G. J.

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer tracking autostereoscopic 3D display systems,” Proc. SPIE 3012, 187 (1997).
[CrossRef]

Wöpking, M.

S. Pastoor and M. Wöpking, “3-D displays: a review of current technologies,” Displays 17, 100–110 (1997).
[CrossRef]

Wu, H. Y.

H. Y. Wu, C. H. Chang, and C. L. Lin, “Dead-zone-free 2D/3D switchable barrier type 3D display,” in SID Syposium Digest of Technical Papers (2013), pp. 675–677.

Yamada, H.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” in SIGGRAPH 2007 Papers (2007), paper 40.

Yamada, K.

H. Takahashi, H. Fujinami, and K. Yamada, “Holographic lens array increases the viewing angle of 3D displays,” SPIE Newsroom (June6, 2006).

Yamamoto, A.

H. Hasegawa, A. Yamamoto, T. Fujimori, and N. Uchibori, “Image display system and method, and screen device,” U.S. patent8,157,382 (April17, 2012).

Yamamoto, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Yano, S.

J.-Y. Son, B. Javidi, S. Yano, and K.-H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6, 394–403 (2010).
[CrossRef]

Yendo, T.

T. Yendo, N. Kawakami, and S. Tachi, “Seelinder: the cylindrical light field display,” in ACM SIGGRAPH (2005), paper 16.

Yeom, J.

Yokomizo, K.

M. Minami, K. Yokomizo, and Y. Shimpuku, “Glasses-free 2D/3D switchable display,” in SID Symposium Digest of Technical Papers (2011), pp. 468–471.

Yoshikawa, H.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154 (1997).
[CrossRef]

H. Kimura, T. Uchiyama, and H. Yoshikawa, “Laser produced 3D display in the air,” in ACM SIGGRAPH (2006), p. 20.

Zerrouk, A. F.

E. Goulanian and A. F. Zerrouk, “Apparatus and system for reproducing 3-dimensional images,” U.S. patent7,944,465 (May17, 2011).

Zhao, W.-X.

3D Res.

Y.-P. Huang, C.-W. Chen, T.-C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res. 1, 39–42 (2010).
[CrossRef]

ACM Trans. Graph.

D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, “Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization,” ACM Trans. Graph. 29, 163 (2010).
[CrossRef]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).
[CrossRef]

W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23, 814–824 (2004).
[CrossRef]

Adv. Opt. Photon.

Appl. Opt.

C. R. Acad. Sci.

G. Lippmann, “Épreuves réversibles. Photographies intégrales,” C. R. Acad. Sci. 146, 446–451 (1908).

Computer

N. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
[CrossRef]

G. Favalora, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
[CrossRef]

S. K. Nayar and V. N. Anand, “3D display using passive optical scatterers,” Computer 40(7), 54–63 (2007).
[CrossRef]

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[CrossRef]

Displays

J. Geng, “A volumetric 3D display based on a DLP projection engine,” Displays 34, 39–48 (2013).
[CrossRef]

S. Pastoor and M. Wöpking, “3-D displays: a review of current technologies,” Displays 17, 100–110 (1997).
[CrossRef]

IBM Syst. J.

M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
[CrossRef]

IEEE Trans Broadcast.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans Broadcast. 57, 362–371 (2011).
[CrossRef]

IEEE Trans. Electron Devices

J. D. Lewis, C. M. Verber, and R. B. McGhee, “A true three-dimensional display,” IEEE Trans. Electron Devices 18, 724–732 (1971).
[CrossRef]

IEEE Trans. Vis. Comput. Graph.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14, 487–499 (2008).
[CrossRef]

H. Liao, T. Dohi, and K. Nomura, “Autostereoscopic 3D display with long visualization depth using referential viewing area based integral photography,” IEEE Trans. Vis. Comput. Graph. 17, 1690–1701 (2011).
[CrossRef]

IS&T Reporter

K. Langhans, C. Guill, E. Rieper, K. Oltmann, and D. Bahr, “Solid Felix: a static volume 3D-laser display,” IS&T Reporter 18(1), 1–9 (2003).

J. Disp. Technol.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
[CrossRef]

J.-Y. Son, B. Javidi, S. Yano, and K.-H. Choi, “Recent developments in 3-D imaging technologies,” J. Disp. Technol. 6, 394–403 (2010).
[CrossRef]

J. Geng, “Volumetric 3D display for radiation therapy planning,” J. Disp. Technol. 4, 437–450 (2008).
[CrossRef]

J. Franklin Inst.

F. E. Ives, “A novel stereogram,” J. Franklin Inst. 153, 51–52 (1902).
[CrossRef]

J. Math. Phys.

A. Gershun, “The light field,” Moscow, 1936, P. Moon and G. Timoshenko, translators, J. Math. Phys. XVIII, 51–151 (1939).

J. Vis.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3):33, 1–30 (2008).
[CrossRef]

Nature

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[CrossRef]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photon.

R. Stahl and M. Jayapala, “Holographic displays and smart lenses,” Opt. Photon. 6, 39–42 (2011).
[CrossRef]

Phil. Trans. R. Soc. B

M. Coltheart, “The persistences of vision,” Phil. Trans. R. Soc. B 290, 57–69 (1980).
[CrossRef]

Philos. Mag.

M. Faraday, “Thoughts on ray vibrations,” Philos. Mag. 28, 345–350 (1846).

Phys. Today

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[CrossRef]

Proc. IEEE

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011).
[CrossRef]

J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” Proc. IEEE 94, 502–523 (2006).
[CrossRef]

D. Gabor, “Holography 1948–1971,” Proc. IEEE 60, 655–668 (1972).
[CrossRef]

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

Proc. SPIE

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer tracking autostereoscopic 3D display systems,” Proc. SPIE 3012, 187 (1997).
[CrossRef]

M. W. Jones, G. P. Nordin, J. H. Kulick, R. G. Lindquist, and S. T. Kowel, “A liquid crystal display based implementation of a real-time ICVision holographic stereogram display,” Proc. SPIE 2406, 154 (1995).
[CrossRef]

T. Toda, S. Takahashi, and F. Iwata, “3D video system using grating image,” in Proc. SPIE 2406, 191 (1995).
[CrossRef]

E. Schulze, “Synthesis of moving holographic stereograms with high-resolution spatial light modulators,” Proc. SPIE 2406, 124 (1995).
[CrossRef]

S. Uchida and Y. Takaki, “360-degree, three-dimensional table-screen display using small array of high-speed projectors,” Proc. SPIE 8288, 82880D (2012).
[CrossRef]

T. Balogh and P. T. Kovács, “Real-time 3D light field transmission,” Proc. SPIE 7724, 772406 (2010).
[CrossRef]

T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
[CrossRef]

A. Schwerdtner and H. Heidrich, “Dresden 3D display (D4D),” Proc. SPIE 3295, 203 (1998).
[CrossRef]

C. van Berkel, D. W. Parker, and A. R. Franklin, “Multiview 3D LCD,” Proc. SPIE 2653, 32 (1996).
[CrossRef]

C. van Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179 (1997).
[CrossRef]

M. Lasher, P. Soltan, W. Dahlke, and N. Acantilado, “Laser projected 3D volumetric displays,” Proc. SPIE 2650, 285 (1996).
[CrossRef]

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove, “Holographic video display based on guided-wave acousto-optic devices,” in Proc. SPIE 6488, 64880L (2007).
[CrossRef]

H. Kwon and H. J. Choi, “A time-sequential multiview autostereoscopic display without resolution loss using a multidirectional backlight unit and a LCD panel,” Proc. SPIE 8288, 82881Y (2012).
[CrossRef]

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154 (1997).
[CrossRef]

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B (2010).
[CrossRef]

Science

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three color, solid-state three dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Other

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” in SIGGRAPH 2007 Papers (2007), paper 40.

B. Javidi and F. Okano, Three Dimensional Television, Video, and Display Technologies (Springer, 2011).

S. Benton and M. Bove, Holographic Imaging (Wiley Interscience, 2008).

E. Lueder, 3D Displays (Wiley, 2012).

R. Hainich and O. Bimber, Displays: Fundamentals & Applications (Peters/CRC Press, 2011).

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (1996), pp. 31–42.

J. Geng, “Multiview three-dimensional display using single projector,” Displays (submitted).

A. Sullivan, “3 Deep: new displays render images you can almost reach out and touch,” IEEE Spectrum42(4), 30–35 (2005).

E. N. Marieb and K. N. Hoehn, Human Anatomy & Physiology (Pearson, 2012).

T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).

B. Blundell and A. Schwarz, Volumetric Three Dimensional Display System (Wiley, 2000).

E. Adelson and J. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing (MIT, 1991), pp. 3–20.

S. E. B. Sorensen, P. S. Hansen, and N. L. Sorensen, “Method for recording and viewing stereoscopic images in color using multichrome filters,” U.S. patent6,687,003 (February3, 2004).

E. A. Edirisinghe and J. Jiang, “Stereo imaging, an emerging technology,” in Proceedings of SSGRR, L’Aquila, July31–August 6, 2000.

T. Honda, Y. Kajiki, K. Susami, T. Hamaguchi, T. Endo, T. Hatada, and T. Fujii, “A display system for natural viewing of 3D images,” in Three-Dimensional Television, Video and Display Technology (Springer, 2010), pp. 461–487.

“Persistence of vision,” http://en.wikipedia.org/wiki/Persistence_of_vision .

NLT, www.nlt-technologies.co.jp/en/ .

W. Hess, “Stereoscopic picture,” U.S. patent1,128,979 (February16, 1915).

H. Takahashi, H. Fujinami, and K. Yamada, “Holographic lens array increases the viewing angle of 3D displays,” SPIE Newsroom (June6, 2006).

D. S. St. John, “Holographic color television record system,” U.S. patent3,813,685 (May28, 1974).

T. Endo, Y. Kajiki, T. Honda, and M. Sato, “Cylindrical 3-D video display observable from all directions,” in Proceedings of Pacific Graphics (2000), pp. 300–306.

T. Yendo, N. Kawakami, and S. Tachi, “Seelinder: the cylindrical light field display,” in ACM SIGGRAPH (2005), paper 16.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH (1996), pp. 43–54.

“Nintendo 3DS,” Nintendo, http://www.nintendo.com/3ds/features/ .

G. Favalora and O. Cossairt, “Theta-parallax-only (TPO) displays,” U.S. patent7,364,300 B2 (April24, 2008).

Actuality 3D Display, http://actuality-medical.com .

Holografika, www.holografika.com .

C. H. Krah, “Three-dimensional display system,” U.S. patent7,843,449 (November30, 2010).

O. S. Cossairt, M. Thomas, and R. K. Dorval, “Optical scanning assembly,” U.S. patent7,864,419 (June8, 2004).

E. Goulanian and A. F. Zerrouk, “Apparatus and system for reproducing 3-dimensional images,” U.S. patent7,944,465 (May17, 2011).

S. Hentschke, “Autostereoscopic reproduction system for 3-D displays,” U.S. patent7,839,430 (November232010).

N.-Y. Wang, H.-J. Lee, and C.-H. Tsai, “Parallax barrier type autostereoscopic display device,” U.S. patent6,727,866 (April27, 2004).

B. Si, “Stereoscopic image display system and method of controlling the same,” U. S. patent8,427,746 B2 (April23, 2013).

http://www.hhi.fraunhofer.de/fields-of-competence/interactive-media-human-factors/products-services/stereoscopic-displays/free2c-desktop-display.html

P. Surman, R. S. Brar, I. Sexton, and K. Hopf, “MUTED and HELIUM3D autostereoscopic displays,” in IEEE International Conference on Multimedia and Expo (ICME) (2010), pp. 1594–1599.

S. H. Ju, M.-D. Kim, M.-S. Park, K.-T. Kim, J.-H. Park, and K.-M. Lim, “Viewer’s eye position estimation using single camera,” in SID Syposium Digest of Technical Papers (2013), pp. 671–674.

H. Y. Wu, C. H. Chang, and C. L. Lin, “Dead-zone-free 2D/3D switchable barrier type 3D display,” in SID Syposium Digest of Technical Papers (2013), pp. 675–677.

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, and T. Fukami, “Full resolution autostereoscopic 3D display for mobile applications,” in SID Symposium Digest of Technical Papers (2009), Vol. 40, pp. 127–130.

J. C. Schultz and M. J. Sykora, “Directional backlight with reduced crosstalk,” U.S. patent application2011/0285927 A1 (May24, 2010).

M. Minami, K. Yokomizo, and Y. Shimpuku, “Glasses-free 2D/3D switchable display,” in SID Symposium Digest of Technical Papers (2011), pp. 468–471.

M. Minami, “Light source device and display,” U.S. patent application2012/0195072 A1 (August2, 2012).

C. W. Wei and Y. P. Huang, “240  Hz 4-zones sequential backlight,” in SID Symposium Digest (2010), p. 863.

J. Geng, “Method and apparatus for high resolution three dimensional display,” U.S. patent6,064,423 (May16, 2000).

J. Geng, “Method and apparatus for an interactive volumetric three dimensional display,” U.S. patent7,098,872 (August29, 2006).

J. Geng, “Method and apparatus for an interactive volumetric three dimensional display,” U.S. patent6,900,779 (May31, 2005).

J. Geng, “Method and apparatus for generating structural pattern illumination,” U.S. patent6,937,348 (August30, 2005).

R. J. Schipper, “Three-dimensional display,” U.S. patent3,097,261 (July9, 1963).

E. P. Berlin, “Three-dimensional display,” U.S. patent4,160,973 (July10, 1979).

R. D. Ketchpel, “Three-dimensional display cathode ray tube,” U.S. patent3,140,415 (July7, 1964).

B. Blundell and A. Schwarz, Volumetric Three-Dimensional Display Systems (Wiley, 2000).

B. G. Blundell, “Three dimensional display system,” U.S. patent5,703,606 (December30, 1997).

J. Geng, “Volumetric 3D display system with static screen,” NASA Tech Briefs (NASA, 2011), Vol. 35, p. 40, http://www.techbriefs.com/component/content/article/9432 .

H. Kimura, T. Uchiyama, and H. Yoshikawa, “Laser produced 3D display in the air,” in ACM SIGGRAPH (2006), p. 20.

M. Momiuchi and H. Kimura, “Device for forming visible image in air,” U.S. patent7,533,995 (May19, 2009).

D. Wyatt, “A volumetric 3D LED display” (MIT, 2005), http://web.mit.edu/6.111/www/f2005/projects/wyatt_Project_Design_Presentation.pdf .

L. Sadovnik and A. Rizkin, “3D volume visualization display,” U.S. patent5,764,317 (June9, 1998).

A. Sullivan, “Multi-planar volumetric display system and method of operation using multi-planar interlacing,” U.S. patent6,806,849 (October19, 2004).

LightSpace Technologies, www.lightspacetech.com .

EuroLCDs, www.eurolcds.com .

R. S. Gold and J. E. Freeman, “Layered display system and method for volumetric presentation,” U.S. patent5,813,742 (September29, 1998).

M. S. Leung, N. A. Ives, and G. Eng, “Three-dimensional real-image volumetric display system and method,” U.S. patent5,745,197 (April28, 1998).

J.-P. Koo and D.-S. Kim, “Volumetric three-dimensional (3D) display system using transparent flexible display panels,” U.S. patent application2007/0009222 A1 (January11, 2007).

M. Hirsch, “Three dimensional display apparatus,” U.S. patent2,967,905 (January13, 1958).

“3D Display from ITT Labs,” Aviation Week, 66–67 (October31, 1960).

L. D. Sher, “Three-dimensional display,” U.S. patent4,130,832 (December19, 1978).

R. Hartwig, “Vorrichtung zur Dreidimensionalen Abbildung in Einem Zylindersymmetrischen Abbildungsraum,” DE patent2622802 C2 (1976).

F. Garcia and R. D. Williams, “Real time three dimensional display with angled rotating screen and method,” U.S. patent5,042,909 (August27, 1991).

E. A. Downing, “Method and system for three-dimensional display of information based on two photon upconversion,” U.S. patent5,684,621 (November4, 1997).

E. J. Korevaar and B. Spiver, “Three dimensional display apparatus,” U.S. patent4,881,068 (November14, 1989).

Y.-P. Huang, “Auto-stereoscopic 3D display and its future developments,” http://www.cdr.ust.hk/Webinar (SID, 2012).

M. Klug, T. Burnett, A. Fancello, A. Heath, K. Gardner, S. O’Connell, C. Newswanger, “A scalable, collaborative, interactive light-field display system,” in SID Symposium Digest of Technical Papers (2013), Vol. 44, Issue 1, pp. 412–415.

Zebra Imaging, www.zebraimaging.com .

M. Lucente, “The first 20 years of holographic video—and the next 20,” in SMPTE 2nd Annual International Conference on Stereoscopic 3D for Media and Entertainment, New York, June21–23, 2011.

QinetiQ, www.qinetiq.com .

SeeReal, http://www.seereal.com/ .

S. Reichelt, R. Häussler, N. Leister, G. Fütterer, H. Stolle, and A. Schwerdtner, “Holographic 3-D displays—electro-holography within the grasp of commercialization,” in Advances in Lasers and Electro Optics, N. Costa and A. Cartaxo, eds. (INTECH, 2012), Chap. 29.

CNN, www.cnn.com .

Holographic screen, http://en.wikipedia.org/wiki/Holographic_screen .

Vermeer, http://research.microsoft.com/en-us/projects/vermeer/ .

Musion Eyeliner, http://www.eyeliner3d.com/ .

ViZoo, http://www.vizoo.com .

P. Simonson and M. Corell, “Method and arrangement for projecting images,” U.S. patent7,184,209 (February27, 2007).

Musion Systems Ltd, http://www.musion.co.uk .

“Pepper’s ghost,” http://en.wikipedia.org/wiki/Pepper%27s_ghost .

FogScreen, http://www.fogscreen.com/ .

UK FogScreen, http://ukfogscreen.com/ .

A. Kataoka and Y. Kasahara, “Method and apparatus for a fog screen and image-forming method using the same,” U.S. patent5,270,752 (December14, 1993).

H. Hasegawa, A. Yamamoto, T. Fujimori, and N. Uchibori, “Image display system and method, and screen device,” U.S. patent8,157,382 (April17, 2012).

C. D. Dyner, “Method and system for free-space imaging display and interface,” U.S. patent6,857,746 (February22, 2005).

S. H. Pevnick, “Water supply method and apparatus for a fountain,” U.S. patent6,557,777 (May6, 2003).

Graphical Waterfalls, http://pevnickdesign.com/ .

P. Richards, “MIT architects design building with digital water walls,” MIT News Office (July12, 2007).

O. Hilliges, D. Kim, S. Izadi, M. Weiss, and A. Wilson, “HoloDesk: direct 3D interactions with a situated see-through display,” in Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems (2012), pp. 2421–2430.

N. Holliman, Three-Dimensional Display Systems (Taylor and Francis, 2006).

IMEC Holographic Display, http://www.imec.be/ScientificReport/SR2010/2010/1159126.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (68)

Figure 1
Figure 1

An example of optical illusion that shows how easily a 2D display system can mislead or confuse our visual system.

Figure 2
Figure 2

What is a perfect 3D display? (a) A viewer looks at 3D scene directly. (b) A perfect 3D display should function as a “window to the world” through which viewers can perceive the same 3D scene as if the 3D display screen were a transparent “window” to the real world objects.

Figure 3
Figure 3

Illustration of four major physical depth cues.

Figure 4
Figure 4

Illustration of psychological depth cues from 2D monocular images.

Figure 5
Figure 5

Dependence of depth cues on viewing distance.

Figure 6
Figure 6

Plenoptic function for a single viewer: the spherical coordinate system of the plenoptic function is used to describe the lines of sight between an observer and a scene.

Figure 7
Figure 7

Each element (voxel or hoxel) in a true 3D display should consist of multiple directional emitters: if tiny projectors radiate the captured light, the plenoptic function of the display is an approximation to that of the original scene when seen by an observer.

Figure 8
Figure 8

Classification of 3D display technologies.

Figure 9
Figure 9

Classification of stereoscopic display technology.

Figure 10
Figure 10

Color-interlaced anaglyph stereo.

Figure 11
Figure 11

Color-interlaced display.

Figure 12
Figure 12

Polarization-interlaced stereoscopic display.

Figure 13
Figure 13

Time-multiplexed stereoscopic display.

Figure 14
Figure 14

HMD for stereo 3D display.

Figure 15
Figure 15

Illustration of the accommodation/convergence conflict in stereoscopic displays: convergence and focal distance with real stimuli and stimuli presented on conventional 3D displays.

Figure 16
Figure 16

Two plane representation L(x,y,u,v) of a 4D light field.

Figure 17
Figure 17

Use of a finite number of views (multiple views) to approximate the infinite number of views generated by a continuously distributed light field.

Figure 18
Figure 18

Illustration of a multiview HPO autostereoscopic 3D display system.

Figure 19
Figure 19

Classification of multiview 3D display techniques.

Figure 20
Figure 20

Parallax barrier HPO autostereoscopic 3D display (example with two views).

Figure 21
Figure 21

Parallax barrier HPO autostereoscopic 3D display (multiple views).

Figure 22
Figure 22

Time-sequential aperture 3D display using a high-speed CRT.

Figure 23
Figure 23

Time-sequential aperture 3D display using a switchable LED array.

Figure 24
Figure 24

Moving slit in front of a high-speed display.

Figure 25
Figure 25

Cylindrical parallax barrier display.

Figure 26
Figure 26

Multiview autostereoscopic 3D display using a spatial multiplex design.

Figure 27
Figure 27

Arrangement of a slanted lenticular screen on a LCD array to enhance image quality.

Figure 28
Figure 28

High-resolution multiview 3D display using a specially design LCD and a lenticular array sheet.

Figure 29
Figure 29

Autostereoscopic 3D display using multiple projectors (frontal projection).

Figure 30
Figure 30

Illustration of a prism mask 3D display screen.

Figure 31
Figure 31

Liquid crystal lens for a 2D/3D switchable display.

Figure 32
Figure 32

Optical design of an integral 3D display screen.

Figure 33
Figure 33

3D display design using a moving lenticular sheet module to steer the viewing direction to a wide angle.

Figure 34
Figure 34

Reflection-based autostereoscopic 3D display.

Figure 35
Figure 35

DOE screen-based autostereoscopic 3D display.

Figure 36
Figure 36

Directional backlight based on diffractive optics.

Figure 37
Figure 37

360° multiview 3D display: generating 2D pictures from 360° surrounding directions, each of which is projected in the display device toward the corresponding viewing angles in 360° surrounding directions projected toward the corresponding viewing angles.

Figure 38
Figure 38

Vertical diffuser screen: the horizontal parallax-only nature of the display requires a diffusing element in the image plane. The function of this diffuser is to scatter light along the vertical axis while leaving the horizontal content of the image unaltered. Such a diffuser can be approximated by a finely pitched lenticular array.

Figure 39
Figure 39

Holografika multiview 3D Display: multi-projector + vertical diffuser screen.

Figure 40
Figure 40

TPO 3D display.

Figure 41
Figure 41

3D display with a projector and a lenticular mirror sheet.

Figure 42
Figure 42

Parallax-based autostereoscopic 3D projector.

Figure 43
Figure 43

Frontal projection parallax barrier autostereoscopic 3D display.

Figure 44
Figure 44

SMV condition: light from at least two images from slightly different viewpoints enters the pupil simultaneously.

Figure 45
Figure 45

Eye-tracking-enabled 3D display, with a lens array to steer the direction of light illumination for a LCD panel.

Figure 46
Figure 46

3M directional backlight design, consisting of a specially designed light guide, a sheet of 3D film, a pair of light sources, and a fast switching LCD panel.

Figure 47
Figure 47

Sony 2D/3D switchable backlight design.

Figure 48
Figure 48

Four-view directional backlight design, consisting of a LED matrix switchable light source, a dual directional prism array, a 240 Hz LCD panel, and a multiview parallax barrier.

Figure 49
Figure 49

Multidirectional backlight design using a LCD panel, a lenticular lens array, and a uniform backlight source.

Figure 50
Figure 50

Classification of volumetric 3D display technologies.

Figure 51
Figure 51

Static screen 3D display based on solid-state upconversion. (a) Energy level diagram of an active ion. (b) Two scanned intersecting laser beams are used to address voxels in transparent glass material doped with such an ion.

Figure 52
Figure 52

Concept of the “3D Cube” volumetric 3D display, which uses a crystal cube as its static screen.

Figure 53
Figure 53

Concept illustration of the optical-fiber-bundle-based static volumetric 3D display.

Figure 54
Figure 54

3D volume visualization display.

Figure 55
Figure 55

Sweeping screen volumetric 3D display system using a CRT.

Figure 56
Figure 56

Perspecta 3D display developed by Actuality.

Figure 57
Figure 57

A “Multi-planar” volumetric 3D display using a high-speed DLP projector and a rotating double helix screen.

Figure 58
Figure 58

Principle of rotating LEDs.

Figure 59
Figure 59

The diffraction angle of a holographic display system is proportional to the size of its pixels. Pixel size close to or below the wavelength of the visible light used is necessary to achieve high diffractive efficiency and wide viewing angles.

Figure 60
Figure 60

Examples of existing digital hologram systems.

Figure 61
Figure 61

MIT’s electroHolography systems: Mark II configuration.

Figure 62
Figure 62

Holographic dynamic hogel light field display.

Figure 63
Figure 63

Module of the dynamic hogel light field display screen and hogel generation optics.

Figure 64
Figure 64

Holographic display prototype developed by QinetiQ. Active tiling modular system uses an electrically addressed SLM as an “image engine” that can display the CGH image elements quickly. Replication optics project multiple demagnified images of the EASLM onto an OASLM, which stores and displays the computer-generated pattern. Readout optics form the holographic image. This modulator system allows multiple channels to be assembled to produce a large screen 3D display.

Figure 65
Figure 65

Eye tracking and reconstruction volume.

Figure 66
Figure 66

3D holographic visualization realized by the holographic display with subwavelength diffractive pixels. A viewing angle of 38° is achieved using 500 nm pixel pitch and 635 nm illumination wavelength.

Figure 67
Figure 67

High-level optical configuration of the PRP holographic imaging system.

Figure 68
Figure 68

Entire chain of the 3D imaging industry.

Tables (3)

Tables Icon

Table 1. Examples of Existing Digital Hologram Systems

Tables Icon

Table 2. Comparison of Various 3D Display Technologies

Tables Icon

Table 3. Pros and Cons of Some Existing 3D Display Systems

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P(x,y,z,θ,ϕ,λ,t)
pb=(p*pe)(e+p),b=2*p(pepb)pe.

Metrics