Abstract

Semiconductor nanowires (or other wire-like nanostructures, including nanoribbons and nanobelts) synthesized by bottom-up chemical growth show single-crystalline structures, excellent geometric uniformities, subwavelength transverse dimensions, and relatively high refractive indices, making these one-dimensional structures ideal optical nanowaveguides with tight optical confinement and low scattering loss. When properly pumped by optical or electrical means, lasing oscillation can be readily established inside these high-gain active nanowires with feedback from endface reflection or near-field coupling effects, making it possible to realize nanowire lasers with miniature sizes and high flexibilities. Also, the wide-range material availability bestows the semiconductor nanowire with lasing wavelength selectable within a wide spectral range from ultraviolet (UV) to near infrared (IR). As nanoscale coherent light sources, in recent years, nanowire lasers have been attracting intensive attention for both fundamental research and technological applications ranging from optical sensing, signal processing, and on-chip communications to quantum optics. Here, we present a review of the status and perspectives of semiconductor nanowire lasers, with a particular emphasis on their optical characteristics categorized in two groups: (1) waveguiding related properties in Section 3, which includes waveguide modes, near-field coupling, endface reflection, substrate-induced effects, and nanowire microcavities, and (2) optically pumped semiconductor nanowire lasers in Section 4, starting from principles and basic types of UV, visible, and near-IR nanowire lasers relying on Fabry–Perot cavities, to advanced configurations including wavelength-tunable, single-mode operated, fiber-coupled, and metal-incorporated nanowire lasing structures for more possibilities. In addition, the material aspects of semiconductor nanowires, including nanowire synthesis and electrically driven nanowire lasers, are briefly reviewed in Sections 2 and 5, respectively. Finally, in Section 6 we present a brief summary of semiconductor nanowire lasers regarding their current challenges and future opportunities.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Feynman, “There’s plenty of room at the bottom,” J. Microelectromech. Syst. 1, 60–66 (1992).
    [CrossRef]
  2. C. M. Lieber, “Nanoscale science and technology: building a big future from small things,” MRS Bull. 28, 486–491 (2003).
    [CrossRef]
  3. C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32, 99–108 (2007).
    [CrossRef]
  4. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [CrossRef]
  5. X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Hang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
    [CrossRef]
  6. S. S. Mao, “Nanolasers: lasing from nanoscale quantum wires,” Int. J. Nanotechnology 1, 42–85 (2004).
  7. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
    [CrossRef]
  8. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
    [CrossRef]
  9. P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
    [CrossRef]
  10. L. K. van Vugt, S. J. Veen, E. Bakkers, A. L. Roest, and D. Vanmaekelbergh, “Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation,” J. Am. Chem. Soc. 127, 12357–12362 (2005).
    [CrossRef]
  11. E. Bakkers, J. A. Van Dam, S. De Franceschi, L. P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis, “Epitaxial growth of InP nanowires on germanium,” Nat. Mater. 3, 769–773 (2004).
    [CrossRef]
  12. R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456, 369–372 (2008).
    [CrossRef]
  13. N. G. Basov, O. N. Krokhin, and Y. M. Popov, “Production of negative-temperature states in p‐n junctions of degenerate semiconductors,” Sov. Phys. JETP 13, 1320–1321 (1961).
  14. R. N. Hall, R. O. Carlson, T. J. Soltys, G. E. Fenner, and J. D. Kingsley, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9, 366–368 (1962).
    [CrossRef]
  15. N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Appl. Phys. Lett. 1, 82–83 (1962).
    [CrossRef]
  16. M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phys. Lett. 1, 62–64 (1962).
    [CrossRef]
  17. T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett. 1, 91–92 (1962).
    [CrossRef]
  18. F. H. Nicoll, “Ultraviolet ZnO laser pumped by an electron beam,” Appl. Phys. Lett. 9, 13–16 (1966).
    [CrossRef]
  19. C. E. Hurwitz, “Electron-beam pumped lasers of CdSe and CdS,” Appl. Phys. Lett. 8, 121–124 (1966).
    [CrossRef]
  20. R. D. Dupuis, P. D. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin, “Room-temperature laser operation of quantum-well Ga(1-x)AlxAs-GaAs laser-diodes grown by organometalluic chemical vapor-deposition,” Appl. Phys. Lett. 32, 295–297 (1978).
    [CrossRef]
  21. N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
    [CrossRef]
  22. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [CrossRef]
  23. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230–2232 (1997).
    [CrossRef]
  24. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [CrossRef]
  25. A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208–211 (1998).
    [CrossRef]
  26. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
    [CrossRef]
  27. H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, and P. D. Yang, “Dendritic nanowire ultraviolet laser array,” J. Am. Chem. Soc. 125, 4728–4729 (2003).
    [CrossRef]
  28. J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
    [CrossRef]
  29. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
    [CrossRef]
  30. J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84, 1189–1191 (2004).
    [CrossRef]
  31. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
    [CrossRef]
  32. Y. Ye, Y. G. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. M. Tong, and G. G. Qin, “Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method,” Nanoscale 3, 3072–3075 (2011).
    [CrossRef]
  33. B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
    [CrossRef]
  34. A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
    [CrossRef]
  35. A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4, 671–680 (2010).
    [CrossRef]
  36. Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons,” Adv. Mater. 17, 1372–1377 (2005).
    [CrossRef]
  37. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964).
    [CrossRef]
  38. P. D. Yang and C. M. Lieber, “Nanorod-superconductor composites: a pathway to materials with high critical current densities,” Science 273, 1836–1840 (1996).
    [CrossRef]
  39. Y. Y. Wu and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc. 123, 3165–3166 (2001).
    [CrossRef]
  40. M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers,” Appl. Phys. Lett. 80, 1058–1060 (2002).
    [CrossRef]
  41. P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber, “General synthesis of manganese-doped II-VI and III-V semiconductor nanowires,” Nano Lett. 5, 1407–1411 (2005).
    [CrossRef]
  42. A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum,” J. Am. Chem. Soc. 131, 9502–9503 (2009).
    [CrossRef]
  43. T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
    [CrossRef]
  44. J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, “Structural properties of (111)B-oriented III-V nanowires,” Nat. Mater. 5, 574–580 (2006).
    [CrossRef]
  45. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6, 951–956 (2007).
    [CrossRef]
  46. X. F. Duan and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12, 298–302 (2000).
    [CrossRef]
  47. A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
    [CrossRef]
  48. Y. Cui, X. F. Duan, J. T. Hu, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” J. Phys. Chem. B 104, 5213–5216 (2000).
    [CrossRef]
  49. V. Sivakov, G. Andrae, C. Himcinschi, U. Goesele, D. R. T. Zahn, and S. Christiansen, “Growth peculiarities during vapor-liquid-solid growth of silicon nanowhiskers by electron-beam evaporation,” Appl. Phys. A 85, 311–315 (2006).
    [CrossRef]
  50. Y. Y. Wu and P. D. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605–607 (2000).
    [CrossRef]
  51. Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R 47, 1–47 (2004).
    [CrossRef]
  52. D. Moore and Z. L. Wang, “Growth of anisotropic one-dimensional ZnS nanostructures,” J. Mater. Chem. 16, 3898–3905 (2006).
    [CrossRef]
  53. T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2, 168–187 (2010).
    [CrossRef]
  54. Y. J. Hsu and S. Y. Lu, “Low temperature growth and dimension-dependent photoluminescence efficiency of semiconductor nanowires,” Appl. Phys. A 81, 573–578 (2005).
    [CrossRef]
  55. R. Venugopal, P. I. Lin, C. C. Liu, and Y. T. Chen, “Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127, 11262–11268 (2005).
    [CrossRef]
  56. L. Zhao, L. Hu, and X. Fang, “Growth and device application of CdSe nanostructures,” Adv. Funct. Mater. 22, 1551–1566 (2012).
    [CrossRef]
  57. J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays,” J. Chem. Phys. 115, 5714–5717 (2001).
    [CrossRef]
  58. X. F. Duan and C. M. Lieber, “Laser-assisted catalytic growth of single crystal GaN nanowires,” J. Am. Chem. Soc. 122, 188–189 (2000).
    [CrossRef]
  59. J. Noborisaka, J. Motohisa, and T. Fukui, “Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy,” Appl. Phys. Lett. 86, 213102 (2005).
    [CrossRef]
  60. H. Shtrikman, R. Popovitz-Biro, A. Kretinin, and M. Heiblumf, “Stacking-faults-free zinc blende GaAs nanowires,” Nano Lett. 9, 215–219 (2009).
    [CrossRef]
  61. F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133, 2037–2039 (2011).
    [CrossRef]
  62. Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett. 11, 5085–5089 (2011).
    [CrossRef]
  63. A. I. Hochbaum, R. Fan, R. R. He, and P. D. Yang, “Controlled growth of Si nanowire arrays for device integration,” Nano Lett. 5, 457–460 (2005).
    [CrossRef]
  64. Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011).
    [CrossRef]
  65. J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
    [CrossRef]
  66. W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,” Nat. Mater. 6, 841–850 (2007).
    [CrossRef]
  67. Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
    [CrossRef]
  68. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294, 1313–1317 (2001).
    [CrossRef]
  69. T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
    [CrossRef]
  70. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
    [CrossRef]
  71. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269–1273 (2004).
    [CrossRef]
  72. K. J. Huang, S. Y. Yang, and L. M. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46, 1429–1434 (2007).
    [CrossRef]
  73. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
    [CrossRef]
  74. Y. Li and L. Tong, “Mach–Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33, 303–305 (2008).
    [CrossRef]
  75. Y. G. Ma, X. Y. Li, Z. Y. Yang, H. K. Yu, P. Wang, and L. M. Tong, “Pigtailed CdS nanoribbon ring laser,” Appl. Phys. Lett. 97, 153122 (2010).
    [CrossRef]
  76. P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
    [CrossRef]
  77. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer, 2000).
  78. A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237–1239 (2003).
    [CrossRef]
  79. M. A. Zimmler, F. Capasso, S. Mueller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25, 024001 (2010).
    [CrossRef]
  80. S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17, 10881–10886 (2009).
    [CrossRef]
  81. A. V. Maslov and C. Z. Ning, “Far-field emission of a semiconductor nanowire laser,” Opt. Lett. 29, 572–574 (2004).
    [CrossRef]
  82. S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, “Modeling endface output patterns of optical micro/nanofibers,” Opt. Express 16, 8887–8895 (2008).
    [CrossRef]
  83. L. K. van Vugt, S. Ruhle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6, 2707–2711 (2006).
    [CrossRef]
  84. Y. Chen, Z. Ma, Q. Yang, and L.-M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33, 2565–2567 (2008).
  85. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
    [CrossRef]
  86. T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
    [CrossRef]
  87. P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006).
    [CrossRef]
  88. H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. 15, 1907–1911 (2003).
    [CrossRef]
  89. B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91, 131112 (2007).
    [CrossRef]
  90. Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7, 3598–3602 (2007).
    [CrossRef]
  91. Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99, 023109 (2011).
    [CrossRef]
  92. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [CrossRef]
  93. M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29, 8–10 (2004).
    [CrossRef]
  94. V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24, 723–725 (1999).
    [CrossRef]
  95. J. Schaefer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8, 1709–1712 (2008).
    [CrossRef]
  96. C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zuniga-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010).
    [CrossRef]
  97. R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Perot cavity,” Nano Lett. 9, 2697–2703 (2009).
    [CrossRef]
  98. P.-M. Coulon, M. Hugues, B. Alloing, E. Beraudo, M. Leroux, and J. Zuniga-Perez, “GaN microwires as optical microcavities: whispering gallery modes vs Fabry-Perot modes,” Opt. Express 20, 18707–18716 (2012).
    [CrossRef]
  99. J. Wiersig, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A 67, 023807 (2003).
    [CrossRef]
  100. C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, “Whispering gallery mode lasing in zinc oxide microwires,” Appl. Phys. Lett. 92, 241102 (2008).
    [CrossRef]
  101. J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering gallery-mode lasing in ZnO microrods at room temperature,” Appl. Phys. Lett. 95, 241110 (2009).
    [CrossRef]
  102. J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
    [CrossRef]
  103. J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities,” Appl. Phys. Lett. 98, 161110 (2011).
    [CrossRef]
  104. J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Response to “Comment on ‘Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities’”,” Appl. Phys. Lett. 99, 136102 (2011).
    [CrossRef]
  105. C. P. Dietrich and M. Grundmann, “Comment on “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities”,” Appl. Phys. Lett. 99, 136101 (2011).
    [CrossRef]
  106. L. Y. Cao, P. Y. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11, 1463–1468 (2011).
    [CrossRef]
  107. C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6, 11–15 (2006).
    [CrossRef]
  108. L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89, 053125 (2006).
    [CrossRef]
  109. Y. N. Zhang and M. Loncar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16, 17400–17409 (2008).
    [CrossRef]
  110. Y. N. Zhang and M. Loncar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34, 902–904 (2009).
    [CrossRef]
  111. J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98, 021110 (2011).
    [CrossRef]
  112. A. C. Scofield, J. N. Shapiro, A. Lin, A. D. Williams, P.-S. Wong, B. L. Liang, and D. L. Huffaker, “Bottom up photonic crystal cavities formed by patterned III–V nanopillars,” Nano Lett. 11, 2242–2246 (2011).
    [CrossRef]
  113. S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett. 34, 253–255 (2009).
    [CrossRef]
  114. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
    [CrossRef]
  115. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
    [CrossRef]
  116. M. Ding, P. F. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99, 051105 (2011).
    [CrossRef]
  117. J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4, 197–204 (2004).
    [CrossRef]
  118. B. S. Zou, R. B. Liu, F. F. Wang, A. L. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110, 12865–12873 (2006).
    [CrossRef]
  119. J. K. Song, J. M. Szarko, S. R. Leone, S. H. Li, and Y. P. Zhao, “Ultrafast wavelength-dependent lasing-time dynamics in single ZnO nanotetrapod and nanowire lasers,” J. Phys. Chem. B 109, 15749–15753 (2005).
    [CrossRef]
  120. K. Bando, T. Sawabe, K. Asaka, and Y. Masumoto, “Room-temperature excitonic lasing from ZnO single nanobelts,” J. Lumin. 108, 385–388 (2004).
    [CrossRef]
  121. C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing,” Phys. Rev. B 75, 115203 (2007).
    [CrossRef]
  122. M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature laser emission of ZnO nanowires explained by many-body theory,” Phys. Rev. Lett. 108, 157402 (2012).
    [CrossRef]
  123. A. Schleife, C. Roedl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
    [CrossRef]
  124. I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3, 546–549 (2009).
    [CrossRef]
  125. L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
    [CrossRef]
  126. R. X. Yan, J.-H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. D. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
    [CrossRef]
  127. M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
    [CrossRef]
  128. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
    [CrossRef]
  129. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
    [CrossRef]
  130. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [CrossRef]
  131. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, “Vacancy-induced magnetism in ZnO thin films and nanowires,” Phys. Rev. B 77, 205411 (2008).
    [CrossRef]
  132. Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20, 045501 (2009).
    [CrossRef]
  133. M. C. Jeong, B. Y. Oh, M. H. Ham, and J. M. Myoung, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes,” Appl. Phys. Lett. 88, 202105 (2006).
    [CrossRef]
  134. H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys. 97, 064315 (2005).
    [CrossRef]
  135. C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96, 075505 (2006).
  136. J. B. Baxter and E. S. Aydil, “Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires,” Sol. Energy Mater. Sol. Cells 90, 607–622 (2006).
    [CrossRef]
  137. R. Prasanth, L. K. Van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
    [CrossRef]
  138. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
    [CrossRef]
  139. Y. F. Zhang, R. E. Russo, and S. S. Mao, “Quantum efficiency of ZnO nanowire nanolasers,” Appl. Phys. Lett. 87, 043106 (2005).
    [CrossRef]
  140. W. M. Kwok, A. B. Djurisic, Y. H. Leung, D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, “Influence of annealing on stimulated emission in ZnO nanorods,” Appl. Phys. Lett. 89, 183112 (2006).
    [CrossRef]
  141. H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91, 181112 (2007).
    [CrossRef]
  142. D. J. Gargas, M. E. Toimil-Molares, and P. Yang, “Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy,” J. Am. Chem. Soc. 131, 2125–2127 (2009).
    [CrossRef]
  143. A. N. Gruzintsev, G. A. Emelchenko, A. N. Redkin, W. T. Volkov, E. E. Yakimov, and G. Visimberga, “Mode structure of laser emission from ZnO Nanorods with one metal mirror,” Semiconductors 44, 1235–1240 (2010).
    [CrossRef]
  144. C. X. Xu, X. W. Sun, C. Yuen, B. J. Chen, S. F. Yu, and Z. L. Dong, “Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers,” Appl. Phys. Lett. 86, 011118 (2005).
    [CrossRef]
  145. T. Pauporte, D. Lincot, B. Viana, and F. Pelle, “Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition,” Appl. Phys. Lett. 89, 233112 (2006).
    [CrossRef]
  146. M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
    [CrossRef]
  147. J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008).
    [CrossRef]
  148. D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3, 2783–2800 (2011).
    [CrossRef]
  149. K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.
  150. X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009).
    [CrossRef]
  151. C. Y. Chen, G. Zhu, Y. F. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. L. Chou, and Z. L. Wang, “Gallium nitride nanowire based nanogenerators and light-emitting diodes,” ACS Nano 6, 5687–5692 (2012).
    [CrossRef]
  152. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor-device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
    [CrossRef]
  153. S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light-emitting-diodes,” Appl. Phys. Lett. 62, 2390–2392 (1993).
    [CrossRef]
  154. M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34, 83–122 (2004).
    [CrossRef]
  155. S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6, 1808–1811 (2006).
    [CrossRef]
  156. S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87, 173111 (2005).
    [CrossRef]
  157. H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, “Microstadium single-nanowire laser,” Appl. Phys. Lett. 91, 251115 (2007).
    [CrossRef]
  158. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
    [CrossRef]
  159. J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109, 044312 (2011).
    [CrossRef]
  160. P. C. Upadhya, Q. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol. 25, 024017 (2010).
    [CrossRef]
  161. X. Jiang, Y. Xie, J. Lu, L. Y. Zhu, W. He, and Y. T. Qian, “Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by gamma-irradiation,” Chem. Mater. 13, 1213–1218 (2001).
    [CrossRef]
  162. L. D. Sun, C. H. Liu, C. S. Liao, and C. H. Yan, “ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution,” J. Mater. Chem. 9, 1655–1657 (1999).
    [CrossRef]
  163. Y. C. Zhu, Y. Bando, and D. F. Xue, “Spontaneous growth and luminescence of zinc sulfide nanobelts,” Appl. Phys. Lett. 82, 1769–1771 (2003).
    [CrossRef]
  164. Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004).
    [CrossRef]
  165. J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, “Lasing in ZnS nanowires grown on anodic aluminum oxide templates,” Appl. Phys. Lett. 85, 2361–2363 (2004).
    [CrossRef]
  166. R. Chen, D. H. Li, B. Liu, Z. P. Peng, G. G. Gurzadyan, Q. H. Xiong, and H. D. Sun, “Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature,” Nano Lett. 10, 4956–4961 (2010).
    [CrossRef]
  167. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790–8799 (2010).
    [CrossRef]
  168. L. K. van Vugt, B. Piccione, C.-H. Cho, C. Aspetti, A. D. Wirshba, and R. Agarwal, “Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities,” J. Phys. Chem. A 115, 3827–3833 (2011).
    [CrossRef]
  169. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [CrossRef]
  170. H. L. Peng, C. Xie, D. T. Schoen, K. McIlwrath, X. F. Zhang, and Y. Cui, “Ordered vacancy compounds and nanotube formation in CulnSe(2)-CdS core-shell nanowires,” Nano Lett. 7, 3734–3738 (2007).
    [CrossRef]
  171. B. Piccione, L. K. van Vugt, and R. Agarwal, “Propagation loss spectroscopy on single nanowire active waveguides,” Nano Lett. 10, 2251–2256 (2010).
    [CrossRef]
  172. R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Oin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett. 7, 3300–3304 (2007).
    [CrossRef]
  173. R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917–920 (2005).
    [CrossRef]
  174. D. G. Thomas and J. J. Hopfield, “Optical properties of bound exciton complexes in cadmium sulfide,” Phys. Rev. 128, 2135–2148 (1962).
    [CrossRef]
  175. D. Magde and H. Mahr, “Exciton-exciton interaction in CdS, CdSe, and ZnO,” Phys. Rev. Lett. 24, 890–893 (1970).
    [CrossRef]
  176. K. Colbow, “Free-to-bound and bound-to-bound transitions in CdS,” Phys. Rev. 141, 742–749 (1966).
    [CrossRef]
  177. Y. K. Liu, J. A. Zapien, C. Y. Geng, Y. Y. Shan, C. S. Lee, Y. Lifshitz, and S. T. Lee, “High-quality CdS nanoribbons with lasing cavity,” Appl. Phys. Lett. 85, 3241–3243 (2004).
    [CrossRef]
  178. A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87, 151103 (2005).
    [CrossRef]
  179. A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, G. Z. Yang, B. S. Zou, and K. Q. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268–24272 (2005).
    [CrossRef]
  180. H. Pan, G. C. Xing, Z. H. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Y. Lin, and Z. X. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105 (2007).
    [CrossRef]
  181. B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Wang, M. Niu, W. H. Zhang, Y. Q. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501–1506 (2007).
    [CrossRef]
  182. B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115, 12826–12830 (2011).
    [CrossRef]
  183. R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011).
    [CrossRef]
  184. S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012).
    [CrossRef]
  185. A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7, 2999–3006 (2007).
    [CrossRef]
  186. A. Khandelwal, D. Jena, J. W. Grebinski, K. L. Hull, and M. K. Kuno, “Ultrathin CdSe nanowire field-effect transistors,” J. Electron. Mater. 35, 170–172 (2006).
    [CrossRef]
  187. Y. H. Yu, P. V. Kamat, and M. Kuno, “A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance,” Adv. Funct. Mater. 20, 1464–1472 (2010).
    [CrossRef]
  188. C. Liu, P. C. Wu, T. Sun, L. Dai, Y. Ye, R. M. Ma, and G. G. Qin, “Synthesis of high quality n-type cdse nanobelts and their applications in nanodevices,” J. Phys. Chem. C 113, 14478–14481 (2009).
    [CrossRef]
  189. A. L. Pan, R. B. Liu, Q. L. Zhang, Q. Wan, P. B. He, M. Zacharias, and B. S. Zou, “Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts,” J. Phys. Chem. C 111, 14253–14256 (2007).
    [CrossRef]
  190. A. Capua, O. Karni, G. Eisenstein, J. P. Reithmaier, and K. Yvind, “Extreme nonlinearities in InAs/InP nanowire gain media: the two-photon induced laser,” Opt. Express 20, 5987–5992 (2012).
    [CrossRef]
  191. A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc. 127, 15692–15693 (2005).
    [CrossRef]
  192. A. L. Pan, R. B. Liu, F. F. Wang, S. S. Xie, B. S. Zou, M. Zacharias, and Z. L. Wang, “High-quality alloyed CdSxSe1−x whiskers as waveguides with tunable stimulated emission,” J. Phys. Chem. B 110, 22313–22317 (2006).
    [CrossRef]
  193. Y. K. Liu, J. A. Zapien, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Wavelength-tunable lasing in single-crystal CdS1−xSex nanoribbons,” Nanotechnology 18, 365606 (2007).
    [CrossRef]
  194. J. A. Zapien, Y. K. Liu, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett. 90, 213114 (2007).
    [CrossRef]
  195. A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
    [CrossRef]
  196. C. Y. Luan, Y. K. Liu, Y. Jiang, J. S. Jie, I. Bello, S. T. Lee, and J. A. Zapien, “Composition tuning of room-temperature nanolasers,” Vacuum 86, 737–741 (2012).
    [CrossRef]
  197. J. Y. Xu, L. Ma, P. F. Guo, X. J. Zhuang, X. L. Zhu, W. Hu, X. F. Duan, and A. L. Pan, “Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures,” J. Am. Chem. Soc. 134, 12394–12397 (2012).
    [CrossRef]
  198. F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
    [CrossRef]
  199. H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012).
    [CrossRef]
  200. Q. M. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20, 17873–17881 (2012).
    [CrossRef]
  201. H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. USA 110, 865–869 (2013).
    [CrossRef]
  202. L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
    [CrossRef]
  203. Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94, 101108 (2009).
    [CrossRef]
  204. Y. Ding, Q. Yang, X. Guo, S. S. Wang, F. X. Gu, J. Fu, Q. Wan, J. P. Cheng, and L. M. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17, 21813–21818 (2009).
    [CrossRef]
  205. A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 64680I (2007).
    [CrossRef]
  206. V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
    [CrossRef]
  207. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
    [CrossRef]
  208. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [CrossRef]
  209. Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
    [CrossRef]
  210. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
    [CrossRef]
  211. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12, 5769–5774 (2012).
    [CrossRef]
  212. R.-M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12, 5396–5402 (2012).
    [CrossRef]
  213. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
    [CrossRef]
  214. R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7, 1–21 (2013).
    [CrossRef]
  215. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).
  216. M. T. Hill, “Status and prospects for metallic and plasmonic nano-lasers,” J. Opt. Soc. Am. B 27, B36–B44 (2010).
    [CrossRef]
  217. D. Li and C. Z. Ning, “Electrical injection in longitudinal and coaxial heterostructure nanowires: a comparative study through a three-dimensional simulation,” Nano Lett. 8, 4234–4237 (2008).
    [CrossRef]
  218. X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, “Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si,” Opt. Express 17, 14426–14433 (2009).
    [CrossRef]
  219. S. Chu, M. Olmedo, Z. Yang, J. Y. Kong, and J. L. Liu, “Electrically pumped ultraviolet ZnO diode lasers on Si,” Appl. Phys. Lett. 93, 181106 (2008).
    [CrossRef]
  220. S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
    [CrossRef]
  221. C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
    [CrossRef]
  222. X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4, 2843–2846 (2012).
    [CrossRef]

2013 (2)

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. USA 110, 865–869 (2013).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7, 1–21 (2013).
[CrossRef]

2012 (16)

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12, 5769–5774 (2012).
[CrossRef]

R.-M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12, 5396–5402 (2012).
[CrossRef]

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[CrossRef]

C. Y. Luan, Y. K. Liu, Y. Jiang, J. S. Jie, I. Bello, S. T. Lee, and J. A. Zapien, “Composition tuning of room-temperature nanolasers,” Vacuum 86, 737–741 (2012).
[CrossRef]

J. Y. Xu, L. Ma, P. F. Guo, X. J. Zhuang, X. L. Zhu, W. Hu, X. F. Duan, and A. L. Pan, “Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures,” J. Am. Chem. Soc. 134, 12394–12397 (2012).
[CrossRef]

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012).
[CrossRef]

Q. M. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20, 17873–17881 (2012).
[CrossRef]

A. Capua, O. Karni, G. Eisenstein, J. P. Reithmaier, and K. Yvind, “Extreme nonlinearities in InAs/InP nanowire gain media: the two-photon induced laser,” Opt. Express 20, 5987–5992 (2012).
[CrossRef]

C. Y. Chen, G. Zhu, Y. F. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. L. Chou, and Z. L. Wang, “Gallium nitride nanowire based nanogenerators and light-emitting diodes,” ACS Nano 6, 5687–5692 (2012).
[CrossRef]

S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012).
[CrossRef]

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4, 2843–2846 (2012).
[CrossRef]

L. Zhao, L. Hu, and X. Fang, “Growth and device application of CdSe nanostructures,” Adv. Funct. Mater. 22, 1551–1566 (2012).
[CrossRef]

P.-M. Coulon, M. Hugues, B. Alloing, E. Beraudo, M. Leroux, and J. Zuniga-Perez, “GaN microwires as optical microcavities: whispering gallery modes vs Fabry-Perot modes,” Opt. Express 20, 18707–18716 (2012).
[CrossRef]

M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature laser emission of ZnO nanowires explained by many-body theory,” Phys. Rev. Lett. 108, 157402 (2012).
[CrossRef]

R. X. Yan, J.-H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. D. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[CrossRef]

2011 (24)

A. Schleife, C. Roedl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[CrossRef]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[CrossRef]

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[CrossRef]

M. Ding, P. F. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99, 051105 (2011).
[CrossRef]

D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3, 2783–2800 (2011).
[CrossRef]

J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities,” Appl. Phys. Lett. 98, 161110 (2011).
[CrossRef]

J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Response to “Comment on ‘Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities’”,” Appl. Phys. Lett. 99, 136102 (2011).
[CrossRef]

C. P. Dietrich and M. Grundmann, “Comment on “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities”,” Appl. Phys. Lett. 99, 136101 (2011).
[CrossRef]

L. Y. Cao, P. Y. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11, 1463–1468 (2011).
[CrossRef]

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98, 021110 (2011).
[CrossRef]

A. C. Scofield, J. N. Shapiro, A. Lin, A. D. Williams, P.-S. Wong, B. L. Liang, and D. L. Huffaker, “Bottom up photonic crystal cavities formed by patterned III–V nanopillars,” Nano Lett. 11, 2242–2246 (2011).
[CrossRef]

Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99, 023109 (2011).
[CrossRef]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133, 2037–2039 (2011).
[CrossRef]

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett. 11, 5085–5089 (2011).
[CrossRef]

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011).
[CrossRef]

Y. Ye, Y. G. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. M. Tong, and G. G. Qin, “Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method,” Nanoscale 3, 3072–3075 (2011).
[CrossRef]

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115, 12826–12830 (2011).
[CrossRef]

R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011).
[CrossRef]

L. K. van Vugt, B. Piccione, C.-H. Cho, C. Aspetti, A. D. Wirshba, and R. Agarwal, “Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities,” J. Phys. Chem. A 115, 3827–3833 (2011).
[CrossRef]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[CrossRef]

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109, 044312 (2011).
[CrossRef]

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[CrossRef]

S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[CrossRef]

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[CrossRef]

2010 (14)

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).

M. T. Hill, “Status and prospects for metallic and plasmonic nano-lasers,” J. Opt. Soc. Am. B 27, B36–B44 (2010).
[CrossRef]

Y. H. Yu, P. V. Kamat, and M. Kuno, “A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance,” Adv. Funct. Mater. 20, 1464–1472 (2010).
[CrossRef]

P. C. Upadhya, Q. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol. 25, 024017 (2010).
[CrossRef]

R. Chen, D. H. Li, B. Liu, Z. P. Peng, G. G. Gurzadyan, Q. H. Xiong, and H. D. Sun, “Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature,” Nano Lett. 10, 4956–4961 (2010).
[CrossRef]

K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790–8799 (2010).
[CrossRef]

B. Piccione, L. K. van Vugt, and R. Agarwal, “Propagation loss spectroscopy on single nanowire active waveguides,” Nano Lett. 10, 2251–2256 (2010).
[CrossRef]

A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4, 671–680 (2010).
[CrossRef]

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2, 168–187 (2010).
[CrossRef]

Y. G. Ma, X. Y. Li, Z. Y. Yang, H. K. Yu, P. Wang, and L. M. Tong, “Pigtailed CdS nanoribbon ring laser,” Appl. Phys. Lett. 97, 153122 (2010).
[CrossRef]

M. A. Zimmler, F. Capasso, S. Mueller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25, 024001 (2010).
[CrossRef]

C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zuniga-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010).
[CrossRef]

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[CrossRef]

A. N. Gruzintsev, G. A. Emelchenko, A. N. Redkin, W. T. Volkov, E. E. Yakimov, and G. Visimberga, “Mode structure of laser emission from ZnO Nanorods with one metal mirror,” Semiconductors 44, 1235–1240 (2010).
[CrossRef]

2009 (23)

D. J. Gargas, M. E. Toimil-Molares, and P. Yang, “Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy,” J. Am. Chem. Soc. 131, 2125–2127 (2009).
[CrossRef]

X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009).
[CrossRef]

Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20, 045501 (2009).
[CrossRef]

I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3, 546–549 (2009).
[CrossRef]

L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
[CrossRef]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering gallery-mode lasing in ZnO microrods at room temperature,” Appl. Phys. Lett. 95, 241110 (2009).
[CrossRef]

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Perot cavity,” Nano Lett. 9, 2697–2703 (2009).
[CrossRef]

S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett. 34, 253–255 (2009).
[CrossRef]

Y. N. Zhang and M. Loncar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34, 902–904 (2009).
[CrossRef]

S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17, 10881–10886 (2009).
[CrossRef]

A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum,” J. Am. Chem. Soc. 131, 9502–9503 (2009).
[CrossRef]

H. Shtrikman, R. Popovitz-Biro, A. Kretinin, and M. Heiblumf, “Stacking-faults-free zinc blende GaAs nanowires,” Nano Lett. 9, 215–219 (2009).
[CrossRef]

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[CrossRef]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Hang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[CrossRef]

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

C. Liu, P. C. Wu, T. Sun, L. Dai, Y. Ye, R. M. Ma, and G. G. Qin, “Synthesis of high quality n-type cdse nanobelts and their applications in nanodevices,” J. Phys. Chem. C 113, 14478–14481 (2009).
[CrossRef]

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94, 101108 (2009).
[CrossRef]

Y. Ding, Q. Yang, X. Guo, S. S. Wang, F. X. Gu, J. Fu, Q. Wan, J. P. Cheng, and L. M. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17, 21813–21818 (2009).
[CrossRef]

X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, “Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si,” Opt. Express 17, 14426–14433 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[CrossRef]

2008 (17)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
[CrossRef]

S. Chu, M. Olmedo, Z. Yang, J. Y. Kong, and J. L. Liu, “Electrically pumped ultraviolet ZnO diode lasers on Si,” Appl. Phys. Lett. 93, 181106 (2008).
[CrossRef]

D. Li and C. Z. Ning, “Electrical injection in longitudinal and coaxial heterostructure nanowires: a comparative study through a three-dimensional simulation,” Nano Lett. 8, 4234–4237 (2008).
[CrossRef]

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[CrossRef]

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456, 369–372 (2008).
[CrossRef]

Y. Li and L. Tong, “Mach–Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33, 303–305 (2008).
[CrossRef]

S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, “Modeling endface output patterns of optical micro/nanofibers,” Opt. Express 16, 8887–8895 (2008).
[CrossRef]

Y. Chen, Z. Ma, Q. Yang, and L.-M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33, 2565–2567 (2008).

Y. N. Zhang and M. Loncar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16, 17400–17409 (2008).
[CrossRef]

J. Schaefer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8, 1709–1712 (2008).
[CrossRef]

C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, “Whispering gallery mode lasing in zinc oxide microwires,” Appl. Phys. Lett. 92, 241102 (2008).
[CrossRef]

Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, “Vacancy-induced magnetism in ZnO thin films and nanowires,” Phys. Rev. B 77, 205411 (2008).
[CrossRef]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[CrossRef]

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[CrossRef]

J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008).
[CrossRef]

2007 (21)

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing,” Phys. Rev. B 75, 115203 (2007).
[CrossRef]

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91, 131112 (2007).
[CrossRef]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7, 3598–3602 (2007).
[CrossRef]

K. J. Huang, S. Y. Yang, and L. M. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46, 1429–1434 (2007).
[CrossRef]

W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,” Nat. Mater. 6, 841–850 (2007).
[CrossRef]

T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
[CrossRef]

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6, 951–956 (2007).
[CrossRef]

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32, 99–108 (2007).
[CrossRef]

A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 64680I (2007).
[CrossRef]

A. L. Pan, R. B. Liu, Q. L. Zhang, Q. Wan, P. B. He, M. Zacharias, and B. S. Zou, “Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts,” J. Phys. Chem. C 111, 14253–14256 (2007).
[CrossRef]

Y. K. Liu, J. A. Zapien, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Wavelength-tunable lasing in single-crystal CdS1−xSex nanoribbons,” Nanotechnology 18, 365606 (2007).
[CrossRef]

J. A. Zapien, Y. K. Liu, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett. 90, 213114 (2007).
[CrossRef]

H. L. Peng, C. Xie, D. T. Schoen, K. McIlwrath, X. F. Zhang, and Y. Cui, “Ordered vacancy compounds and nanotube formation in CulnSe(2)-CdS core-shell nanowires,” Nano Lett. 7, 3734–3738 (2007).
[CrossRef]

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Oin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett. 7, 3300–3304 (2007).
[CrossRef]

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7, 2999–3006 (2007).
[CrossRef]

H. Pan, G. C. Xing, Z. H. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Y. Lin, and Z. X. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105 (2007).
[CrossRef]

B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Wang, M. Niu, W. H. Zhang, Y. Q. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501–1506 (2007).
[CrossRef]

H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, “Microstadium single-nanowire laser,” Appl. Phys. Lett. 91, 251115 (2007).
[CrossRef]

2006 (20)

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6, 1808–1811 (2006).
[CrossRef]

T. Pauporte, D. Lincot, B. Viana, and F. Pelle, “Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition,” Appl. Phys. Lett. 89, 233112 (2006).
[CrossRef]

A. Khandelwal, D. Jena, J. W. Grebinski, K. L. Hull, and M. K. Kuno, “Ultrathin CdSe nanowire field-effect transistors,” J. Electron. Mater. 35, 170–172 (2006).
[CrossRef]

A. L. Pan, R. B. Liu, F. F. Wang, S. S. Xie, B. S. Zou, M. Zacharias, and Z. L. Wang, “High-quality alloyed CdSxSe1−x whiskers as waveguides with tunable stimulated emission,” J. Phys. Chem. B 110, 22313–22317 (2006).
[CrossRef]

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[CrossRef]

V. Sivakov, G. Andrae, C. Himcinschi, U. Goesele, D. R. T. Zahn, and S. Christiansen, “Growth peculiarities during vapor-liquid-solid growth of silicon nanowhiskers by electron-beam evaporation,” Appl. Phys. A 85, 311–315 (2006).
[CrossRef]

J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, “Structural properties of (111)B-oriented III-V nanowires,” Nat. Mater. 5, 574–580 (2006).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

D. Moore and Z. L. Wang, “Growth of anisotropic one-dimensional ZnS nanostructures,” J. Mater. Chem. 16, 3898–3905 (2006).
[CrossRef]

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef]

L. K. van Vugt, S. Ruhle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6, 2707–2711 (2006).
[CrossRef]

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[CrossRef]

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6, 11–15 (2006).
[CrossRef]

L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89, 053125 (2006).
[CrossRef]

W. M. Kwok, A. B. Djurisic, Y. H. Leung, D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, “Influence of annealing on stimulated emission in ZnO nanorods,” Appl. Phys. Lett. 89, 183112 (2006).
[CrossRef]

M. C. Jeong, B. Y. Oh, M. H. Ham, and J. M. Myoung, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes,” Appl. Phys. Lett. 88, 202105 (2006).
[CrossRef]

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96, 075505 (2006).

J. B. Baxter and E. S. Aydil, “Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires,” Sol. Energy Mater. Sol. Cells 90, 607–622 (2006).
[CrossRef]

R. Prasanth, L. K. Van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

B. S. Zou, R. B. Liu, F. F. Wang, A. L. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110, 12865–12873 (2006).
[CrossRef]

2005 (18)

J. K. Song, J. M. Szarko, S. R. Leone, S. H. Li, and Y. P. Zhao, “Ultrafast wavelength-dependent lasing-time dynamics in single ZnO nanotetrapod and nanowire lasers,” J. Phys. Chem. B 109, 15749–15753 (2005).
[CrossRef]

H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys. 97, 064315 (2005).
[CrossRef]

Y. F. Zhang, R. E. Russo, and S. S. Mao, “Quantum efficiency of ZnO nanowire nanolasers,” Appl. Phys. Lett. 87, 043106 (2005).
[CrossRef]

C. X. Xu, X. W. Sun, C. Yuen, B. J. Chen, S. F. Yu, and Z. L. Dong, “Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers,” Appl. Phys. Lett. 86, 011118 (2005).
[CrossRef]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef]

J. Noborisaka, J. Motohisa, and T. Fukui, “Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy,” Appl. Phys. Lett. 86, 213102 (2005).
[CrossRef]

A. I. Hochbaum, R. Fan, R. R. He, and P. D. Yang, “Controlled growth of Si nanowire arrays for device integration,” Nano Lett. 5, 457–460 (2005).
[CrossRef]

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
[CrossRef]

Y. J. Hsu and S. Y. Lu, “Low temperature growth and dimension-dependent photoluminescence efficiency of semiconductor nanowires,” Appl. Phys. A 81, 573–578 (2005).
[CrossRef]

R. Venugopal, P. I. Lin, C. C. Liu, and Y. T. Chen, “Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127, 11262–11268 (2005).
[CrossRef]

P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber, “General synthesis of manganese-doped II-VI and III-V semiconductor nanowires,” Nano Lett. 5, 1407–1411 (2005).
[CrossRef]

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons,” Adv. Mater. 17, 1372–1377 (2005).
[CrossRef]

L. K. van Vugt, S. J. Veen, E. Bakkers, A. L. Roest, and D. Vanmaekelbergh, “Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation,” J. Am. Chem. Soc. 127, 12357–12362 (2005).
[CrossRef]

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc. 127, 15692–15693 (2005).
[CrossRef]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87, 151103 (2005).
[CrossRef]

A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, G. Z. Yang, B. S. Zou, and K. Q. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268–24272 (2005).
[CrossRef]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917–920 (2005).
[CrossRef]

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

2004 (15)

Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004).
[CrossRef]

J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, “Lasing in ZnS nanowires grown on anodic aluminum oxide templates,” Appl. Phys. Lett. 85, 2361–2363 (2004).
[CrossRef]

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34, 83–122 (2004).
[CrossRef]

Y. K. Liu, J. A. Zapien, C. Y. Geng, Y. Y. Shan, C. S. Lee, Y. Lifshitz, and S. T. Lee, “High-quality CdS nanoribbons with lasing cavity,” Appl. Phys. Lett. 85, 3241–3243 (2004).
[CrossRef]

E. Bakkers, J. A. Van Dam, S. De Franceschi, L. P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis, “Epitaxial growth of InP nanowires on germanium,” Nat. Mater. 3, 769–773 (2004).
[CrossRef]

S. S. Mao, “Nanolasers: lasing from nanoscale quantum wires,” Int. J. Nanotechnology 1, 42–85 (2004).

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84, 1189–1191 (2004).
[CrossRef]

Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R 47, 1–47 (2004).
[CrossRef]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269–1273 (2004).
[CrossRef]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[CrossRef]

A. V. Maslov and C. Z. Ning, “Far-field emission of a semiconductor nanowire laser,” Opt. Lett. 29, 572–574 (2004).
[CrossRef]

M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29, 8–10 (2004).
[CrossRef]

K. Bando, T. Sawabe, K. Asaka, and Y. Masumoto, “Room-temperature excitonic lasing from ZnO single nanobelts,” J. Lumin. 108, 385–388 (2004).
[CrossRef]

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4, 197–204 (2004).
[CrossRef]

2003 (13)

M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. 15, 1907–1911 (2003).
[CrossRef]

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237–1239 (2003).
[CrossRef]

J. Wiersig, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A 67, 023807 (2003).
[CrossRef]

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[CrossRef]

H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, and P. D. Yang, “Dendritic nanowire ultraviolet laser array,” J. Am. Chem. Soc. 125, 4728–4729 (2003).
[CrossRef]

J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
[CrossRef]

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

C. M. Lieber, “Nanoscale science and technology: building a big future from small things,” MRS Bull. 28, 486–491 (2003).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

Y. C. Zhu, Y. Bando, and D. F. Xue, “Spontaneous growth and luminescence of zinc sulfide nanobelts,” Appl. Phys. Lett. 82, 1769–1771 (2003).
[CrossRef]

2002 (3)

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[CrossRef]

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers,” Appl. Phys. Lett. 80, 1058–1060 (2002).
[CrossRef]

2001 (7)

Y. Y. Wu and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc. 123, 3165–3166 (2001).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[CrossRef]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294, 1313–1317 (2001).
[CrossRef]

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef]

J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays,” J. Chem. Phys. 115, 5714–5717 (2001).
[CrossRef]

X. Jiang, Y. Xie, J. Lu, L. Y. Zhu, W. He, and Y. T. Qian, “Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by gamma-irradiation,” Chem. Mater. 13, 1213–1218 (2001).
[CrossRef]

2000 (4)

X. F. Duan and C. M. Lieber, “Laser-assisted catalytic growth of single crystal GaN nanowires,” J. Am. Chem. Soc. 122, 188–189 (2000).
[CrossRef]

X. F. Duan and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12, 298–302 (2000).
[CrossRef]

Y. Y. Wu and P. D. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605–607 (2000).
[CrossRef]

Y. Cui, X. F. Duan, J. T. Hu, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” J. Phys. Chem. B 104, 5213–5216 (2000).
[CrossRef]

1999 (3)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24, 723–725 (1999).
[CrossRef]

L. D. Sun, C. H. Liu, C. S. Liao, and C. H. Yan, “ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution,” J. Mater. Chem. 9, 1655–1657 (1999).
[CrossRef]

1998 (1)

A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208–211 (1998).
[CrossRef]

1997 (1)

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230–2232 (1997).
[CrossRef]

1996 (1)

P. D. Yang and C. M. Lieber, “Nanorod-superconductor composites: a pathway to materials with high critical current densities,” Science 273, 1836–1840 (1996).
[CrossRef]

1994 (3)

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor-device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

1993 (1)

S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light-emitting-diodes,” Appl. Phys. Lett. 62, 2390–2392 (1993).
[CrossRef]

1992 (1)

R. P. Feynman, “There’s plenty of room at the bottom,” J. Microelectromech. Syst. 1, 60–66 (1992).
[CrossRef]

1978 (1)

R. D. Dupuis, P. D. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin, “Room-temperature laser operation of quantum-well Ga(1-x)AlxAs-GaAs laser-diodes grown by organometalluic chemical vapor-deposition,” Appl. Phys. Lett. 32, 295–297 (1978).
[CrossRef]

1970 (1)

D. Magde and H. Mahr, “Exciton-exciton interaction in CdS, CdSe, and ZnO,” Phys. Rev. Lett. 24, 890–893 (1970).
[CrossRef]

1966 (3)

K. Colbow, “Free-to-bound and bound-to-bound transitions in CdS,” Phys. Rev. 141, 742–749 (1966).
[CrossRef]

F. H. Nicoll, “Ultraviolet ZnO laser pumped by an electron beam,” Appl. Phys. Lett. 9, 13–16 (1966).
[CrossRef]

C. E. Hurwitz, “Electron-beam pumped lasers of CdSe and CdS,” Appl. Phys. Lett. 8, 121–124 (1966).
[CrossRef]

1964 (1)

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964).
[CrossRef]

1962 (5)

R. N. Hall, R. O. Carlson, T. J. Soltys, G. E. Fenner, and J. D. Kingsley, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9, 366–368 (1962).
[CrossRef]

N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Appl. Phys. Lett. 1, 82–83 (1962).
[CrossRef]

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phys. Lett. 1, 62–64 (1962).
[CrossRef]

T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett. 1, 91–92 (1962).
[CrossRef]

D. G. Thomas and J. J. Hopfield, “Optical properties of bound exciton complexes in cadmium sulfide,” Phys. Rev. 128, 2135–2148 (1962).
[CrossRef]

1961 (1)

N. G. Basov, O. N. Krokhin, and Y. M. Popov, “Production of negative-temperature states in p‐n junctions of degenerate semiconductors,” Sov. Phys. JETP 13, 1320–1321 (1961).

Acord, J. D.

Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004).
[CrossRef]

Agarwal, R.

L. K. van Vugt, B. Piccione, C.-H. Cho, C. Aspetti, A. D. Wirshba, and R. Agarwal, “Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities,” J. Phys. Chem. A 115, 3827–3833 (2011).
[CrossRef]

B. Piccione, L. K. van Vugt, and R. Agarwal, “Propagation loss spectroscopy on single nanowire active waveguides,” Nano Lett. 10, 2251–2256 (2010).
[CrossRef]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917–920 (2005).
[CrossRef]

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[CrossRef]

Alferov, Z. I.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

Algra, R. E.

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456, 369–372 (2008).
[CrossRef]

Alloing, B.

Aloni, S.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6, 951–956 (2007).
[CrossRef]

Andrae, G.

V. Sivakov, G. Andrae, C. Himcinschi, U. Goesele, D. R. T. Zahn, and S. Christiansen, “Growth peculiarities during vapor-liquid-solid growth of silicon nanowhiskers by electron-beam evaporation,” Appl. Phys. A 85, 311–315 (2006).
[CrossRef]

Andrews, S. C.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. USA 110, 865–869 (2013).
[CrossRef]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

Asaka, K.

K. Bando, T. Sawabe, K. Asaka, and Y. Masumoto, “Room-temperature excitonic lasing from ZnO single nanobelts,” J. Lumin. 108, 385–388 (2004).
[CrossRef]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Aspetti, C.

L. K. van Vugt, B. Piccione, C.-H. Cho, C. Aspetti, A. D. Wirshba, and R. Agarwal, “Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities,” J. Phys. Chem. A 115, 3827–3833 (2011).
[CrossRef]

Au, F. C. K.

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84, 1189–1191 (2004).
[CrossRef]

Aydil, E. S.

J. B. Baxter and E. S. Aydil, “Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires,” Sol. Energy Mater. Sol. Cells 90, 607–622 (2006).
[CrossRef]

Bagnall, D. M.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230–2232 (1997).
[CrossRef]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Bakkers, E.

L. K. van Vugt, S. J. Veen, E. Bakkers, A. L. Roest, and D. Vanmaekelbergh, “Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation,” J. Am. Chem. Soc. 127, 12357–12362 (2005).
[CrossRef]

E. Bakkers, J. A. Van Dam, S. De Franceschi, L. P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis, “Epitaxial growth of InP nanowires on germanium,” Nat. Mater. 3, 769–773 (2004).
[CrossRef]

Bakkers, E. P. A. M.

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456, 369–372 (2008).
[CrossRef]

Balakrishnan, G.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012).
[CrossRef]

Bando, K.

K. Bando, T. Sawabe, K. Asaka, and Y. Masumoto, “Room-temperature excitonic lasing from ZnO single nanobelts,” J. Lumin. 108, 385–388 (2004).
[CrossRef]

Bando, Y.

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2, 168–187 (2010).
[CrossRef]

X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009).
[CrossRef]

Y. C. Zhu, Y. Bando, and D. F. Xue, “Spontaneous growth and luminescence of zinc sulfide nanobelts,” Appl. Phys. Lett. 82, 1769–1771 (2003).
[CrossRef]

Bao, J.

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[CrossRef]

Bao, J. M.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Hang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[CrossRef]

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6, 11–15 (2006).
[CrossRef]

Barrelet, C. J.

H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, “Microstadium single-nanowire laser,” Appl. Phys. Lett. 91, 251115 (2007).
[CrossRef]

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6, 11–15 (2006).
[CrossRef]

P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber, “General synthesis of manganese-doped II-VI and III-V semiconductor nanowires,” Nano Lett. 5, 1407–1411 (2005).
[CrossRef]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917–920 (2005).
[CrossRef]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87, 151103 (2005).
[CrossRef]

Bartal, G.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Basov, N. G.

N. G. Basov, O. N. Krokhin, and Y. M. Popov, “Production of negative-temperature states in p‐n junctions of degenerate semiconductors,” Sov. Phys. JETP 13, 1320–1321 (1961).

Baxter, J. B.

J. B. Baxter and E. S. Aydil, “Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires,” Sol. Energy Mater. Sol. Cells 90, 607–622 (2006).
[CrossRef]

Beausoleil, R. G.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[CrossRef]

Bechstedt, F.

A. Schleife, C. Roedl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[CrossRef]

Beecher, P.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Bello, I.

C. Y. Luan, Y. K. Liu, Y. Jiang, J. S. Jie, I. Bello, S. T. Lee, and J. A. Zapien, “Composition tuning of room-temperature nanolasers,” Vacuum 86, 737–741 (2012).
[CrossRef]

Beraudo, E.

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

Bertness, K. A.

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109, 044312 (2011).
[CrossRef]

Bevacqua, S. F.

N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Appl. Phys. Lett. 1, 82–83 (1962).
[CrossRef]

Bhattacharya, P.

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98, 021110 (2011).
[CrossRef]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[CrossRef]

Bimberg, D.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

Bjork, M. T.

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers,” Appl. Phys. Lett. 80, 1058–1060 (2002).
[CrossRef]

Bogy, D. B.

L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
[CrossRef]

Borgstrom, M. T.

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456, 369–372 (2008).
[CrossRef]

Borschel, C.

S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012).
[CrossRef]

Brambilla, G.

M. Ding, P. F. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99, 051105 (2011).
[CrossRef]

Brener, I.

Q. M. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20, 17873–17881 (2012).
[CrossRef]

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012).
[CrossRef]

Brongersma, M. L.

L. Y. Cao, P. Y. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11, 1463–1468 (2011).
[CrossRef]

Burns, G.

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phys. Lett. 1, 62–64 (1962).
[CrossRef]

Burns, M.

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor-device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

Cao, B.

C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zuniga-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010).
[CrossRef]

C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, “Whispering gallery mode lasing in zinc oxide microwires,” Appl. Phys. Lett. 92, 241102 (2008).
[CrossRef]

Cao, B. L.

B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Wang, M. Niu, W. H. Zhang, Y. Q. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501–1506 (2007).
[CrossRef]

Cao, H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Cao, L.

B. S. Zou, R. B. Liu, F. F. Wang, A. L. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110, 12865–12873 (2006).
[CrossRef]

Cao, L. Y.

L. Y. Cao, P. Y. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11, 1463–1468 (2011).
[CrossRef]

Capasso, F.

S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012).
[CrossRef]

M. A. Zimmler, F. Capasso, S. Mueller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25, 024001 (2010).
[CrossRef]

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[CrossRef]

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6, 11–15 (2006).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Capua, A.

Carlson, R. O.

R. N. Hall, R. O. Carlson, T. J. Soltys, G. E. Fenner, and J. D. Kingsley, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9, 366–368 (1962).
[CrossRef]

Chan, W. K.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, “Influence of annealing on stimulated emission in ZnO nanorods,” Appl. Phys. Lett. 89, 183112 (2006).
[CrossRef]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Chang, W. R.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Chen, B. J.

C. X. Xu, X. W. Sun, C. Yuen, B. J. Chen, S. F. Yu, and Z. L. Dong, “Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers,” Appl. Phys. Lett. 86, 011118 (2005).
[CrossRef]

Chen, C. Q.

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96, 075505 (2006).

Chen, C. Y.

C. Y. Chen, G. Zhu, Y. F. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. L. Chou, and Z. L. Wang, “Gallium nitride nanowire based nanogenerators and light-emitting diodes,” ACS Nano 6, 5687–5692 (2012).
[CrossRef]

Chen, G.

Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, “Vacancy-induced magnetism in ZnO thin films and nanowires,” Phys. Rev. B 77, 205411 (2008).
[CrossRef]

Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004).
[CrossRef]

Chen, H. P.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Chen, K. Q.

A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, G. Z. Yang, B. S. Zou, and K. Q. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268–24272 (2005).
[CrossRef]

Chen, L.

L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89, 053125 (2006).
[CrossRef]

Chen, L. J.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Chen, P. L.

Chen, Q.

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Perot cavity,” Nano Lett. 9, 2697–2703 (2009).
[CrossRef]

Chen, R.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115, 12826–12830 (2011).
[CrossRef]

R. Chen, D. H. Li, B. Liu, Z. P. Peng, G. G. Gurzadyan, Q. H. Xiong, and H. D. Sun, “Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature,” Nano Lett. 10, 4956–4961 (2010).
[CrossRef]

Chen, T.

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Perot cavity,” Nano Lett. 9, 2697–2703 (2009).
[CrossRef]

Chen, W.

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84, 1189–1191 (2004).
[CrossRef]

Chen, W. W.

J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, “Lasing in ZnS nanowires grown on anodic aluminum oxide templates,” Appl. Phys. Lett. 85, 2361–2363 (2004).
[CrossRef]

Chen, X. W.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef]

Chen, Y.

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94, 101108 (2009).
[CrossRef]

Y. Chen, Z. Ma, Q. Yang, and L.-M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33, 2565–2567 (2008).

Chen, Y. F.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230–2232 (1997).
[CrossRef]

Chen, Y. T.

R. Venugopal, P. I. Lin, C. C. Liu, and Y. T. Chen, “Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127, 11262–11268 (2005).
[CrossRef]

Cheng, J. P.

Cheng, K. Y.

C. Y. Chen, G. Zhu, Y. F. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. L. Chou, and Z. L. Wang, “Gallium nitride nanowire based nanogenerators and light-emitting diodes,” ACS Nano 6, 5687–5692 (2012).
[CrossRef]

Chernyak, L.

S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[CrossRef]

Chin, A. H.

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[CrossRef]

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[CrossRef]

Chin, R.

R. D. Dupuis, P. D. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin, “Room-temperature laser operation of quantum-well Ga(1-x)AlxAs-GaAs laser-diodes grown by organometalluic chemical vapor-deposition,” Appl. Phys. Lett. 32, 295–297 (1978).
[CrossRef]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Cho, C.-H.

L. K. van Vugt, B. Piccione, C.-H. Cho, C. Aspetti, A. D. Wirshba, and R. Agarwal, “Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities,” J. Phys. Chem. A 115, 3827–3833 (2011).
[CrossRef]

Choi, H. J.

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[CrossRef]

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
[CrossRef]

Choi, Y.

R. X. Yan, J.-H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. D. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[CrossRef]

Chou, L. L.

C. Y. Chen, G. Zhu, Y. F. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. L. Chou, and Z. L. Wang, “Gallium nitride nanowire based nanogenerators and light-emitting diodes,” ACS Nano 6, 5687–5692 (2012).
[CrossRef]

Chow, W. W.

Christiansen, S.

V. Sivakov, G. Andrae, C. Himcinschi, U. Goesele, D. R. T. Zahn, and S. Christiansen, “Growth peculiarities during vapor-liquid-solid growth of silicon nanowhiskers by electron-beam evaporation,” Appl. Phys. A 85, 311–315 (2006).
[CrossRef]

Chu, S.

S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[CrossRef]

S. Chu, M. Olmedo, Z. Yang, J. Y. Kong, and J. L. Liu, “Electrically pumped ultraviolet ZnO diode lasers on Si,” Appl. Phys. Lett. 93, 181106 (2008).
[CrossRef]

Chua, D. H. C.

H. Pan, G. C. Xing, Z. H. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Y. Lin, and Z. X. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105 (2007).
[CrossRef]

Co, D. T.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12, 5769–5774 (2012).
[CrossRef]

Colbow, K.

K. Colbow, “Free-to-bound and bound-to-bound transitions in CdS,” Phys. Rev. 141, 742–749 (1966).
[CrossRef]

Colli, A.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

Coulon, P.-M.

Cross, K.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012).
[CrossRef]

Cui, Y.

H. L. Peng, C. Xie, D. T. Schoen, K. McIlwrath, X. F. Zhang, and Y. Cui, “Ordered vacancy compounds and nanotube formation in CulnSe(2)-CdS core-shell nanowires,” Nano Lett. 7, 3734–3738 (2007).
[CrossRef]

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef]

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[CrossRef]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294, 1313–1317 (2001).
[CrossRef]

Y. Cui, X. F. Duan, J. T. Hu, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” J. Phys. Chem. B 104, 5213–5216 (2000).
[CrossRef]

Cui, Y. P.

J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering gallery-mode lasing in ZnO microrods at room temperature,” Appl. Phys. Lett. 95, 241110 (2009).
[CrossRef]

Czekalla, C.

C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zuniga-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010).
[CrossRef]

C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, “Whispering gallery mode lasing in zinc oxide microwires,” Appl. Phys. Lett. 92, 241102 (2008).
[CrossRef]

Dabidian, N.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Dai, J.

J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities,” Appl. Phys. Lett. 98, 161110 (2011).
[CrossRef]

J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Response to “Comment on ‘Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities’”,” Appl. Phys. Lett. 99, 136102 (2011).
[CrossRef]

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[CrossRef]

J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering gallery-mode lasing in ZnO microrods at room temperature,” Appl. Phys. Lett. 95, 241110 (2009).
[CrossRef]

Dai, L.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[CrossRef]

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011).
[CrossRef]

Y. Ye, Y. G. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. M. Tong, and G. G. Qin, “Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method,” Nanoscale 3, 3072–3075 (2011).
[CrossRef]

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Perot cavity,” Nano Lett. 9, 2697–2703 (2009).
[CrossRef]

C. Liu, P. C. Wu, T. Sun, L. Dai, Y. Ye, R. M. Ma, and G. G. Qin, “Synthesis of high quality n-type cdse nanobelts and their applications in nanodevices,” J. Phys. Chem. C 113, 14478–14481 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Oin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett. 7, 3300–3304 (2007).
[CrossRef]

Dai, Y.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011).
[CrossRef]

Dapkus, P. D.

R. D. Dupuis, P. D. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin, “Room-temperature laser operation of quantum-well Ga(1-x)AlxAs-GaAs laser-diodes grown by organometalluic chemical vapor-deposition,” Appl. Phys. Lett. 32, 295–297 (1978).
[CrossRef]

Das, A.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[CrossRef]

De Franceschi, S.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

E. Bakkers, J. A. Van Dam, S. De Franceschi, L. P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis, “Epitaxial growth of InP nanowires on germanium,” Nat. Mater. 3, 769–773 (2004).
[CrossRef]

Delaunay, J.-J.

Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20, 045501 (2009).
[CrossRef]

Della Valle, F.

Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20, 045501 (2009).
[CrossRef]

Deng, H.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[CrossRef]

Deppert, K.

J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, “Structural properties of (111)B-oriented III-V nanowires,” Nat. Mater. 5, 574–580 (2006).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers,” Appl. Phys. Lett. 80, 1058–1060 (2002).
[CrossRef]

Dietrich, C. P.

C. P. Dietrich and M. Grundmann, “Comment on “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities”,” Appl. Phys. Lett. 99, 136101 (2011).
[CrossRef]

Dijkhuis, J. I.

M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature laser emission of ZnO nanowires explained by many-body theory,” Phys. Rev. Lett. 108, 157402 (2012).
[CrossRef]

Dill, F. H.

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phys. Lett. 1, 62–64 (1962).
[CrossRef]

Ding, J. X.

J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, “Lasing in ZnS nanowires grown on anodic aluminum oxide templates,” Appl. Phys. Lett. 85, 2361–2363 (2004).
[CrossRef]

Ding, K.

R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011).
[CrossRef]

Ding, M.

M. Ding, P. F. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99, 051105 (2011).
[CrossRef]

Ding, Y.

Y. Ding, Q. Yang, X. Guo, S. S. Wang, F. X. Gu, J. Fu, Q. Wan, J. P. Cheng, and L. M. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17, 21813–21818 (2009).
[CrossRef]

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[CrossRef]

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91, 131112 (2007).
[CrossRef]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7, 3598–3602 (2007).
[CrossRef]

Djurisic, A. B.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, “Influence of annealing on stimulated emission in ZnO nanorods,” Appl. Phys. Lett. 89, 183112 (2006).
[CrossRef]

Dong, Y.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[CrossRef]

Dong, Z. L.

C. X. Xu, X. W. Sun, C. Yuen, B. J. Chen, S. F. Yu, and Z. L. Dong, “Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers,” Appl. Phys. Lett. 86, 011118 (2005).
[CrossRef]

Duan, X. F.

J. Y. Xu, L. Ma, P. F. Guo, X. J. Zhuang, X. L. Zhu, W. Hu, X. F. Duan, and A. L. Pan, “Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures,” J. Am. Chem. Soc. 134, 12394–12397 (2012).
[CrossRef]

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[CrossRef]

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294, 1313–1317 (2001).
[CrossRef]

X. F. Duan and C. M. Lieber, “Laser-assisted catalytic growth of single crystal GaN nanowires,” J. Am. Chem. Soc. 122, 188–189 (2000).
[CrossRef]

X. F. Duan and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12, 298–302 (2000).
[CrossRef]

Y. Cui, X. F. Duan, J. T. Hu, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” J. Phys. Chem. B 104, 5213–5216 (2000).
[CrossRef]

Ducati, C.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

Dumke, W. P.

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phys. Lett. 1, 62–64 (1962).
[CrossRef]

Dupuis, R. D.

R. D. Dupuis, P. D. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin, “Room-temperature laser operation of quantum-well Ga(1-x)AlxAs-GaAs laser-diodes grown by organometalluic chemical vapor-deposition,” Appl. Phys. Lett. 32, 295–297 (1978).
[CrossRef]

Eisenstein, G.

Eklund, P. C.

Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004).
[CrossRef]

Ellis, W. C.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964).
[CrossRef]

Emelchenko, G. A.

A. N. Gruzintsev, G. A. Emelchenko, A. N. Redkin, W. T. Volkov, E. E. Yakimov, and G. Visimberga, “Mode structure of laser emission from ZnO Nanorods with one metal mirror,” Semiconductors 44, 1235–1240 (2010).
[CrossRef]

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Fallert, J.

J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008).
[CrossRef]

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing,” Phys. Rev. B 75, 115203 (2007).
[CrossRef]

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

Fan, P. Y.

L. Y. Cao, P. Y. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11, 1463–1468 (2011).
[CrossRef]

Fan, R.

A. I. Hochbaum, R. Fan, R. R. He, and P. D. Yang, “Controlled growth of Si nanowire arrays for device integration,” Nano Lett. 5, 457–460 (2005).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Fang, W.

Fang, X.

L. Zhao, L. Hu, and X. Fang, “Growth and device application of CdSe nanostructures,” Adv. Funct. Mater. 22, 1551–1566 (2012).
[CrossRef]

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2, 168–187 (2010).
[CrossRef]

Fang, X. S.

X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009).
[CrossRef]

Fasoli, A.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Feiner, L.-F.

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456, 369–372 (2008).
[CrossRef]

Feneberg, M.

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

Feng, Y. P.

H. Pan, G. C. Xing, Z. H. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Y. Lin, and Z. X. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105 (2007).
[CrossRef]

Fenner, G. E.

R. N. Hall, R. O. Carlson, T. J. Soltys, G. E. Fenner, and J. D. Kingsley, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9, 366–368 (1962).
[CrossRef]

Ferrari, A. C.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

Feynman, R. P.

R. P. Feynman, “There’s plenty of room at the bottom,” J. Microelectromech. Syst. 1, 60–66 (1992).
[CrossRef]

Figiel, J. J.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012).
[CrossRef]

Fischer, A. J.

P. C. Upadhya, Q. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol. 25, 024017 (2010).
[CrossRef]

Flewitt, A. J.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

Fu, A.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. USA 110, 865–869 (2013).
[CrossRef]

Fu, J.

Fu, Y.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

Fuchs, F.

A. Schleife, C. Roedl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[CrossRef]

Fukui, T.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[CrossRef]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7, 3598–3602 (2007).
[CrossRef]

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91, 131112 (2007).
[CrossRef]

J. Noborisaka, J. Motohisa, and T. Fukui, “Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy,” Appl. Phys. Lett. 86, 213102 (2005).
[CrossRef]

Galantai, G.

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7, 2999–3006 (2007).
[CrossRef]

Gan, L.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011).
[CrossRef]

Gao, G. B.

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor-device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

Gao, H.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. USA 110, 865–869 (2013).
[CrossRef]

Gargas, D.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[CrossRef]

Gargas, D. J.

D. J. Gargas, M. E. Toimil-Molares, and P. Yang, “Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy,” J. Am. Chem. Soc. 131, 2125–2127 (2009).
[CrossRef]

Gates, B.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Gattass, R. R.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Gautam, U. K.

X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009).
[CrossRef]

Geburt, S.

S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012).
[CrossRef]

Geng, C. Y.

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons,” Adv. Mater. 17, 1372–1377 (2005).
[CrossRef]

Y. K. Liu, J. A. Zapien, C. Y. Geng, Y. Y. Shan, C. S. Lee, Y. Lifshitz, and S. T. Lee, “High-quality CdS nanoribbons with lasing cavity,” Appl. Phys. Lett. 85, 3241–3243 (2004).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Gerritsen, H. C.

R. Prasanth, L. K. Van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Goesele, U.

V. Sivakov, G. Andrae, C. Himcinschi, U. Goesele, D. R. T. Zahn, and S. Christiansen, “Growth peculiarities during vapor-liquid-solid growth of silicon nanowhiskers by electron-beam evaporation,” Appl. Phys. A 85, 311–315 (2006).
[CrossRef]

Golberg, D.

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2, 168–187 (2010).
[CrossRef]

X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009).
[CrossRef]

Goldberger, J.

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34, 83–122 (2004).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269–1273 (2004).
[CrossRef]

Gosele, U.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

Goto, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230–2232 (1997).
[CrossRef]

Gradecak, S.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[CrossRef]

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber, “General synthesis of manganese-doped II-VI and III-V semiconductor nanowires,” Nano Lett. 5, 1407–1411 (2005).
[CrossRef]

Grebinski, J. W.

A. Khandelwal, D. Jena, J. W. Grebinski, K. L. Hull, and M. K. Kuno, “Ultrathin CdSe nanowire field-effect transistors,” J. Electron. Mater. 35, 170–172 (2006).
[CrossRef]

Greytak, A. B.

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87, 151103 (2005).
[CrossRef]

Grundmann, M.

C. P. Dietrich and M. Grundmann, “Comment on “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities”,” Appl. Phys. Lett. 99, 136101 (2011).
[CrossRef]

C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zuniga-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010).
[CrossRef]

C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, “Whispering gallery mode lasing in zinc oxide microwires,” Appl. Phys. Lett. 92, 241102 (2008).
[CrossRef]

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
[CrossRef]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[CrossRef]

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

Gruzintsev, A. N.

A. N. Gruzintsev, G. A. Emelchenko, A. N. Redkin, W. T. Volkov, E. E. Yakimov, and G. Visimberga, “Mode structure of laser emission from ZnO Nanorods with one metal mirror,” Semiconductors 44, 1235–1240 (2010).
[CrossRef]

Gsell, S.

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

Gu, F.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133, 2037–2039 (2011).
[CrossRef]

Gu, F. X.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[CrossRef]

Y. Ding, Q. Yang, X. Guo, S. S. Wang, F. X. Gu, J. Fu, Q. Wan, J. P. Cheng, and L. M. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17, 21813–21818 (2009).
[CrossRef]

Gudiksen, M. S.

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef]

Guo, J. Y.

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[CrossRef]

Guo, P. F.

J. Y. Xu, L. Ma, P. F. Guo, X. J. Zhuang, X. L. Zhu, W. Hu, X. F. Duan, and A. L. Pan, “Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures,” J. Am. Chem. Soc. 134, 12394–12397 (2012).
[CrossRef]

Guo, W.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[CrossRef]

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98, 021110 (2011).
[CrossRef]

Guo, X.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[CrossRef]

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94, 101108 (2009).
[CrossRef]

Y. Ding, Q. Yang, X. Guo, S. S. Wang, F. X. Gu, J. Fu, Q. Wan, J. P. Cheng, and L. M. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17, 21813–21818 (2009).
[CrossRef]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Hang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Guo, X. f.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011).
[CrossRef]

Gurzadyan, G. G.

R. Chen, D. H. Li, B. Liu, Z. P. Peng, G. G. Gurzadyan, Q. H. Xiong, and H. D. Sun, “Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature,” Nano Lett. 10, 4956–4961 (2010).
[CrossRef]

Gustafsson, A.

T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
[CrossRef]

Gutierrez, H. R.

Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004).
[CrossRef]

Gwo, S.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Hakuta, K.

Hall, R. N.

R. N. Hall, R. O. Carlson, T. J. Soltys, G. E. Fenner, and J. D. Kingsley, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9, 366–368 (1962).
[CrossRef]

Ham, M. H.

M. C. Jeong, B. Y. Oh, M. H. Ham, and J. M. Myoung, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes,” Appl. Phys. Lett. 88, 202105 (2006).
[CrossRef]

Hang, X. N.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Hang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[CrossRef]

Hannewald, K.

A. Schleife, C. Roedl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[CrossRef]

Hara, S.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[CrossRef]

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91, 131112 (2007).
[CrossRef]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7, 3598–3602 (2007).
[CrossRef]

Hauschild, R.

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing,” Phys. Rev. B 75, 115203 (2007).
[CrossRef]

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

He, P. B.

R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011).
[CrossRef]

A. L. Pan, R. B. Liu, Q. L. Zhang, Q. Wan, P. B. He, M. Zacharias, and B. S. Zou, “Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts,” J. Phys. Chem. C 111, 14253–14256 (2007).
[CrossRef]

He, R. R.

A. I. Hochbaum, R. Fan, R. R. He, and P. D. Yang, “Controlled growth of Si nanowire arrays for device integration,” Nano Lett. 5, 457–460 (2005).
[CrossRef]

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. 15, 1907–1911 (2003).
[CrossRef]

H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, and P. D. Yang, “Dendritic nanowire ultraviolet laser array,” J. Am. Chem. Soc. 125, 4728–4729 (2003).
[CrossRef]

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[CrossRef]

He, S. L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

He, W.

X. Jiang, Y. Xie, J. Lu, L. Y. Zhu, W. He, and Y. T. Qian, “Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by gamma-irradiation,” Chem. Mater. 13, 1213–1218 (2001).
[CrossRef]

Heiblumf, M.

H. Shtrikman, R. Popovitz-Biro, A. Kretinin, and M. Heiblumf, “Stacking-faults-free zinc blende GaAs nanowires,” Nano Lett. 9, 215–219 (2009).
[CrossRef]

Heo, C. J.

R. X. Yan, J.-H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. D. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[CrossRef]

Heo, J.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[CrossRef]

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98, 021110 (2011).
[CrossRef]

Heo, Y. W.

Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R 47, 1–47 (2004).
[CrossRef]

Hersee, S. D.

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6, 1808–1811 (2006).
[CrossRef]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Heydenreich, J.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

Hill, M. T.

Hilner, E.

T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
[CrossRef]

Himcinschi, C.

V. Sivakov, G. Andrae, C. Himcinschi, U. Goesele, D. R. T. Zahn, and S. Christiansen, “Growth peculiarities during vapor-liquid-solid growth of silicon nanowhiskers by electron-beam evaporation,” Appl. Phys. A 85, 311–315 (2006).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Hochbaum, A. I.

A. I. Hochbaum, R. Fan, R. R. He, and P. D. Yang, “Controlled growth of Si nanowire arrays for device integration,” Nano Lett. 5, 457–460 (2005).
[CrossRef]

Hofmann, S.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

Holonyak, N.

R. D. Dupuis, P. D. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin, “Room-temperature laser operation of quantum-well Ga(1-x)AlxAs-GaAs laser-diodes grown by organometalluic chemical vapor-deposition,” Appl. Phys. Lett. 32, 295–297 (1978).
[CrossRef]

N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Appl. Phys. Lett. 1, 82–83 (1962).
[CrossRef]

Hopfield, J. J.

D. G. Thomas and J. J. Hopfield, “Optical properties of bound exciton complexes in cadmium sulfide,” Phys. Rev. 128, 2135–2148 (1962).
[CrossRef]

Hsieh, W. F.

H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys. 97, 064315 (2005).
[CrossRef]

Hsu, H. C.

H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys. 97, 064315 (2005).
[CrossRef]

Hsu, Y. J.

Y. J. Hsu and S. Y. Lu, “Low temperature growth and dimension-dependent photoluminescence efficiency of semiconductor nanowires,” Appl. Phys. A 81, 573–578 (2005).
[CrossRef]

Hu, J. T.

Y. Cui, X. F. Duan, J. T. Hu, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” J. Phys. Chem. B 104, 5213–5216 (2000).
[CrossRef]

Hu, L.

L. Zhao, L. Hu, and X. Fang, “Growth and device application of CdSe nanostructures,” Adv. Funct. Mater. 22, 1551–1566 (2012).
[CrossRef]

Hu, W.

J. Y. Xu, L. Ma, P. F. Guo, X. J. Zhuang, X. L. Zhu, W. Hu, X. F. Duan, and A. L. Pan, “Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures,” J. Am. Chem. Soc. 134, 12394–12397 (2012).
[CrossRef]

Hu, Y. F.

C. Y. Chen, G. Zhu, Y. F. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. L. Chou, and Z. L. Wang, “Gallium nitride nanowire based nanogenerators and light-emitting diodes,” ACS Nano 6, 5687–5692 (2012).
[CrossRef]

Hu, Z. F.

Hua, B.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[CrossRef]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7, 3598–3602 (2007).
[CrossRef]

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91, 131112 (2007).
[CrossRef]

Huang, K. J.

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Huang, Y.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[CrossRef]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294, 1313–1317 (2001).
[CrossRef]

Huffaker, D. L.

A. C. Scofield, J. N. Shapiro, A. Lin, A. D. Williams, P.-S. Wong, B. L. Liang, and D. L. Huffaker, “Bottom up photonic crystal cavities formed by patterned III–V nanopillars,” Nano Lett. 11, 2242–2246 (2011).
[CrossRef]

Hugues, M.

Hull, K. L.

A. Khandelwal, D. Jena, J. W. Grebinski, K. L. Hull, and M. K. Kuno, “Ultrathin CdSe nanowire field-effect transistors,” J. Electron. Mater. 35, 170–172 (2006).
[CrossRef]

Huntington, M. D.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12, 5769–5774 (2012).
[CrossRef]

Huo, H. B.

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Oin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett. 7, 3300–3304 (2007).
[CrossRef]

Hurwitz, C. E.

C. E. Hurwitz, “Electron-beam pumped lasers of CdSe and CdS,” Appl. Phys. Lett. 8, 121–124 (1966).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Ilchenko, V. S.

Immink, G.

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456, 369–372 (2008).
[CrossRef]

Jankowski, M.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[CrossRef]

Jena, D.

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7, 2999–3006 (2007).
[CrossRef]

A. Khandelwal, D. Jena, J. W. Grebinski, K. L. Hull, and M. K. Kuno, “Ultrathin CdSe nanowire field-effect transistors,” J. Electron. Mater. 35, 170–172 (2006).
[CrossRef]

Jena, P.

Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, “Vacancy-induced magnetism in ZnO thin films and nanowires,” Phys. Rev. B 77, 205411 (2008).
[CrossRef]

Jeong, M. C.

M. C. Jeong, B. Y. Oh, M. H. Ham, and J. M. Myoung, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes,” Appl. Phys. Lett. 88, 202105 (2006).
[CrossRef]

Ji, W.

H. Pan, G. C. Xing, Z. H. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Y. Lin, and Z. X. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105 (2007).
[CrossRef]

Jiang, X.

X. Jiang, Y. Xie, J. Lu, L. Y. Zhu, W. He, and Y. T. Qian, “Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by gamma-irradiation,” Chem. Mater. 13, 1213–1218 (2001).
[CrossRef]

Jiang, X. S.

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94, 101108 (2009).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Jiang, Y.

C. Y. Luan, Y. K. Liu, Y. Jiang, J. S. Jie, I. Bello, S. T. Lee, and J. A. Zapien, “Composition tuning of room-temperature nanolasers,” Vacuum 86, 737–741 (2012).
[CrossRef]

B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Wang, M. Niu, W. H. Zhang, Y. Q. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501–1506 (2007).
[CrossRef]

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84, 1189–1191 (2004).
[CrossRef]

Jie, J. S.

C. Y. Luan, Y. K. Liu, Y. Jiang, J. S. Jie, I. Bello, S. T. Lee, and J. A. Zapien, “Composition tuning of room-temperature nanolasers,” Vacuum 86, 737–741 (2012).
[CrossRef]

Johansson, J.

J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, “Structural properties of (111)B-oriented III-V nanowires,” Nat. Mater. 5, 574–580 (2006).
[CrossRef]

Johnson, J.

H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, and P. D. Yang, “Dendritic nanowire ultraviolet laser array,” J. Am. Chem. Soc. 125, 4728–4729 (2003).
[CrossRef]

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. 15, 1907–1911 (2003).
[CrossRef]

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[CrossRef]

Johnson, J. C.

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4, 197–204 (2004).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269–1273 (2004).
[CrossRef]

J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
[CrossRef]

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
[CrossRef]

Kaidashev, E. M.

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[CrossRef]

Kaiser, M.

E. Bakkers, J. A. Van Dam, S. De Franceschi, L. P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis, “Epitaxial growth of InP nanowires on germanium,” Nat. Mater. 3, 769–773 (2004).
[CrossRef]

Kalt, H.

J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008).
[CrossRef]

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing,” Phys. Rev. B 75, 115203 (2007).
[CrossRef]

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

Kamat, P. V.

Y. H. Yu, P. V. Kamat, and M. Kuno, “A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance,” Adv. Funct. Mater. 20, 1464–1472 (2010).
[CrossRef]

Kang, B. S.

Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R 47, 1–47 (2004).
[CrossRef]

Karlsson, L. S.

J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, “Structural properties of (111)B-oriented III-V nanowires,” Nat. Mater. 5, 574–580 (2006).
[CrossRef]

Karni, O.

Kawai, Y.

Kawazoe, Y.

Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, “Vacancy-induced magnetism in ZnO thin films and nanowires,” Phys. Rev. B 77, 205411 (2008).
[CrossRef]

Keyes, R. J.

T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett. 1, 91–92 (1962).
[CrossRef]

Khandelwal, A.

A. Khandelwal, D. Jena, J. W. Grebinski, K. L. Hull, and M. K. Kuno, “Ultrathin CdSe nanowire field-effect transistors,” J. Electron. Mater. 35, 170–172 (2006).
[CrossRef]

Kim, C. H.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12, 5769–5774 (2012).
[CrossRef]

Kim, F.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Kim, J.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Kim, K. H.

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294, 1313–1317 (2001).
[CrossRef]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Kingsley, J. D.

R. N. Hall, R. O. Carlson, T. J. Soltys, G. E. Fenner, and J. D. Kingsley, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9, 366–368 (1962).
[CrossRef]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

Kirstaedter, N.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

Klein, B.

V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
[CrossRef]

Klingshirn, C.

J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008).
[CrossRef]

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing,” Phys. Rev. B 75, 115203 (2007).
[CrossRef]

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

Knutsen, K.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. 15, 1907–1911 (2003).
[CrossRef]

Knutsen, K. P.

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4, 197–204 (2004).
[CrossRef]

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
[CrossRef]

Kobayashi, Y.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[CrossRef]

Kong, J. Y.

S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[CrossRef]

S. Chu, M. Olmedo, Z. Yang, J. Y. Kong, and J. L. Liu, “Electrically pumped ultraviolet ZnO diode lasers on Si,” Appl. Phys. Lett. 93, 181106 (2008).
[CrossRef]

Kopev, P. S.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

Kouwenhoven, L. P.

E. Bakkers, J. A. Van Dam, S. De Franceschi, L. P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis, “Epitaxial growth of InP nanowires on germanium,” Nat. Mater. 3, 769–773 (2004).
[CrossRef]

Koyama, S.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230–2232 (1997).
[CrossRef]

Kozlik, M.

S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012).
[CrossRef]

Krag, W. E.

T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett. 1, 91–92 (1962).
[CrossRef]

Kretinin, A.

H. Shtrikman, R. Popovitz-Biro, A. Kretinin, and M. Heiblumf, “Stacking-faults-free zinc blende GaAs nanowires,” Nano Lett. 9, 215–219 (2009).
[CrossRef]

Krishnamurthy, V.

V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
[CrossRef]

Krokhin, O. N.

N. G. Basov, O. N. Krokhin, and Y. M. Popov, “Production of negative-temperature states in p‐n junctions of degenerate semiconductors,” Sov. Phys. JETP 13, 1320–1321 (1961).

Kuehnel, J.

S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012).
[CrossRef]

Kuekes, P. J.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[CrossRef]

Kuno, M.

Y. H. Yu, P. V. Kamat, and M. Kuno, “A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance,” Adv. Funct. Mater. 20, 1464–1472 (2010).
[CrossRef]

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7, 2999–3006 (2007).
[CrossRef]

Kuno, M. K.

A. Khandelwal, D. Jena, J. W. Grebinski, K. L. Hull, and M. K. Kuno, “Ultrathin CdSe nanowire field-effect transistors,” J. Electron. Mater. 35, 170–172 (2006).
[CrossRef]

Kuykendall, T.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6, 951–956 (2007).
[CrossRef]

Kwok, W. M.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, “Influence of annealing on stimulated emission in ZnO nanorods,” Appl. Phys. Lett. 89, 183112 (2006).
[CrossRef]

Kwon, Y.

Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R 47, 1–47 (2004).
[CrossRef]

Lakhani, A.

LaRoche, J. R.

Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R 47, 1–47 (2004).
[CrossRef]

Lasher, G.

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phys. Lett. 1, 62–64 (1962).
[CrossRef]

Lassen, B.

Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004).
[CrossRef]

Lauhon, L. J.

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294, 1313–1317 (2001).
[CrossRef]

Law, M.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269–1273 (2004).
[CrossRef]

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4, 197–204 (2004).
[CrossRef]

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34, 83–122 (2004).
[CrossRef]

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. 15, 1907–1911 (2003).
[CrossRef]

H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, and P. D. Yang, “Dendritic nanowire ultraviolet laser array,” J. Am. Chem. Soc. 125, 4728–4729 (2003).
[CrossRef]

Lax, B.

T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett. 1, 91–92 (1962).
[CrossRef]

Le Kien, F.

Ledentsov, N. N.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

Lee, C. S.

Y. K. Liu, J. A. Zapien, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Wavelength-tunable lasing in single-crystal CdS1−xSex nanoribbons,” Nanotechnology 18, 365606 (2007).
[CrossRef]

J. A. Zapien, Y. K. Liu, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett. 90, 213114 (2007).
[CrossRef]

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons,” Adv. Mater. 17, 1372–1377 (2005).
[CrossRef]

Y. K. Liu, J. A. Zapien, C. Y. Geng, Y. Y. Shan, C. S. Lee, Y. Lifshitz, and S. T. Lee, “High-quality CdS nanoribbons with lasing cavity,” Appl. Phys. Lett. 85, 3241–3243 (2004).
[CrossRef]

Lee, L. P.

R. X. Yan, J.-H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. D. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[CrossRef]

Lee, S. T.

C. Y. Luan, Y. K. Liu, Y. Jiang, J. S. Jie, I. Bello, S. T. Lee, and J. A. Zapien, “Composition tuning of room-temperature nanolasers,” Vacuum 86, 737–741 (2012).
[CrossRef]

B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Wang, M. Niu, W. H. Zhang, Y. Q. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501–1506 (2007).
[CrossRef]

J. A. Zapien, Y. K. Liu, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett. 90, 213114 (2007).
[CrossRef]

Y. K. Liu, J. A. Zapien, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Wavelength-tunable lasing in single-crystal CdS1−xSex nanoribbons,” Nanotechnology 18, 365606 (2007).
[CrossRef]

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons,” Adv. Mater. 17, 1372–1377 (2005).
[CrossRef]

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84, 1189–1191 (2004).
[CrossRef]

Y. K. Liu, J. A. Zapien, C. Y. Geng, Y. Y. Shan, C. S. Lee, Y. Lifshitz, and S. T. Lee, “High-quality CdS nanoribbons with lasing cavity,” Appl. Phys. Lett. 85, 3241–3243 (2004).
[CrossRef]

J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, “Lasing in ZnS nanowires grown on anodic aluminum oxide templates,” Appl. Phys. Lett. 85, 2361–2363 (2004).
[CrossRef]

Lee, T.

M. Ding, P. F. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99, 051105 (2011).
[CrossRef]

Leone, S. R.

J. K. Song, J. M. Szarko, S. R. Leone, S. H. Li, and Y. P. Zhao, “Ultrafast wavelength-dependent lasing-time dynamics in single ZnO nanotetrapod and nanowire lasers,” J. Phys. Chem. B 109, 15749–15753 (2005).
[CrossRef]

Leong, E. S. P.

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[CrossRef]

Leroux, M.

Lester, L. F.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012).
[CrossRef]

Q. M. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20, 17873–17881 (2012).
[CrossRef]

Leung, Y. H.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, “Influence of annealing on stimulated emission in ZnO nanorods,” Appl. Phys. Lett. 89, 183112 (2006).
[CrossRef]

Li, B. H.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Li, D.

D. Li and C. Z. Ning, “Electrical injection in longitudinal and coaxial heterostructure nanowires: a comparative study through a three-dimensional simulation,” Nano Lett. 8, 4234–4237 (2008).
[CrossRef]

W. M. Kwok, A. B. Djurisic, Y. H. Leung, D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, “Influence of annealing on stimulated emission in ZnO nanorods,” Appl. Phys. Lett. 89, 183112 (2006).
[CrossRef]

Li, D. B.

R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011).
[CrossRef]

Li, D. H.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115, 12826–12830 (2011).
[CrossRef]

R. Chen, D. H. Li, B. Liu, Z. P. Peng, G. G. Gurzadyan, Q. H. Xiong, and H. D. Sun, “Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature,” Nano Lett. 10, 4956–4961 (2010).
[CrossRef]

Li, D. S.

Li, L.

S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[CrossRef]

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2, 168–187 (2010).
[CrossRef]

Li, Q.

P. C. Upadhya, Q. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol. 25, 024017 (2010).
[CrossRef]

Li, Q. M.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012).
[CrossRef]

Q. M. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20, 17873–17881 (2012).
[CrossRef]

Li, S. H.

J. K. Song, J. M. Szarko, S. R. Leone, S. H. Li, and Y. P. Zhao, “Ultrafast wavelength-dependent lasing-time dynamics in single ZnO nanotetrapod and nanowire lasers,” J. Phys. Chem. B 109, 15749–15753 (2005).
[CrossRef]

Li, X.

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7, 2999–3006 (2007).
[CrossRef]

Li, X. H.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[CrossRef]

Li, X. Y.

Y. G. Ma, X. Y. Li, Z. Y. Yang, H. K. Yu, P. Wang, and L. M. Tong, “Pigtailed CdS nanoribbon ring laser,” Appl. Phys. Lett. 97, 153122 (2010).
[CrossRef]

Li, Y.

Y. Li and L. Tong, “Mach–Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33, 303–305 (2008).
[CrossRef]

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[CrossRef]

H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, “Microstadium single-nanowire laser,” Appl. Phys. Lett. 91, 251115 (2007).
[CrossRef]

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87, 151103 (2005).
[CrossRef]

Li, Y. B.

Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20, 045501 (2009).
[CrossRef]

Li, Y. H.

Li, Y. Q.

B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Wang, M. Niu, W. H. Zhang, Y. Q. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501–1506 (2007).
[CrossRef]

Li, Z.

Y. Ye, Y. G. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. M. Tong, and G. G. Qin, “Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method,” Nanoscale 3, 3072–3075 (2011).
[CrossRef]

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Perot cavity,” Nano Lett. 9, 2697–2703 (2009).
[CrossRef]

Li, Z. H.

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[CrossRef]

Liang, B. L.

A. C. Scofield, J. N. Shapiro, A. Lin, A. D. Williams, P.-S. Wong, B. L. Liang, and D. L. Huffaker, “Bottom up photonic crystal cavities formed by patterned III–V nanopillars,” Nano Lett. 11, 2242–2246 (2011).
[CrossRef]

Liang, C. H.

J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays,” J. Chem. Phys. 115, 5714–5717 (2001).
[CrossRef]

Liao, C. S.

L. D. Sun, C. H. Liu, C. S. Liao, and C. H. Yan, “ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution,” J. Mater. Chem. 9, 1655–1657 (1999).
[CrossRef]

Liao, M. Y.

X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009).
[CrossRef]

Lieber, C. M.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[CrossRef]

W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,” Nat. Mater. 6, 841–850 (2007).
[CrossRef]

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32, 99–108 (2007).
[CrossRef]

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6, 11–15 (2006).
[CrossRef]

P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber, “General synthesis of manganese-doped II-VI and III-V semiconductor nanowires,” Nano Lett. 5, 1407–1411 (2005).
[CrossRef]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87, 151103 (2005).
[CrossRef]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917–920 (2005).
[CrossRef]

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[CrossRef]

C. M. Lieber, “Nanoscale science and technology: building a big future from small things,” MRS Bull. 28, 486–491 (2003).
[CrossRef]

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[CrossRef]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294, 1313–1317 (2001).
[CrossRef]

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef]

X. F. Duan and C. M. Lieber, “Laser-assisted catalytic growth of single crystal GaN nanowires,” J. Am. Chem. Soc. 122, 188–189 (2000).
[CrossRef]

Y. Cui, X. F. Duan, J. T. Hu, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” J. Phys. Chem. B 104, 5213–5216 (2000).
[CrossRef]

X. F. Duan and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12, 298–302 (2000).
[CrossRef]

A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208–211 (1998).
[CrossRef]

P. D. Yang and C. M. Lieber, “Nanorod-superconductor composites: a pathway to materials with high critical current densities,” Science 273, 1836–1840 (1996).
[CrossRef]

Lifshitz, Y.

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84, 1189–1191 (2004).
[CrossRef]

J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, “Lasing in ZnS nanowires grown on anodic aluminum oxide templates,” Appl. Phys. Lett. 85, 2361–2363 (2004).
[CrossRef]

Y. K. Liu, J. A. Zapien, C. Y. Geng, Y. Y. Shan, C. S. Lee, Y. Lifshitz, and S. T. Lee, “High-quality CdS nanoribbons with lasing cavity,” Appl. Phys. Lett. 85, 3241–3243 (2004).
[CrossRef]

Lin, A.

A. C. Scofield, J. N. Shapiro, A. Lin, A. D. Williams, P.-S. Wong, B. L. Liang, and D. L. Huffaker, “Bottom up photonic crystal cavities formed by patterned III–V nanopillars,” Nano Lett. 11, 2242–2246 (2011).
[CrossRef]

Lin, J. Y.

H. Pan, G. C. Xing, Z. H. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Y. Lin, and Z. X. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105 (2007).
[CrossRef]

Lin, M. E.

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor-device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

Lin, P. I.

R. Venugopal, P. I. Lin, C. C. Liu, and Y. T. Chen, “Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127, 11262–11268 (2005).
[CrossRef]

Lin, Y. Q.

S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[CrossRef]

Lincot, D.

T. Pauporte, D. Lincot, B. Viana, and F. Pelle, “Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition,” Appl. Phys. Lett. 89, 233112 (2006).
[CrossRef]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

Liu, B.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115, 12826–12830 (2011).
[CrossRef]

R. Chen, D. H. Li, B. Liu, Z. P. Peng, G. G. Gurzadyan, Q. H. Xiong, and H. D. Sun, “Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature,” Nano Lett. 10, 4956–4961 (2010).
[CrossRef]

Liu, C.

C. Liu, P. C. Wu, T. Sun, L. Dai, Y. Ye, R. M. Ma, and G. G. Qin, “Synthesis of high quality n-type cdse nanobelts and their applications in nanodevices,” J. Phys. Chem. C 113, 14478–14481 (2009).
[CrossRef]

Liu, C. C.

R. Venugopal, P. I. Lin, C. C. Liu, and Y. T. Chen, “Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127, 11262–11268 (2005).
[CrossRef]

Liu, C. H.

L. D. Sun, C. H. Liu, C. S. Liao, and C. H. Yan, “ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution,” J. Mater. Chem. 9, 1655–1657 (1999).
[CrossRef]

Liu, C. Y.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[CrossRef]

Liu, J. L.

S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[CrossRef]

S. Chu, M. Olmedo, Z. Yang, J. Y. Kong, and J. L. Liu, “Electrically pumped ultraviolet ZnO diode lasers on Si,” Appl. Phys. Lett. 93, 181106 (2008).
[CrossRef]

Liu, L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef]

Liu, R. B.

R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011).
[CrossRef]

A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4, 671–680 (2010).
[CrossRef]

A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum,” J. Am. Chem. Soc. 131, 9502–9503 (2009).
[CrossRef]

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[CrossRef]

A. L. Pan, R. B. Liu, Q. L. Zhang, Q. Wan, P. B. He, M. Zacharias, and B. S. Zou, “Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts,” J. Phys. Chem. C 111, 14253–14256 (2007).
[CrossRef]

A. L. Pan, R. B. Liu, F. F. Wang, S. S. Xie, B. S. Zou, M. Zacharias, and Z. L. Wang, “High-quality alloyed CdSxSe1−x whiskers as waveguides with tunable stimulated emission,” J. Phys. Chem. B 110, 22313–22317 (2006).
[CrossRef]

B. S. Zou, R. B. Liu, F. F. Wang, A. L. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110, 12865–12873 (2006).
[CrossRef]

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc. 127, 15692–15693 (2005).
[CrossRef]

A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, G. Z. Yang, B. S. Zou, and K. Q. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268–24272 (2005).
[CrossRef]

Liu, S. F.

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Perot cavity,” Nano Lett. 9, 2697–2703 (2009).
[CrossRef]

Liu, X.

Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004).
[CrossRef]

Liu, X. Y.

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4, 2843–2846 (2012).
[CrossRef]

Liu, Y. C.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[CrossRef]

Liu, Y. K.

C. Y. Luan, Y. K. Liu, Y. Jiang, J. S. Jie, I. Bello, S. T. Lee, and J. A. Zapien, “Composition tuning of room-temperature nanolasers,” Vacuum 86, 737–741 (2012).
[CrossRef]

J. A. Zapien, Y. K. Liu, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett. 90, 213114 (2007).
[CrossRef]

Y. K. Liu, J. A. Zapien, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Wavelength-tunable lasing in single-crystal CdS1−xSex nanoribbons,” Nanotechnology 18, 365606 (2007).
[CrossRef]

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons,” Adv. Mater. 17, 1372–1377 (2005).
[CrossRef]

Y. K. Liu, J. A. Zapien, C. Y. Geng, Y. Y. Shan, C. S. Lee, Y. Lifshitz, and S. T. Lee, “High-quality CdS nanoribbons with lasing cavity,” Appl. Phys. Lett. 85, 3241–3243 (2004).
[CrossRef]

Loncar, M.

Y. N. Zhang and M. Loncar, “Submicrometer diameter micropillar cavities with high quality factor and ultrasmall mode volume,” Opt. Lett. 34, 902–904 (2009).
[CrossRef]

Y. N. Zhang and M. Loncar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16, 17400–17409 (2008).
[CrossRef]

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6, 11–15 (2006).
[CrossRef]

M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[CrossRef]

Lorenz, M.

C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zuniga-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010).
[CrossRef]

C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, “Whispering gallery mode lasing in zinc oxide microwires,” Appl. Phys. Lett. 92, 241102 (2008).
[CrossRef]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[CrossRef]

Lou, J. Y.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[CrossRef]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer, 2000).

Lu, J.

X. Jiang, Y. Xie, J. Lu, L. Y. Zhu, W. He, and Y. T. Qian, “Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by gamma-irradiation,” Chem. Mater. 13, 1213–1218 (2001).
[CrossRef]

Lu, M. Y.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Lu, S. Y.

Y. J. Hsu and S. Y. Lu, “Low temperature growth and dimension-dependent photoluminescence efficiency of semiconductor nanowires,” Appl. Phys. A 81, 573–578 (2005).
[CrossRef]

Lu, W.

W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,” Nat. Mater. 6, 841–850 (2007).
[CrossRef]

Lu, Y. J.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Lu, Z. H.

J. Schaefer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8, 1709–1712 (2008).
[CrossRef]

Luan, C. Y.

C. Y. Luan, Y. K. Liu, Y. Jiang, J. S. Jie, I. Bello, S. T. Lee, and J. A. Zapien, “Composition tuning of room-temperature nanolasers,” Vacuum 86, 737–741 (2012).
[CrossRef]

Luk, T. S.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012).
[CrossRef]

Q. M. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20, 17873–17881 (2012).
[CrossRef]

Lundgren, E.

T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
[CrossRef]

Lv, C. G.

J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering gallery-mode lasing in ZnO microrods at room temperature,” Appl. Phys. Lett. 95, 241110 (2009).
[CrossRef]

Ma, J. G.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[CrossRef]

Ma, L.

J. Y. Xu, L. Ma, P. F. Guo, X. J. Zhuang, X. L. Zhu, W. Hu, X. F. Duan, and A. L. Pan, “Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures,” J. Am. Chem. Soc. 134, 12394–12397 (2012).
[CrossRef]

Ma, R. M.

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7, 1–21 (2013).
[CrossRef]

C. Liu, P. C. Wu, T. Sun, L. Dai, Y. Ye, R. M. Ma, and G. G. Qin, “Synthesis of high quality n-type cdse nanobelts and their applications in nanodevices,” J. Phys. Chem. C 113, 14478–14481 (2009).
[CrossRef]

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Perot cavity,” Nano Lett. 9, 2697–2703 (2009).
[CrossRef]

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Oin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett. 7, 3300–3304 (2007).
[CrossRef]

Ma, R.-M.

R.-M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12, 5396–5402 (2012).
[CrossRef]

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Ma, X. Y.

Ma, Y. G.

Y. Ye, Y. G. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. M. Tong, and G. G. Qin, “Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method,” Nanoscale 3, 3072–3075 (2011).
[CrossRef]

Y. G. Ma, X. Y. Li, Z. Y. Yang, H. K. Yu, P. Wang, and L. M. Tong, “Pigtailed CdS nanoribbon ring laser,” Appl. Phys. Lett. 97, 153122 (2010).
[CrossRef]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Hang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[CrossRef]

Ma, Z.

Magde, D.

D. Magde and H. Mahr, “Exciton-exciton interaction in CdS, CdSe, and ZnO,” Phys. Rev. Lett. 24, 890–893 (1970).
[CrossRef]

Magnusson, M. H.

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers,” Appl. Phys. Lett. 80, 1058–1060 (2002).
[CrossRef]

Mahr, H.

D. Magde and H. Mahr, “Exciton-exciton interaction in CdS, CdSe, and ZnO,” Phys. Rev. Lett. 24, 890–893 (1970).
[CrossRef]

Maleki, L.

Mao, S.

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Mao, S. S.

Y. F. Zhang, R. E. Russo, and S. S. Mao, “Quantum efficiency of ZnO nanowire nanolasers,” Appl. Phys. Lett. 87, 043106 (2005).
[CrossRef]

S. S. Mao, “Nanolasers: lasing from nanoscale quantum wires,” Int. J. Nanotechnology 1, 42–85 (2004).

Martensson, T.

T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
[CrossRef]

J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, “Structural properties of (111)B-oriented III-V nanowires,” Nat. Mater. 5, 574–580 (2006).
[CrossRef]

Maslov, A. V.

A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 64680I (2007).
[CrossRef]

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[CrossRef]

A. V. Maslov and C. Z. Ning, “Far-field emission of a semiconductor nanowire laser,” Opt. Lett. 29, 572–574 (2004).
[CrossRef]

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237–1239 (2003).
[CrossRef]

Masumoto, Y.

K. Bando, T. Sawabe, K. Asaka, and Y. Masumoto, “Room-temperature excitonic lasing from ZnO single nanobelts,” J. Lumin. 108, 385–388 (2004).
[CrossRef]

Maximov, M. V.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Mayers, B.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Mazur, E.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

McDonnell, A.

S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012).
[CrossRef]

McIlwrath, K.

H. L. Peng, C. Xie, D. T. Schoen, K. McIlwrath, X. F. Zhang, and Y. Cui, “Ordered vacancy compounds and nanotube formation in CulnSe(2)-CdS core-shell nanowires,” Nano Lett. 7, 3734–3738 (2007).
[CrossRef]

McKinney, J. R.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. 15, 1907–1911 (2003).
[CrossRef]

McWhorter, A. L.

T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett. 1, 91–92 (1962).
[CrossRef]

Meng, C.

Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99, 023109 (2011).
[CrossRef]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[CrossRef]

Meng, H.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011).
[CrossRef]

Y. Ye, Y. G. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. M. Tong, and G. G. Qin, “Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method,” Nanoscale 3, 3072–3075 (2011).
[CrossRef]

Meng, X. M.

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84, 1189–1191 (2004).
[CrossRef]

J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, “Lasing in ZnS nanowires grown on anodic aluminum oxide templates,” Appl. Phys. Lett. 85, 2361–2363 (2004).
[CrossRef]

Meyyappan, M.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[CrossRef]

Mikkelsen, A.

T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Milne, W. I.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

Miyazaki, H. T.

Mondia, J. P.

J. Schaefer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8, 1709–1712 (2008).
[CrossRef]

Moore, D.

D. Moore and Z. L. Wang, “Growth of anisotropic one-dimensional ZnS nanostructures,” J. Mater. Chem. 16, 3898–3905 (2006).
[CrossRef]

Morales, A. M.

A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208–211 (1998).
[CrossRef]

Morkoc, H.

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor-device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

Morris, N.

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[CrossRef]

Motohisa, J.

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[CrossRef]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7, 3598–3602 (2007).
[CrossRef]

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91, 131112 (2007).
[CrossRef]

J. Noborisaka, J. Motohisa, and T. Fukui, “Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy,” Appl. Phys. Lett. 86, 213102 (2005).
[CrossRef]

Mu, R.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[CrossRef]

Mueller, S.

M. A. Zimmler, F. Capasso, S. Mueller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25, 024001 (2010).
[CrossRef]

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[CrossRef]

Mukai, T.

S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light-emitting-diodes,” Appl. Phys. Lett. 62, 2390–2392 (1993).
[CrossRef]

Myoung, J. M.

M. C. Jeong, B. Y. Oh, M. H. Ham, and J. M. Myoung, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes,” Appl. Phys. Lett. 88, 202105 (2006).
[CrossRef]

Nakajima, K.

Nakamura, S.

S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light-emitting-diodes,” Appl. Phys. Lett. 62, 2390–2392 (1993).
[CrossRef]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

Namdas, E. B.

I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3, 546–549 (2009).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Nathan, M. I.

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phys. Lett. 1, 62–64 (1962).
[CrossRef]

Nayak, K. P.

Ni, Z. H.

H. Pan, G. C. Xing, Z. H. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Y. Lin, and Z. X. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105 (2007).
[CrossRef]

Nicoll, F. H.

F. H. Nicoll, “Ultraviolet ZnO laser pumped by an electron beam,” Appl. Phys. Lett. 9, 13–16 (1966).
[CrossRef]

Ning, C. Z.

R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011).
[CrossRef]

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).

A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4, 671–680 (2010).
[CrossRef]

A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum,” J. Am. Chem. Soc. 131, 9502–9503 (2009).
[CrossRef]

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[CrossRef]

D. Li and C. Z. Ning, “Electrical injection in longitudinal and coaxial heterostructure nanowires: a comparative study through a three-dimensional simulation,” Nano Lett. 8, 4234–4237 (2008).
[CrossRef]

A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 64680I (2007).
[CrossRef]

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[CrossRef]

A. V. Maslov and C. Z. Ning, “Far-field emission of a semiconductor nanowire laser,” Opt. Lett. 29, 572–574 (2004).
[CrossRef]

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237–1239 (2003).
[CrossRef]

Niu, M.

B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Wang, M. Niu, W. H. Zhang, Y. Q. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501–1506 (2007).
[CrossRef]

Nobis, T.

C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zuniga-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010).
[CrossRef]

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
[CrossRef]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[CrossRef]

Noborisaka, J.

J. Noborisaka, J. Motohisa, and T. Fukui, “Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy,” Appl. Phys. Lett. 86, 213102 (2005).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Norton, D. P.

Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R 47, 1–47 (2004).
[CrossRef]

Odom, T. W.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12, 5769–5774 (2012).
[CrossRef]

Oh, B. Y.

M. C. Jeong, B. Y. Oh, M. H. Ham, and J. M. Myoung, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes,” Appl. Phys. Lett. 88, 202105 (2006).
[CrossRef]

Ohlsson, B. J.

T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers,” Appl. Phys. Lett. 80, 1058–1060 (2002).
[CrossRef]

Oin, G. G.

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Oin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett. 7, 3300–3304 (2007).
[CrossRef]

Olmedo, M.

S. Chu, M. Olmedo, Z. Yang, J. Y. Kong, and J. L. Liu, “Electrically pumped ultraviolet ZnO diode lasers on Si,” Appl. Phys. Lett. 93, 181106 (2008).
[CrossRef]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

Oulton, R. F.

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7, 1–21 (2013).
[CrossRef]

R.-M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12, 5396–5402 (2012).
[CrossRef]

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Pan, A.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133, 2037–2039 (2011).
[CrossRef]

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett. 11, 5085–5089 (2011).
[CrossRef]

Pan, A. L.

J. Y. Xu, L. Ma, P. F. Guo, X. J. Zhuang, X. L. Zhu, W. Hu, X. F. Duan, and A. L. Pan, “Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures,” J. Am. Chem. Soc. 134, 12394–12397 (2012).
[CrossRef]

R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011).
[CrossRef]

A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4, 671–680 (2010).
[CrossRef]

A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum,” J. Am. Chem. Soc. 131, 9502–9503 (2009).
[CrossRef]

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[CrossRef]

A. L. Pan, R. B. Liu, Q. L. Zhang, Q. Wan, P. B. He, M. Zacharias, and B. S. Zou, “Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts,” J. Phys. Chem. C 111, 14253–14256 (2007).
[CrossRef]

A. L. Pan, R. B. Liu, F. F. Wang, S. S. Xie, B. S. Zou, M. Zacharias, and Z. L. Wang, “High-quality alloyed CdSxSe1−x whiskers as waveguides with tunable stimulated emission,” J. Phys. Chem. B 110, 22313–22317 (2006).
[CrossRef]

B. S. Zou, R. B. Liu, F. F. Wang, A. L. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110, 12865–12873 (2006).
[CrossRef]

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc. 127, 15692–15693 (2005).
[CrossRef]

A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, G. Z. Yang, B. S. Zou, and K. Q. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268–24272 (2005).
[CrossRef]

Pan, H.

H. Pan, G. C. Xing, Z. H. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Y. Lin, and Z. X. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105 (2007).
[CrossRef]

Pan, J. W.

Pan, L.

L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
[CrossRef]

Park, H. G.

H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, “Microstadium single-nanowire laser,” Appl. Phys. Lett. 91, 251115 (2007).
[CrossRef]

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6, 11–15 (2006).
[CrossRef]

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

Park, H. K.

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[CrossRef]

Park, H.-G.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[CrossRef]

Park, J.-H.

R. X. Yan, J.-H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. D. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[CrossRef]

Pauporte, T.

T. Pauporte, D. Lincot, B. Viana, and F. Pelle, “Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition,” Appl. Phys. Lett. 89, 233112 (2006).
[CrossRef]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef]

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[CrossRef]

Pearton, S. J.

Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R 47, 1–47 (2004).
[CrossRef]

Pelle, F.

T. Pauporte, D. Lincot, B. Viana, and F. Pelle, “Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition,” Appl. Phys. Lett. 89, 233112 (2006).
[CrossRef]

Peng, H. L.

H. L. Peng, C. Xie, D. T. Schoen, K. McIlwrath, X. F. Zhang, and Y. Cui, “Ordered vacancy compounds and nanotube formation in CulnSe(2)-CdS core-shell nanowires,” Nano Lett. 7, 3734–3738 (2007).
[CrossRef]

Peng, L. H.

C. Y. Chen, G. Zhu, Y. F. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. L. Chou, and Z. L. Wang, “Gallium nitride nanowire based nanogenerators and light-emitting diodes,” ACS Nano 6, 5687–5692 (2012).
[CrossRef]

Peng, X. S.

J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays,” J. Chem. Phys. 115, 5714–5717 (2001).
[CrossRef]

Peng, Z. P.

R. Chen, D. H. Li, B. Liu, Z. P. Peng, G. G. Gurzadyan, Q. H. Xiong, and H. D. Sun, “Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature,” Nano Lett. 10, 4956–4961 (2010).
[CrossRef]

Persson, A. I.

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers,” Appl. Phys. Lett. 80, 1058–1060 (2002).
[CrossRef]

Pham, J.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. 15, 1907–1911 (2003).
[CrossRef]

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[CrossRef]

Phillips, D. L.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, “Influence of annealing on stimulated emission in ZnO nanorods,” Appl. Phys. Lett. 89, 183112 (2006).
[CrossRef]

Piccione, B.

L. K. van Vugt, B. Piccione, C.-H. Cho, C. Aspetti, A. D. Wirshba, and R. Agarwal, “Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities,” J. Phys. Chem. A 115, 3827–3833 (2011).
[CrossRef]

B. Piccione, L. K. van Vugt, and R. Agarwal, “Propagation loss spectroscopy on single nanowire active waveguides,” Nano Lett. 10, 2251–2256 (2010).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Pisana, S.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

Popov, Y. M.

N. G. Basov, O. N. Krokhin, and Y. M. Popov, “Production of negative-temperature states in p‐n junctions of degenerate semiconductors,” Sov. Phys. JETP 13, 1320–1321 (1961).

Popovitz-Biro, R.

H. Shtrikman, R. Popovitz-Biro, A. Kretinin, and M. Heiblumf, “Stacking-faults-free zinc blende GaAs nanowires,” Nano Lett. 9, 215–219 (2009).
[CrossRef]

Prasankumar, R. P.

P. C. Upadhya, Q. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol. 25, 024017 (2010).
[CrossRef]

Prasanth, R.

R. Prasanth, L. K. Van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

Prinz, G. M.

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

Protasenko, V.

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7, 2999–3006 (2007).
[CrossRef]

Qian, F.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[CrossRef]

H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, “Microstadium single-nanowire laser,” Appl. Phys. Lett. 91, 251115 (2007).
[CrossRef]

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber, “General synthesis of manganese-doped II-VI and III-V semiconductor nanowires,” Nano Lett. 5, 1407–1411 (2005).
[CrossRef]

Qian, Y. T.

X. Jiang, Y. Xie, J. Lu, L. Y. Zhu, W. He, and Y. T. Qian, “Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by gamma-irradiation,” Chem. Mater. 13, 1213–1218 (2001).
[CrossRef]

Qin, G. G.

Y. Ye, Y. G. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. M. Tong, and G. G. Qin, “Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method,” Nanoscale 3, 3072–3075 (2011).
[CrossRef]

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011).
[CrossRef]

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Perot cavity,” Nano Lett. 9, 2697–2703 (2009).
[CrossRef]

C. Liu, P. C. Wu, T. Sun, L. Dai, Y. Ye, R. M. Ma, and G. G. Qin, “Synthesis of high quality n-type cdse nanobelts and their applications in nanodevices,” J. Phys. Chem. C 113, 14478–14481 (2009).
[CrossRef]

Qiu, M.

S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17, 10881–10886 (2009).
[CrossRef]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Hang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[CrossRef]

S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, “Modeling endface output patterns of optical micro/nanofibers,” Opt. Express 16, 8887–8895 (2008).
[CrossRef]

Qiu, X. G.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Qiu, Y. M.

M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[CrossRef]

Quist, T. M.

T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett. 1, 91–92 (1962).
[CrossRef]

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

Radovanovic, P. V.

P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber, “General synthesis of manganese-doped II-VI and III-V semiconductor nanowires,” Nano Lett. 5, 1407–1411 (2005).
[CrossRef]

Rahm, A.

C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zuniga-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010).
[CrossRef]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[CrossRef]

Rediker, R. H.

T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett. 1, 91–92 (1962).
[CrossRef]

Redkin, A. N.

A. N. Gruzintsev, G. A. Emelchenko, A. N. Redkin, W. T. Volkov, E. E. Yakimov, and G. Visimberga, “Mode structure of laser emission from ZnO Nanorods with one metal mirror,” Semiconductors 44, 1235–1240 (2010).
[CrossRef]

Redwing, J. M.

Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004).
[CrossRef]

Reiser, A.

J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008).
[CrossRef]

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

Reithmaier, J. P.

Ren, F.

Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R 47, 1–47 (2004).
[CrossRef]

Ren, J. J.

S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[CrossRef]

Rezek, E. A.

R. D. Dupuis, P. D. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin, “Room-temperature laser operation of quantum-well Ga(1-x)AlxAs-GaAs laser-diodes grown by organometalluic chemical vapor-deposition,” Appl. Phys. Lett. 32, 295–297 (1978).
[CrossRef]

Richter, U.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

Robertson, J.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

Roeder, R.

S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012).
[CrossRef]

Roeder, T.

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

Roedl, C.

A. Schleife, C. Roedl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[CrossRef]

Roest, A. L.

L. K. van Vugt, S. J. Veen, E. Bakkers, A. L. Roest, and D. Vanmaekelbergh, “Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation,” J. Am. Chem. Soc. 127, 12357–12362 (2005).
[CrossRef]

Rogach, A. L.

J. Schaefer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8, 1709–1712 (2008).
[CrossRef]

Ronning, C.

S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012).
[CrossRef]

M. A. Zimmler, F. Capasso, S. Mueller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25, 024001 (2010).
[CrossRef]

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[CrossRef]

Roshko, A.

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109, 044312 (2011).
[CrossRef]

Ruhle, S.

L. K. van Vugt, S. Ruhle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6, 2707–2711 (2006).
[CrossRef]

Russo, R.

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Russo, R. E.

Y. F. Zhang, R. E. Russo, and S. S. Mao, “Quantum efficiency of ZnO nanowire nanolasers,” Appl. Phys. Lett. 87, 043106 (2005).
[CrossRef]

Ruvimov, S. S.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

Samuel, I. D. W.

I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3, 546–549 (2009).
[CrossRef]

Samuelson, L.

T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
[CrossRef]

J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, “Structural properties of (111)B-oriented III-V nanowires,” Nat. Mater. 5, 574–580 (2006).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers,” Appl. Phys. Lett. 80, 1058–1060 (2002).
[CrossRef]

Sanders, C. E.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Sanford, N. A.

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109, 044312 (2011).
[CrossRef]

Sass, T.

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers,” Appl. Phys. Lett. 80, 1058–1060 (2002).
[CrossRef]

Sauer, R.

J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008).
[CrossRef]

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

Sawabe, T.

K. Bando, T. Sawabe, K. Asaka, and Y. Masumoto, “Room-temperature excitonic lasing from ZnO single nanobelts,” J. Lumin. 108, 385–388 (2004).
[CrossRef]

Saykally, R.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. 15, 1907–1911 (2003).
[CrossRef]

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[CrossRef]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4, 197–204 (2004).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269–1273 (2004).
[CrossRef]

H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, and P. D. Yang, “Dendritic nanowire ultraviolet laser array,” J. Am. Chem. Soc. 125, 4728–4729 (2003).
[CrossRef]

J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
[CrossRef]

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
[CrossRef]

Schaefer, J.

J. Schaefer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8, 1709–1712 (2008).
[CrossRef]

Schaller, R. D.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
[CrossRef]

Scherer, A.

M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[CrossRef]

Schirra, M.

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

Schlager, J. B.

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109, 044312 (2011).
[CrossRef]

Schleife, A.

A. Schleife, C. Roedl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[CrossRef]

Schmidt-Grund, R.

C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zuniga-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010).
[CrossRef]

C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, “Whispering gallery mode lasing in zinc oxide microwires,” Appl. Phys. Lett. 92, 241102 (2008).
[CrossRef]

Schoen, D. T.

H. L. Peng, C. Xie, D. T. Schoen, K. McIlwrath, X. F. Zhang, and Y. Cui, “Ordered vacancy compounds and nanotube formation in CulnSe(2)-CdS core-shell nanowires,” Nano Lett. 7, 3734–3738 (2007).
[CrossRef]

Schreck, M.

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

Scofield, A. C.

A. C. Scofield, J. N. Shapiro, A. Lin, A. D. Williams, P.-S. Wong, B. L. Liang, and D. L. Huffaker, “Bottom up photonic crystal cavities formed by patterned III–V nanopillars,” Nano Lett. 11, 2242–2246 (2011).
[CrossRef]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Seifert, W.

T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
[CrossRef]

J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, “Structural properties of (111)B-oriented III-V nanowires,” Nat. Mater. 5, 574–580 (2006).
[CrossRef]

Senoh, M.

S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light-emitting-diodes,” Appl. Phys. Lett. 62, 2390–2392 (1993).
[CrossRef]

Servati, P.

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Shan, C. X.

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4, 2843–2846 (2012).
[CrossRef]

Shan, Y. Y.

Y. K. Liu, J. A. Zapien, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Wavelength-tunable lasing in single-crystal CdS1−xSex nanoribbons,” Nanotechnology 18, 365606 (2007).
[CrossRef]

J. A. Zapien, Y. K. Liu, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett. 90, 213114 (2007).
[CrossRef]

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons,” Adv. Mater. 17, 1372–1377 (2005).
[CrossRef]

Y. K. Liu, J. A. Zapien, C. Y. Geng, Y. Y. Shan, C. S. Lee, Y. Lifshitz, and S. T. Lee, “High-quality CdS nanoribbons with lasing cavity,” Appl. Phys. Lett. 85, 3241–3243 (2004).
[CrossRef]

Shapiro, J. N.

A. C. Scofield, J. N. Shapiro, A. Lin, A. D. Williams, P.-S. Wong, B. L. Liang, and D. L. Huffaker, “Bottom up photonic crystal cavities formed by patterned III–V nanopillars,” Nano Lett. 11, 2242–2246 (2011).
[CrossRef]

Sharma, R.

J. Schaefer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8, 1709–1712 (2008).
[CrossRef]

Shen, D. Z.

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4, 2843–2846 (2012).
[CrossRef]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230–2232 (1997).
[CrossRef]

Shen, Z. X.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115, 12826–12830 (2011).
[CrossRef]

H. Pan, G. C. Xing, Z. H. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Y. Lin, and Z. X. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105 (2007).
[CrossRef]

Shi, Y.

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96, 075505 (2006).

Shi, Z. j.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011).
[CrossRef]

Shi, Z. L.

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[CrossRef]

Shih, C.-K.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Shtrikman, H.

H. Shtrikman, R. Popovitz-Biro, A. Kretinin, and M. Heiblumf, “Stacking-faults-free zinc blende GaAs nanowires,” Nano Lett. 9, 215–219 (2009).
[CrossRef]

Shvets, G.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Simonnet, M.

Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20, 045501 (2009).
[CrossRef]

Singh, A.

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7, 2999–3006 (2007).
[CrossRef]

Sirbuly, D. J.

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269–1273 (2004).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Sivakov, V.

V. Sivakov, G. Andrae, C. Himcinschi, U. Goesele, D. R. T. Zahn, and S. Christiansen, “Growth peculiarities during vapor-liquid-solid growth of silicon nanowhiskers by electron-beam evaporation,” Appl. Phys. A 85, 311–315 (2006).
[CrossRef]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Snider, G. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer, 2000).

Soltys, T. J.

R. N. Hall, R. O. Carlson, T. J. Soltys, G. E. Fenner, and J. D. Kingsley, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9, 366–368 (1962).
[CrossRef]

Song, J.

C. Y. Chen, G. Zhu, Y. F. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. L. Chou, and Z. L. Wang, “Gallium nitride nanowire based nanogenerators and light-emitting diodes,” ACS Nano 6, 5687–5692 (2012).
[CrossRef]

Song, J. K.

J. K. Song, J. M. Szarko, S. R. Leone, S. H. Li, and Y. P. Zhao, “Ultrafast wavelength-dependent lasing-time dynamics in single ZnO nanotetrapod and nanowire lasers,” J. Phys. Chem. B 109, 15749–15753 (2005).
[CrossRef]

Sorger, V. J.

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7, 1–21 (2013).
[CrossRef]

R.-M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12, 5396–5402 (2012).
[CrossRef]

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

Stangl, J.

T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
[CrossRef]

Stelzl, F.

J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008).
[CrossRef]

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Strite, S.

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor-device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

Stritzker, B.

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

Sturm, C.

C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zuniga-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010).
[CrossRef]

C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, “Whispering gallery mode lasing in zinc oxide microwires,” Appl. Phys. Lett. 92, 241102 (2008).
[CrossRef]

Sugimoto, Y.

Suh, J. Y.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12, 5769–5774 (2012).
[CrossRef]

Sumetsky, M.

Sun, H. D.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115, 12826–12830 (2011).
[CrossRef]

R. Chen, D. H. Li, B. Liu, Z. P. Peng, G. G. Gurzadyan, Q. H. Xiong, and H. D. Sun, “Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature,” Nano Lett. 10, 4956–4961 (2010).
[CrossRef]

Sun, L. D.

L. D. Sun, C. H. Liu, C. S. Liao, and C. H. Yan, “ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution,” J. Mater. Chem. 9, 1655–1657 (1999).
[CrossRef]

Sun, M. H.

A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4, 671–680 (2010).
[CrossRef]

A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum,” J. Am. Chem. Soc. 131, 9502–9503 (2009).
[CrossRef]

Sun, Q.

Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, “Vacancy-induced magnetism in ZnO thin films and nanowires,” Phys. Rev. B 77, 205411 (2008).
[CrossRef]

Sun, T.

C. Liu, P. C. Wu, T. Sun, L. Dai, Y. Ye, R. M. Ma, and G. G. Qin, “Synthesis of high quality n-type cdse nanobelts and their applications in nanodevices,” J. Phys. Chem. C 113, 14478–14481 (2009).
[CrossRef]

Sun, X.

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6, 1808–1811 (2006).
[CrossRef]

Sun, X. W.

J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities,” Appl. Phys. Lett. 98, 161110 (2011).
[CrossRef]

J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Response to “Comment on ‘Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities’”,” Appl. Phys. Lett. 99, 136102 (2011).
[CrossRef]

C. X. Xu, X. W. Sun, C. Yuen, B. J. Chen, S. F. Yu, and Z. L. Dong, “Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers,” Appl. Phys. Lett. 86, 011118 (2005).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Sun, Y. G.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Sunkara, M. K.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[CrossRef]

Sunter, K. A.

S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012).
[CrossRef]

Susha, A. S.

J. Schaefer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8, 1709–1712 (2008).
[CrossRef]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Svensson, C. P. T.

J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, “Structural properties of (111)B-oriented III-V nanowires,” Nat. Mater. 5, 574–580 (2006).
[CrossRef]

Sverdlov, B.

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor-device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

Szarko, J. M.

J. K. Song, J. M. Szarko, S. R. Leone, S. H. Li, and Y. P. Zhao, “Ultrafast wavelength-dependent lasing-time dynamics in single ZnO nanotetrapod and nanowire lasers,” J. Phys. Chem. B 109, 15749–15753 (2005).
[CrossRef]

Tam, K. H.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, “Influence of annealing on stimulated emission in ZnO nanorods,” Appl. Phys. Lett. 89, 183112 (2006).
[CrossRef]

Tang, H.

J. A. Zapien, Y. K. Liu, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett. 90, 213114 (2007).
[CrossRef]

Y. K. Liu, J. A. Zapien, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Wavelength-tunable lasing in single-crystal CdS1−xSex nanoribbons,” Nanotechnology 18, 365606 (2007).
[CrossRef]

Tang, Z.

H. Pan, G. C. Xing, Z. H. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Y. Lin, and Z. X. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105 (2007).
[CrossRef]

Taylor, A. J.

P. C. Upadhya, Q. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol. 25, 024017 (2010).
[CrossRef]

Thelander, C.

T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers,” Appl. Phys. Lett. 80, 1058–1060 (2002).
[CrossRef]

Thielmann, A.

S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012).
[CrossRef]

Thomas, D. G.

D. G. Thomas and J. J. Hopfield, “Optical properties of bound exciton complexes in cadmium sulfide,” Phys. Rev. 128, 2135–2148 (1962).
[CrossRef]

Thonke, K.

J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008).
[CrossRef]

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

Tien, L. C.

Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R 47, 1–47 (2004).
[CrossRef]

Toimil-Molares, M. E.

D. J. Gargas, M. E. Toimil-Molares, and P. Yang, “Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy,” J. Am. Chem. Soc. 131, 2125–2127 (2009).
[CrossRef]

Tong, L.

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett. 11, 5085–5089 (2011).
[CrossRef]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133, 2037–2039 (2011).
[CrossRef]

Y. Li and L. Tong, “Mach–Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33, 303–305 (2008).
[CrossRef]

Tong, L. M.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[CrossRef]

Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99, 023109 (2011).
[CrossRef]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[CrossRef]

Y. Ye, Y. G. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. M. Tong, and G. G. Qin, “Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method,” Nanoscale 3, 3072–3075 (2011).
[CrossRef]

Y. G. Ma, X. Y. Li, Z. Y. Yang, H. K. Yu, P. Wang, and L. M. Tong, “Pigtailed CdS nanoribbon ring laser,” Appl. Phys. Lett. 97, 153122 (2010).
[CrossRef]

S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17, 10881–10886 (2009).
[CrossRef]

S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett. 34, 253–255 (2009).
[CrossRef]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Hang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[CrossRef]

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94, 101108 (2009).
[CrossRef]

Y. Ding, Q. Yang, X. Guo, S. S. Wang, F. X. Gu, J. Fu, Q. Wan, J. P. Cheng, and L. M. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17, 21813–21818 (2009).
[CrossRef]

S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, “Modeling endface output patterns of optical micro/nanofibers,” Opt. Express 16, 8887–8895 (2008).
[CrossRef]

K. J. Huang, S. Y. Yang, and L. M. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46, 1429–1434 (2007).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Tong, L.-M.

Towe, E.

L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89, 053125 (2006).
[CrossRef]

Tsao, A.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Turnbull, G. A.

I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3, 546–549 (2009).
[CrossRef]

Ulrich, P.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6, 951–956 (2007).
[CrossRef]

Upadhya, P. C.

P. C. Upadhya, Q. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol. 25, 024017 (2010).
[CrossRef]

Ustinov, V. M.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

Vaddiraju, S.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[CrossRef]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

Van Dam, J. A.

E. Bakkers, J. A. Van Dam, S. De Franceschi, L. P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis, “Epitaxial growth of InP nanowires on germanium,” Nat. Mater. 3, 769–773 (2004).
[CrossRef]

Van der Sluis, P.

E. Bakkers, J. A. Van Dam, S. De Franceschi, L. P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis, “Epitaxial growth of InP nanowires on germanium,” Nat. Mater. 3, 769–773 (2004).
[CrossRef]

van Enckevort, W. J. P.

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456, 369–372 (2008).
[CrossRef]

van Vugt, L. K.

D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3, 2783–2800 (2011).
[CrossRef]

L. K. van Vugt, B. Piccione, C.-H. Cho, C. Aspetti, A. D. Wirshba, and R. Agarwal, “Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities,” J. Phys. Chem. A 115, 3827–3833 (2011).
[CrossRef]

B. Piccione, L. K. van Vugt, and R. Agarwal, “Propagation loss spectroscopy on single nanowire active waveguides,” Nano Lett. 10, 2251–2256 (2010).
[CrossRef]

R. Prasanth, L. K. Van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

L. K. van Vugt, S. Ruhle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6, 2707–2711 (2006).
[CrossRef]

L. K. van Vugt, S. J. Veen, E. Bakkers, A. L. Roest, and D. Vanmaekelbergh, “Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation,” J. Am. Chem. Soc. 127, 12357–12362 (2005).
[CrossRef]

Vanmaekelbergh, D.

M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature laser emission of ZnO nanowires explained by many-body theory,” Phys. Rev. Lett. 108, 157402 (2012).
[CrossRef]

D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3, 2783–2800 (2011).
[CrossRef]

L. K. van Vugt, S. Ruhle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6, 2707–2711 (2006).
[CrossRef]

L. K. van Vugt, S. J. Veen, E. Bakkers, A. L. Roest, and D. Vanmaekelbergh, “Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation,” J. Am. Chem. Soc. 127, 12357–12362 (2005).
[CrossRef]

Vanmaekelbergh, D. A. M.

R. Prasanth, L. K. Van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

Veen, S. J.

L. K. van Vugt, S. J. Veen, E. Bakkers, A. L. Roest, and D. Vanmaekelbergh, “Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation,” J. Am. Chem. Soc. 127, 12357–12362 (2005).
[CrossRef]

Venugopal, R.

R. Venugopal, P. I. Lin, C. C. Liu, and Y. T. Chen, “Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127, 11262–11268 (2005).
[CrossRef]

Verheijen, M.

E. Bakkers, J. A. Van Dam, S. De Franceschi, L. P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis, “Epitaxial growth of InP nanowires on germanium,” Nat. Mater. 3, 769–773 (2004).
[CrossRef]

Verheijen, M. A.

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456, 369–372 (2008).
[CrossRef]

Versteegh, M. A. M.

M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature laser emission of ZnO nanowires explained by many-body theory,” Phys. Rev. Lett. 108, 157402 (2012).
[CrossRef]

Viana, B.

T. Pauporte, D. Lincot, B. Viana, and F. Pelle, “Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition,” Appl. Phys. Lett. 89, 233112 (2006).
[CrossRef]

Vienne, G.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Visimberga, G.

A. N. Gruzintsev, G. A. Emelchenko, A. N. Redkin, W. T. Volkov, E. E. Yakimov, and G. Visimberga, “Mode structure of laser emission from ZnO Nanorods with one metal mirror,” Semiconductors 44, 1235–1240 (2010).
[CrossRef]

Vlieg, E.

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456, 369–372 (2008).
[CrossRef]

Volkov, W. T.

A. N. Gruzintsev, G. A. Emelchenko, A. N. Redkin, W. T. Volkov, E. E. Yakimov, and G. Visimberga, “Mode structure of laser emission from ZnO Nanorods with one metal mirror,” Semiconductors 44, 1235–1240 (2010).
[CrossRef]

Voon, L.

Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004).
[CrossRef]

Wacaser, B. A.

J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, “Structural properties of (111)B-oriented III-V nanowires,” Nat. Mater. 5, 574–580 (2006).
[CrossRef]

Wagner, J. B.

T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
[CrossRef]

Wagner, R. S.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964).
[CrossRef]

Wallenberg, L. R.

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers,” Appl. Phys. Lett. 80, 1058–1060 (2002).
[CrossRef]

Wan, Q.

Y. Ding, Q. Yang, X. Guo, S. S. Wang, F. X. Gu, J. Fu, Q. Wan, J. P. Cheng, and L. M. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17, 21813–21818 (2009).
[CrossRef]

A. L. Pan, R. B. Liu, Q. L. Zhang, Q. Wan, P. B. He, M. Zacharias, and B. S. Zou, “Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts,” J. Phys. Chem. C 111, 14253–14256 (2007).
[CrossRef]

Wang, C.

B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Wang, M. Niu, W. H. Zhang, Y. Q. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501–1506 (2007).
[CrossRef]

Wang, C.-Y.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Wang, F. F.

A. L. Pan, R. B. Liu, F. F. Wang, S. S. Xie, B. S. Zou, M. Zacharias, and Z. L. Wang, “High-quality alloyed CdSxSe1−x whiskers as waveguides with tunable stimulated emission,” J. Phys. Chem. B 110, 22313–22317 (2006).
[CrossRef]

B. S. Zou, R. B. Liu, F. F. Wang, A. L. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110, 12865–12873 (2006).
[CrossRef]

Wang, G. P.

S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[CrossRef]

Wang, G. T.

Q. M. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20, 17873–17881 (2012).
[CrossRef]

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012).
[CrossRef]

P. C. Upadhya, Q. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol. 25, 024017 (2010).
[CrossRef]

Wang, J. F.

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef]

Wang, L.

B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Wang, M. Niu, W. H. Zhang, Y. Q. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501–1506 (2007).
[CrossRef]

Wang, L. J.

J. Schaefer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8, 1709–1712 (2008).
[CrossRef]

Wang, P.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[CrossRef]

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett. 11, 5085–5089 (2011).
[CrossRef]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133, 2037–2039 (2011).
[CrossRef]

Y. G. Ma, X. Y. Li, Z. Y. Yang, H. K. Yu, P. Wang, and L. M. Tong, “Pigtailed CdS nanoribbon ring laser,” Appl. Phys. Lett. 97, 153122 (2010).
[CrossRef]

Wang, P. F.

M. Ding, P. F. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99, 051105 (2011).
[CrossRef]

Wang, Q.

Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, “Vacancy-induced magnetism in ZnO thin films and nanowires,” Phys. Rev. B 77, 205411 (2008).
[CrossRef]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Wang, S. P.

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4, 2843–2846 (2012).
[CrossRef]

Wang, S. S.

Wang, S.-Y.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[CrossRef]

Wang, W. H.

B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Wang, M. Niu, W. H. Zhang, Y. Q. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501–1506 (2007).
[CrossRef]

Wang, X.

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6, 1808–1811 (2006).
[CrossRef]

Wang, X. F.

J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays,” J. Chem. Phys. 115, 5714–5717 (2001).
[CrossRef]

Wang, Y. W.

J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays,” J. Chem. Phys. 115, 5714–5717 (2001).
[CrossRef]

Wang, Z. L.

C. Y. Chen, G. Zhu, Y. F. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. L. Chou, and Z. L. Wang, “Gallium nitride nanowire based nanogenerators and light-emitting diodes,” ACS Nano 6, 5687–5692 (2012).
[CrossRef]

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[CrossRef]

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32, 99–108 (2007).
[CrossRef]

D. Moore and Z. L. Wang, “Growth of anisotropic one-dimensional ZnS nanostructures,” J. Mater. Chem. 16, 3898–3905 (2006).
[CrossRef]

A. L. Pan, R. B. Liu, F. F. Wang, S. S. Xie, B. S. Zou, M. Zacharias, and Z. L. Wang, “High-quality alloyed CdSxSe1−x whiskers as waveguides with tunable stimulated emission,” J. Phys. Chem. B 110, 22313–22317 (2006).
[CrossRef]

B. S. Zou, R. B. Liu, F. F. Wang, A. L. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110, 12865–12873 (2006).
[CrossRef]

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc. 127, 15692–15693 (2005).
[CrossRef]

Wasielewski, M. R.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12, 5769–5774 (2012).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Wei, F.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011).
[CrossRef]

Wei, Q. Q.

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[CrossRef]

Wei, X. L.

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Perot cavity,” Nano Lett. 9, 2697–2703 (2009).
[CrossRef]

Werner, P.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Wiersig, J.

J. Wiersig, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A 67, 023807 (2003).
[CrossRef]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Wiley, B. J.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Hang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[CrossRef]

Williams, A. D.

A. C. Scofield, J. N. Shapiro, A. Lin, A. D. Williams, P.-S. Wong, B. L. Liang, and D. L. Huffaker, “Bottom up photonic crystal cavities formed by patterned III–V nanopillars,” Nano Lett. 11, 2242–2246 (2011).
[CrossRef]

Williams, R. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[CrossRef]

Wirshba, A. D.

L. K. van Vugt, B. Piccione, C.-H. Cho, C. Aspetti, A. D. Wirshba, and R. Agarwal, “Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities,” J. Phys. Chem. A 115, 3827–3833 (2011).
[CrossRef]

Wissinger, M.

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

Wondergem, H.

E. Bakkers, J. A. Van Dam, S. De Franceschi, L. P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis, “Epitaxial growth of InP nanowires on germanium,” Nat. Mater. 3, 769–773 (2004).
[CrossRef]

Wong, P.-S.

A. C. Scofield, J. N. Shapiro, A. Lin, A. D. Williams, P.-S. Wong, B. L. Liang, and D. L. Huffaker, “Bottom up photonic crystal cavities formed by patterned III–V nanopillars,” Nano Lett. 11, 2242–2246 (2011).
[CrossRef]

Wright, J. B.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012).
[CrossRef]

Q. M. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20, 17873–17881 (2012).
[CrossRef]

Wu, C.

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

Wu, C. Y.

H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys. 97, 064315 (2005).
[CrossRef]

Wu, M. C.

Wu, P.

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[CrossRef]

Wu, P. C.

C. Liu, P. C. Wu, T. Sun, L. Dai, Y. Ye, R. M. Ma, and G. G. Qin, “Synthesis of high quality n-type cdse nanobelts and their applications in nanodevices,” J. Phys. Chem. C 113, 14478–14481 (2009).
[CrossRef]

Wu, X. Q.

Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99, 023109 (2011).
[CrossRef]

Wu, Y. Y.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Y. Y. Wu and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc. 123, 3165–3166 (2001).
[CrossRef]

Y. Y. Wu and P. D. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605–607 (2000).
[CrossRef]

Xia, Y. N.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Xiao, Y.

Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99, 023109 (2011).
[CrossRef]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[CrossRef]

Xie, C.

H. L. Peng, C. Xie, D. T. Schoen, K. McIlwrath, X. F. Zhang, and Y. Cui, “Ordered vacancy compounds and nanotube formation in CulnSe(2)-CdS core-shell nanowires,” Nano Lett. 7, 3734–3738 (2007).
[CrossRef]

Xie, S. S.

A. L. Pan, R. B. Liu, F. F. Wang, S. S. Xie, B. S. Zou, M. Zacharias, and Z. L. Wang, “High-quality alloyed CdSxSe1−x whiskers as waveguides with tunable stimulated emission,” J. Phys. Chem. B 110, 22313–22317 (2006).
[CrossRef]

Xie, Y.

X. Jiang, Y. Xie, J. Lu, L. Y. Zhu, W. He, and Y. T. Qian, “Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by gamma-irradiation,” Chem. Mater. 13, 1213–1218 (2001).
[CrossRef]

Xing, G. C.

H. Pan, G. C. Xing, Z. H. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Y. Lin, and Z. X. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105 (2007).
[CrossRef]

Xing, H. G.

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7, 2999–3006 (2007).
[CrossRef]

Xiong, Q. H.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115, 12826–12830 (2011).
[CrossRef]

R. Chen, D. H. Li, B. Liu, Z. P. Peng, G. G. Gurzadyan, Q. H. Xiong, and H. D. Sun, “Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature,” Nano Lett. 10, 4956–4961 (2010).
[CrossRef]

Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004).
[CrossRef]

Xu, C. X.

J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Response to “Comment on ‘Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities’”,” Appl. Phys. Lett. 99, 136102 (2011).
[CrossRef]

J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities,” Appl. Phys. Lett. 98, 161110 (2011).
[CrossRef]

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[CrossRef]

J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering gallery-mode lasing in ZnO microrods at room temperature,” Appl. Phys. Lett. 95, 241110 (2009).
[CrossRef]

C. X. Xu, X. W. Sun, C. Yuen, B. J. Chen, S. F. Yu, and Z. L. Dong, “Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers,” Appl. Phys. Lett. 86, 011118 (2005).
[CrossRef]

Xu, H. W.

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012).
[CrossRef]

Xu, H. Y.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[CrossRef]

Xu, J.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133, 2037–2039 (2011).
[CrossRef]

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett. 11, 5085–5089 (2011).
[CrossRef]

Xu, J. Y.

J. Y. Xu, L. Ma, P. F. Guo, X. J. Zhuang, X. L. Zhu, W. Hu, X. F. Duan, and A. L. Pan, “Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures,” J. Am. Chem. Soc. 134, 12394–12397 (2012).
[CrossRef]

R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011).
[CrossRef]

Xu, W. J.

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Oin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett. 7, 3300–3304 (2007).
[CrossRef]

Xu, X. J.

X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009).
[CrossRef]

Xu, X. L.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115, 12826–12830 (2011).
[CrossRef]

Xue, D. F.

Y. C. Zhu, Y. Bando, and D. F. Xue, “Spontaneous growth and luminescence of zinc sulfide nanobelts,” Appl. Phys. Lett. 82, 1769–1771 (2003).
[CrossRef]

Yakimov, E. E.

A. N. Gruzintsev, G. A. Emelchenko, A. N. Redkin, W. T. Volkov, E. E. Yakimov, and G. Visimberga, “Mode structure of laser emission from ZnO Nanorods with one metal mirror,” Semiconductors 44, 1235–1240 (2010).
[CrossRef]

Yamada, I.

Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20, 045501 (2009).
[CrossRef]

Yan, C. H.

L. D. Sun, C. H. Liu, C. S. Liao, and C. H. Yan, “ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution,” J. Mater. Chem. 9, 1655–1657 (1999).
[CrossRef]

Yan, H. Q.

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4, 197–204 (2004).
[CrossRef]

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. 15, 1907–1911 (2003).
[CrossRef]

H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, and P. D. Yang, “Dendritic nanowire ultraviolet laser array,” J. Am. Chem. Soc. 125, 4728–4729 (2003).
[CrossRef]

J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
[CrossRef]

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Yan, R. X.

R. X. Yan, J.-H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. D. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[CrossRef]

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[CrossRef]

Yan, Y. J.

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96, 075505 (2006).

Yan, Y. Q.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Yang, D. R.

X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, “Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si,” Opt. Express 17, 14426–14433 (2009).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Yang, G. Z.

A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, G. Z. Yang, B. S. Zou, and K. Q. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268–24272 (2005).
[CrossRef]

Yang, H.

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc. 127, 15692–15693 (2005).
[CrossRef]

Yang, P.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. USA 110, 865–869 (2013).
[CrossRef]

D. J. Gargas, M. E. Toimil-Molares, and P. Yang, “Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy,” J. Am. Chem. Soc. 131, 2125–2127 (2009).
[CrossRef]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6, 951–956 (2007).
[CrossRef]

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[CrossRef]

Yang, P. D.

R. X. Yan, J.-H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. D. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[CrossRef]

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[CrossRef]

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef]

A. I. Hochbaum, R. Fan, R. R. He, and P. D. Yang, “Controlled growth of Si nanowire arrays for device integration,” Nano Lett. 5, 457–460 (2005).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269–1273 (2004).
[CrossRef]

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4, 197–204 (2004).
[CrossRef]

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34, 83–122 (2004).
[CrossRef]

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. 15, 1907–1911 (2003).
[CrossRef]

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, and P. D. Yang, “Dendritic nanowire ultraviolet laser array,” J. Am. Chem. Soc. 125, 4728–4729 (2003).
[CrossRef]

J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
[CrossRef]

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
[CrossRef]

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

Y. Y. Wu and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc. 123, 3165–3166 (2001).
[CrossRef]

Y. Y. Wu and P. D. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605–607 (2000).
[CrossRef]

P. D. Yang and C. M. Lieber, “Nanorod-superconductor composites: a pathway to materials with high critical current densities,” Science 273, 1836–1840 (1996).
[CrossRef]

Yang, Q.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Hang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[CrossRef]

Y. Ding, Q. Yang, X. Guo, S. S. Wang, F. X. Gu, J. Fu, Q. Wan, J. P. Cheng, and L. M. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17, 21813–21818 (2009).
[CrossRef]

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94, 101108 (2009).
[CrossRef]

Y. Chen, Z. Ma, Q. Yang, and L.-M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33, 2565–2567 (2008).

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, G. Z. Yang, B. S. Zou, and K. Q. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268–24272 (2005).
[CrossRef]

Yang, S. M.

R. X. Yan, J.-H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. D. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[CrossRef]

Yang, S. Y.

Yang, Y.

Yang, Z.

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett. 11, 5085–5089 (2011).
[CrossRef]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133, 2037–2039 (2011).
[CrossRef]

S. Chu, M. Olmedo, Z. Yang, J. Y. Kong, and J. L. Liu, “Electrically pumped ultraviolet ZnO diode lasers on Si,” Appl. Phys. Lett. 93, 181106 (2008).
[CrossRef]

Yang, Z. Y.

Y. G. Ma, X. Y. Li, Z. Y. Yang, H. K. Yu, P. Wang, and L. M. Tong, “Pigtailed CdS nanoribbon ring laser,” Appl. Phys. Lett. 97, 153122 (2010).
[CrossRef]

Yao, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230–2232 (1997).
[CrossRef]

Yao, X. S.

Ye, Y.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[CrossRef]

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011).
[CrossRef]

Y. Ye, Y. G. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. M. Tong, and G. G. Qin, “Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method,” Nanoscale 3, 3072–3075 (2011).
[CrossRef]

C. Liu, P. C. Wu, T. Sun, L. Dai, Y. Ye, R. M. Ma, and G. G. Qin, “Synthesis of high quality n-type cdse nanobelts and their applications in nanodevices,” J. Phys. Chem. C 113, 14478–14481 (2009).
[CrossRef]

Yin, X.

R.-M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12, 5396–5402 (2012).
[CrossRef]

Yin, Y. D.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Yu, B.

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011).
[CrossRef]

Yu, H.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133, 2037–2039 (2011).
[CrossRef]

Yu, H. K.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[CrossRef]

Y. G. Ma, X. Y. Li, Z. Y. Yang, H. K. Yu, P. Wang, and L. M. Tong, “Pigtailed CdS nanoribbon ring laser,” Appl. Phys. Lett. 97, 153122 (2010).
[CrossRef]

S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17, 10881–10886 (2009).
[CrossRef]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Hang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[CrossRef]

Yu, J. W.

C. Y. Chen, G. Zhu, Y. F. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. L. Chou, and Z. L. Wang, “Gallium nitride nanowire based nanogenerators and light-emitting diodes,” ACS Nano 6, 5687–5692 (2012).
[CrossRef]

Yu, K.

Yu, R. C.

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc. 127, 15692–15693 (2005).
[CrossRef]

Yu, S. F.

C. X. Xu, X. W. Sun, C. Yuen, B. J. Chen, S. F. Yu, and Z. L. Dong, “Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers,” Appl. Phys. Lett. 86, 011118 (2005).
[CrossRef]

Yu, Y. H.

Y. H. Yu, P. V. Kamat, and M. Kuno, “A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance,” Adv. Funct. Mater. 20, 1464–1472 (2010).
[CrossRef]

Yue, S.

Y. Ye, Y. G. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. M. Tong, and G. G. Qin, “Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method,” Nanoscale 3, 3072–3075 (2011).
[CrossRef]

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Perot cavity,” Nano Lett. 9, 2697–2703 (2009).
[CrossRef]

Yuen, C.

C. X. Xu, X. W. Sun, C. Yuen, B. J. Chen, S. F. Yu, and Z. L. Dong, “Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers,” Appl. Phys. Lett. 86, 011118 (2005).
[CrossRef]

Yvind, K.

Zacharias, M.

A. L. Pan, R. B. Liu, Q. L. Zhang, Q. Wan, P. B. He, M. Zacharias, and B. S. Zou, “Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts,” J. Phys. Chem. C 111, 14253–14256 (2007).
[CrossRef]

A. L. Pan, R. B. Liu, F. F. Wang, S. S. Xie, B. S. Zou, M. Zacharias, and Z. L. Wang, “High-quality alloyed CdSxSe1−x whiskers as waveguides with tunable stimulated emission,” J. Phys. Chem. B 110, 22313–22317 (2006).
[CrossRef]

Zahn, D. R. T.

V. Sivakov, G. Andrae, C. Himcinschi, U. Goesele, D. R. T. Zahn, and S. Christiansen, “Growth peculiarities during vapor-liquid-solid growth of silicon nanowhiskers by electron-beam evaporation,” Appl. Phys. A 85, 311–315 (2006).
[CrossRef]

Zapien, J. A.

C. Y. Luan, Y. K. Liu, Y. Jiang, J. S. Jie, I. Bello, S. T. Lee, and J. A. Zapien, “Composition tuning of room-temperature nanolasers,” Vacuum 86, 737–741 (2012).
[CrossRef]

Y. K. Liu, J. A. Zapien, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Wavelength-tunable lasing in single-crystal CdS1−xSex nanoribbons,” Nanotechnology 18, 365606 (2007).
[CrossRef]

J. A. Zapien, Y. K. Liu, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett. 90, 213114 (2007).
[CrossRef]

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons,” Adv. Mater. 17, 1372–1377 (2005).
[CrossRef]

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84, 1189–1191 (2004).
[CrossRef]

Y. K. Liu, J. A. Zapien, C. Y. Geng, Y. Y. Shan, C. S. Lee, Y. Lifshitz, and S. T. Lee, “High-quality CdS nanoribbons with lasing cavity,” Appl. Phys. Lett. 85, 3241–3243 (2004).
[CrossRef]

J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, “Lasing in ZnS nanowires grown on anodic aluminum oxide templates,” Appl. Phys. Lett. 85, 2361–2363 (2004).
[CrossRef]

Zeigler, H. J.

T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett. 1, 91–92 (1962).
[CrossRef]

Zeng, H. B.

X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009).
[CrossRef]

Zengel, J. J.

Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Zhai, T.

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2, 168–187 (2010).
[CrossRef]

Zhai, T. Y.

X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009).
[CrossRef]

Zhang, H.

Zhang, J.

J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays,” J. Chem. Phys. 115, 5714–5717 (2001).
[CrossRef]

Zhang, L.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[CrossRef]

Zhang, L. D.

J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays,” J. Chem. Phys. 115, 5714–5717 (2001).
[CrossRef]

Zhang, Q. L.

R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011).
[CrossRef]

A. L. Pan, R. B. Liu, Q. L. Zhang, Q. Wan, P. B. He, M. Zacharias, and B. S. Zou, “Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts,” J. Phys. Chem. C 111, 14253–14256 (2007).
[CrossRef]

Zhang, W. H.

B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Wang, M. Niu, W. H. Zhang, Y. Q. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501–1506 (2007).
[CrossRef]

Zhang, X.

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7, 1–21 (2013).
[CrossRef]

R.-M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12, 5396–5402 (2012).
[CrossRef]

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Zhang, X. F.

H. L. Peng, C. Xie, D. T. Schoen, K. McIlwrath, X. F. Zhang, and Y. Cui, “Ordered vacancy compounds and nanotube formation in CulnSe(2)-CdS core-shell nanowires,” Nano Lett. 7, 3734–3738 (2007).
[CrossRef]

Zhang, X. H.

J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities,” Appl. Phys. Lett. 98, 161110 (2011).
[CrossRef]

J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Response to “Comment on ‘Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities’”,” Appl. Phys. Lett. 99, 136102 (2011).
[CrossRef]

Zhang, X. T.

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[CrossRef]

Zhang, Y. F.

Y. F. Zhang, R. E. Russo, and S. S. Mao, “Quantum efficiency of ZnO nanowire nanolasers,” Appl. Phys. Lett. 87, 043106 (2005).
[CrossRef]

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4, 197–204 (2004).
[CrossRef]

Zhang, Y. N.

Zhang, Y. S.

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96, 075505 (2006).

Zhang, Z. Z.

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4, 2843–2846 (2012).
[CrossRef]

Zhao, J. Z.

S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[CrossRef]

Zhao, L.

L. Zhao, L. Hu, and X. Fang, “Growth and device application of CdSe nanostructures,” Adv. Funct. Mater. 22, 1551–1566 (2012).
[CrossRef]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Zhao, Y. P.

J. K. Song, J. M. Szarko, S. R. Leone, S. H. Li, and Y. P. Zhao, “Ultrafast wavelength-dependent lasing-time dynamics in single ZnO nanotetrapod and nanowire lasers,” J. Phys. Chem. B 109, 15749–15753 (2005).
[CrossRef]

Zhao, Y. Y.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115, 12826–12830 (2011).
[CrossRef]

Zheng, K.

J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering gallery-mode lasing in ZnO microrods at room temperature,” Appl. Phys. Lett. 95, 241110 (2009).
[CrossRef]

Zhou, H.

Zhou, H. J.

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

Zhou, W.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12, 5769–5774 (2012).
[CrossRef]

Zhou, W. C.

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[CrossRef]

Zhou, W. H.

S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[CrossRef]

Zhu, G.

C. Y. Chen, G. Zhu, Y. F. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. L. Chou, and Z. L. Wang, “Gallium nitride nanowire based nanogenerators and light-emitting diodes,” ACS Nano 6, 5687–5692 (2012).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Zhu, J.

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96, 075505 (2006).

Zhu, L. Y.

X. Jiang, Y. Xie, J. Lu, L. Y. Zhu, W. He, and Y. T. Qian, “Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by gamma-irradiation,” Chem. Mater. 13, 1213–1218 (2001).
[CrossRef]

Zhu, X. L.

J. Y. Xu, L. Ma, P. F. Guo, X. J. Zhuang, X. L. Zhu, W. Hu, X. F. Duan, and A. L. Pan, “Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures,” J. Am. Chem. Soc. 134, 12394–12397 (2012).
[CrossRef]

Zhu, Y. C.

A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, G. Z. Yang, B. S. Zou, and K. Q. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268–24272 (2005).
[CrossRef]

Y. C. Zhu, Y. Bando, and D. F. Xue, “Spontaneous growth and luminescence of zinc sulfide nanobelts,” Appl. Phys. Lett. 82, 1769–1771 (2003).
[CrossRef]

Zhu, Z.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230–2232 (1997).
[CrossRef]

Zhuang, X.

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett. 11, 5085–5089 (2011).
[CrossRef]

Zhuang, X. J.

J. Y. Xu, L. Ma, P. F. Guo, X. J. Zhuang, X. L. Zhu, W. Hu, X. F. Duan, and A. L. Pan, “Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures,” J. Am. Chem. Soc. 134, 12394–12397 (2012).
[CrossRef]

R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011).
[CrossRef]

Zi, F.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[CrossRef]

Zimmler, M. A.

M. A. Zimmler, F. Capasso, S. Mueller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25, 024001 (2010).
[CrossRef]

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[CrossRef]

Zou, B. S.

R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011).
[CrossRef]

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[CrossRef]

A. L. Pan, R. B. Liu, Q. L. Zhang, Q. Wan, P. B. He, M. Zacharias, and B. S. Zou, “Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts,” J. Phys. Chem. C 111, 14253–14256 (2007).
[CrossRef]

A. L. Pan, R. B. Liu, F. F. Wang, S. S. Xie, B. S. Zou, M. Zacharias, and Z. L. Wang, “High-quality alloyed CdSxSe1−x whiskers as waveguides with tunable stimulated emission,” J. Phys. Chem. B 110, 22313–22317 (2006).
[CrossRef]

B. S. Zou, R. B. Liu, F. F. Wang, A. L. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110, 12865–12873 (2006).
[CrossRef]

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc. 127, 15692–15693 (2005).
[CrossRef]

A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, G. Z. Yang, B. S. Zou, and K. Q. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268–24272 (2005).
[CrossRef]

Zuniga-Perez, J.

P.-M. Coulon, M. Hugues, B. Alloing, E. Beraudo, M. Leroux, and J. Zuniga-Perez, “GaN microwires as optical microcavities: whispering gallery modes vs Fabry-Perot modes,” Opt. Express 20, 18707–18716 (2012).
[CrossRef]

C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zuniga-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010).
[CrossRef]

ACS Nano (2)

A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate,” ACS Nano 4, 671–680 (2010).
[CrossRef]

C. Y. Chen, G. Zhu, Y. F. Hu, J. W. Yu, J. Song, K. Y. Cheng, L. H. Peng, L. L. Chou, and Z. L. Wang, “Gallium nitride nanowire based nanogenerators and light-emitting diodes,” ACS Nano 6, 5687–5692 (2012).
[CrossRef]

Adv. Funct. Mater. (4)

B. L. Cao, Y. Jiang, C. Wang, W. H. Wang, L. Wang, M. Niu, W. H. Zhang, Y. Q. Li, and S. T. Lee, “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Adv. Funct. Mater. 17, 1501–1506 (2007).
[CrossRef]

Y. H. Yu, P. V. Kamat, and M. Kuno, “A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance,” Adv. Funct. Mater. 20, 1464–1472 (2010).
[CrossRef]

L. Zhao, L. Hu, and X. Fang, “Growth and device application of CdSe nanostructures,” Adv. Funct. Mater. 22, 1551–1566 (2012).
[CrossRef]

P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2002).
[CrossRef]

Adv. Mater. (5)

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons,” Adv. Mater. 17, 1372–1377 (2005).
[CrossRef]

T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Adv. Mater. 19, 1801–1806 (2007).
[CrossRef]

X. F. Duan and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12, 298–302 (2000).
[CrossRef]

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. 15, 1907–1911 (2003).
[CrossRef]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef]

Annu. Rev. Mater. Res. (1)

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res. 34, 83–122 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (2)

V. Sivakov, G. Andrae, C. Himcinschi, U. Goesele, D. R. T. Zahn, and S. Christiansen, “Growth peculiarities during vapor-liquid-solid growth of silicon nanowhiskers by electron-beam evaporation,” Appl. Phys. A 85, 311–315 (2006).
[CrossRef]

Y. J. Hsu and S. Y. Lu, “Low temperature growth and dimension-dependent photoluminescence efficiency of semiconductor nanowires,” Appl. Phys. A 81, 573–578 (2005).
[CrossRef]

Appl. Phys. Lett. (49)

J. Noborisaka, J. Motohisa, and T. Fukui, “Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy,” Appl. Phys. Lett. 86, 213102 (2005).
[CrossRef]

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional heterostructures in semiconductor nanowhiskers,” Appl. Phys. Lett. 80, 1058–1060 (2002).
[CrossRef]

N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Appl. Phys. Lett. 1, 82–83 (1962).
[CrossRef]

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phys. Lett. 1, 62–64 (1962).
[CrossRef]

T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett. 1, 91–92 (1962).
[CrossRef]

F. H. Nicoll, “Ultraviolet ZnO laser pumped by an electron beam,” Appl. Phys. Lett. 9, 13–16 (1966).
[CrossRef]

C. E. Hurwitz, “Electron-beam pumped lasers of CdSe and CdS,” Appl. Phys. Lett. 8, 121–124 (1966).
[CrossRef]

R. D. Dupuis, P. D. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin, “Room-temperature laser operation of quantum-well Ga(1-x)AlxAs-GaAs laser-diodes grown by organometalluic chemical vapor-deposition,” Appl. Phys. Lett. 32, 295–297 (1978).
[CrossRef]

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230–2232 (1997).
[CrossRef]

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84, 1189–1191 (2004).
[CrossRef]

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88, 163115 (2006).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Y. G. Ma, X. Y. Li, Z. Y. Yang, H. K. Yu, P. Wang, and L. M. Tong, “Pigtailed CdS nanoribbon ring laser,” Appl. Phys. Lett. 97, 153122 (2010).
[CrossRef]

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237–1239 (2003).
[CrossRef]

Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, “Single mode lasing in coupled nanowires,” Appl. Phys. Lett. 99, 023109 (2011).
[CrossRef]

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91, 131112 (2007).
[CrossRef]

L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89, 053125 (2006).
[CrossRef]

C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, “Whispering gallery mode lasing in zinc oxide microwires,” Appl. Phys. Lett. 92, 241102 (2008).
[CrossRef]

J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering gallery-mode lasing in ZnO microrods at room temperature,” Appl. Phys. Lett. 95, 241110 (2009).
[CrossRef]

J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, and Z. L. Shi, “Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature,” Appl. Phys. Lett. 97, 011101 (2010).
[CrossRef]

J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities,” Appl. Phys. Lett. 98, 161110 (2011).
[CrossRef]

J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, “Response to “Comment on ‘Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities’”,” Appl. Phys. Lett. 99, 136102 (2011).
[CrossRef]

C. P. Dietrich and M. Grundmann, “Comment on “Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities”,” Appl. Phys. Lett. 99, 136101 (2011).
[CrossRef]

M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[CrossRef]

M. C. Jeong, B. Y. Oh, M. H. Ham, and J. M. Myoung, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes,” Appl. Phys. Lett. 88, 202105 (2006).
[CrossRef]

Y. F. Zhang, R. E. Russo, and S. S. Mao, “Quantum efficiency of ZnO nanowire nanolasers,” Appl. Phys. Lett. 87, 043106 (2005).
[CrossRef]

W. M. Kwok, A. B. Djurisic, Y. H. Leung, D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, “Influence of annealing on stimulated emission in ZnO nanorods,” Appl. Phys. Lett. 89, 183112 (2006).
[CrossRef]

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91, 181112 (2007).
[CrossRef]

C. X. Xu, X. W. Sun, C. Yuen, B. J. Chen, S. F. Yu, and Z. L. Dong, “Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers,” Appl. Phys. Lett. 86, 011118 (2005).
[CrossRef]

T. Pauporte, D. Lincot, B. Viana, and F. Pelle, “Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition,” Appl. Phys. Lett. 89, 233112 (2006).
[CrossRef]

M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93, 051101 (2008).
[CrossRef]

J. Heo, W. Guo, and P. Bhattacharya, “Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon,” Appl. Phys. Lett. 98, 021110 (2011).
[CrossRef]

M. Ding, P. F. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99, 051105 (2011).
[CrossRef]

S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, “Microstadium single-nanowire laser,” Appl. Phys. Lett. 91, 251115 (2007).
[CrossRef]

R. Prasanth, L. K. Van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006).
[CrossRef]

Y. K. Liu, J. A. Zapien, C. Y. Geng, Y. Y. Shan, C. S. Lee, Y. Lifshitz, and S. T. Lee, “High-quality CdS nanoribbons with lasing cavity,” Appl. Phys. Lett. 85, 3241–3243 (2004).
[CrossRef]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87, 151103 (2005).
[CrossRef]

S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light-emitting-diodes,” Appl. Phys. Lett. 62, 2390–2392 (1993).
[CrossRef]

Y. C. Zhu, Y. Bando, and D. F. Xue, “Spontaneous growth and luminescence of zinc sulfide nanobelts,” Appl. Phys. Lett. 82, 1769–1771 (2003).
[CrossRef]

J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, “Lasing in ZnS nanowires grown on anodic aluminum oxide templates,” Appl. Phys. Lett. 85, 2361–2363 (2004).
[CrossRef]

R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, “Trap-state whispering-gallery mode lasing from high-quality tin-doped CdS whiskers,” Appl. Phys. Lett. 99, 263101 (2011).
[CrossRef]

H. Pan, G. C. Xing, Z. H. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Y. Lin, and Z. X. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105 (2007).
[CrossRef]

J. A. Zapien, Y. K. Liu, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett. 90, 213114 (2007).
[CrossRef]

H. W. Xu, J. B. Wright, T. S. Luk, J. J. Figiel, K. Cross, L. F. Lester, G. Balakrishnan, G. T. Wang, I. Brener, and Q. M. Li, “Single-mode lasing of GaN nanowire-pairs,” Appl. Phys. Lett. 101, 113106 (2012).
[CrossRef]

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94, 101108 (2009).
[CrossRef]

S. Chu, M. Olmedo, Z. Yang, J. Y. Kong, and J. L. Liu, “Electrically pumped ultraviolet ZnO diode lasers on Si,” Appl. Phys. Lett. 93, 181106 (2008).
[CrossRef]

C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, “Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires,” Appl. Phys. Lett. 99, 063115 (2011).
[CrossRef]

Chem. Mater. (2)

X. Jiang, Y. Xie, J. Lu, L. Y. Zhu, W. He, and Y. T. Qian, “Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by gamma-irradiation,” Chem. Mater. 13, 1213–1218 (2001).
[CrossRef]

Y. Y. Wu and P. D. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605–607 (2000).
[CrossRef]

Crit. Rev. Solid State Mater. Sci. (1)

X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009).
[CrossRef]

Electron. Lett. (1)

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, “Low-threshold, large T-O injection-laser emission from (InGa)As quantum dots,” Electron. Lett. 30, 1416–1417 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008).
[CrossRef]

Int. J. Nanotechnology (1)

S. S. Mao, “Nanolasers: lasing from nanoscale quantum wires,” Int. J. Nanotechnology 1, 42–85 (2004).

J. Am. Chem. Soc. (10)

H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, and P. D. Yang, “Dendritic nanowire ultraviolet laser array,” J. Am. Chem. Soc. 125, 4728–4729 (2003).
[CrossRef]

L. K. van Vugt, S. J. Veen, E. Bakkers, A. L. Roest, and D. Vanmaekelbergh, “Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation,” J. Am. Chem. Soc. 127, 12357–12362 (2005).
[CrossRef]

Y. Y. Wu and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc. 123, 3165–3166 (2001).
[CrossRef]

A. L. Pan, R. B. Liu, M. H. Sun, and C. Z. Ning, “Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum,” J. Am. Chem. Soc. 131, 9502–9503 (2009).
[CrossRef]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133, 2037–2039 (2011).
[CrossRef]

R. Venugopal, P. I. Lin, C. C. Liu, and Y. T. Chen, “Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc. 127, 11262–11268 (2005).
[CrossRef]

X. F. Duan and C. M. Lieber, “Laser-assisted catalytic growth of single crystal GaN nanowires,” J. Am. Chem. Soc. 122, 188–189 (2000).
[CrossRef]

D. J. Gargas, M. E. Toimil-Molares, and P. Yang, “Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy,” J. Am. Chem. Soc. 131, 2125–2127 (2009).
[CrossRef]

J. Y. Xu, L. Ma, P. F. Guo, X. J. Zhuang, X. L. Zhu, W. Hu, X. F. Duan, and A. L. Pan, “Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures,” J. Am. Chem. Soc. 134, 12394–12397 (2012).
[CrossRef]

A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc. 127, 15692–15693 (2005).
[CrossRef]

J. Appl. Phys. (4)

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor-device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109, 044312 (2011).
[CrossRef]

H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys. 97, 064315 (2005).
[CrossRef]

A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A. J. Flewitt, W. I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A. C. Ferrari, “Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties,” J. Appl. Phys. 102, 034302 (2007).
[CrossRef]

J. Chem. Phys. (1)

J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays,” J. Chem. Phys. 115, 5714–5717 (2001).
[CrossRef]

J. Electron. Mater. (1)

A. Khandelwal, D. Jena, J. W. Grebinski, K. L. Hull, and M. K. Kuno, “Ultrathin CdSe nanowire field-effect transistors,” J. Electron. Mater. 35, 170–172 (2006).
[CrossRef]

J. Lumin. (1)

K. Bando, T. Sawabe, K. Asaka, and Y. Masumoto, “Room-temperature excitonic lasing from ZnO single nanobelts,” J. Lumin. 108, 385–388 (2004).
[CrossRef]

J. Mater. Chem. (3)

Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. j. Shi, B. Yu, X. f. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem. 21, 11760–11763 (2011).
[CrossRef]

D. Moore and Z. L. Wang, “Growth of anisotropic one-dimensional ZnS nanostructures,” J. Mater. Chem. 16, 3898–3905 (2006).
[CrossRef]

L. D. Sun, C. H. Liu, C. S. Liao, and C. H. Yan, “ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution,” J. Mater. Chem. 9, 1655–1657 (1999).
[CrossRef]

J. Microelectromech. Syst. (1)

R. P. Feynman, “There’s plenty of room at the bottom,” J. Microelectromech. Syst. 1, 60–66 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

L. K. van Vugt, B. Piccione, C.-H. Cho, C. Aspetti, A. D. Wirshba, and R. Agarwal, “Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities,” J. Phys. Chem. A 115, 3827–3833 (2011).
[CrossRef]

J. Phys. Chem. B (6)

A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, G. Z. Yang, B. S. Zou, and K. Q. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268–24272 (2005).
[CrossRef]

A. L. Pan, R. B. Liu, F. F. Wang, S. S. Xie, B. S. Zou, M. Zacharias, and Z. L. Wang, “High-quality alloyed CdSxSe1−x whiskers as waveguides with tunable stimulated emission,” J. Phys. Chem. B 110, 22313–22317 (2006).
[CrossRef]

J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B 107, 8816–8828 (2003).
[CrossRef]

Y. Cui, X. F. Duan, J. T. Hu, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” J. Phys. Chem. B 104, 5213–5216 (2000).
[CrossRef]

B. S. Zou, R. B. Liu, F. F. Wang, A. L. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110, 12865–12873 (2006).
[CrossRef]

J. K. Song, J. M. Szarko, S. R. Leone, S. H. Li, and Y. P. Zhao, “Ultrafast wavelength-dependent lasing-time dynamics in single ZnO nanotetrapod and nanowire lasers,” J. Phys. Chem. B 109, 15749–15753 (2005).
[CrossRef]

J. Phys. Chem. C (3)

C. Liu, P. C. Wu, T. Sun, L. Dai, Y. Ye, R. M. Ma, and G. G. Qin, “Synthesis of high quality n-type cdse nanobelts and their applications in nanodevices,” J. Phys. Chem. C 113, 14478–14481 (2009).
[CrossRef]

A. L. Pan, R. B. Liu, Q. L. Zhang, Q. Wan, P. B. He, M. Zacharias, and B. S. Zou, “Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts,” J. Phys. Chem. C 111, 14253–14256 (2007).
[CrossRef]

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-related photoluminescence and lasing in CdS nanobelts,” J. Phys. Chem. C 115, 12826–12830 (2011).
[CrossRef]

Laser Photonics Rev. (1)

R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7, 1–21 (2013).
[CrossRef]

Mater. Sci. Eng. R (1)

Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R 47, 1–47 (2004).
[CrossRef]

Mater. Today (1)

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[CrossRef]

MRS Bull. (2)

C. M. Lieber, “Nanoscale science and technology: building a big future from small things,” MRS Bull. 28, 486–491 (2003).
[CrossRef]

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32, 99–108 (2007).
[CrossRef]

Nano Lett. (28)

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Hang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9, 4515–4519 (2009).
[CrossRef]

B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Lett. 9, 112–116 (2009).
[CrossRef]

P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber, “General synthesis of manganese-doped II-VI and III-V semiconductor nanowires,” Nano Lett. 5, 1407–1411 (2005).
[CrossRef]

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett. 11, 5085–5089 (2011).
[CrossRef]

A. I. Hochbaum, R. Fan, R. R. He, and P. D. Yang, “Controlled growth of Si nanowire arrays for device integration,” Nano Lett. 5, 457–460 (2005).
[CrossRef]

H. Shtrikman, R. Popovitz-Biro, A. Kretinin, and M. Heiblumf, “Stacking-faults-free zinc blende GaAs nanowires,” Nano Lett. 9, 215–219 (2009).
[CrossRef]

L. K. van Vugt, S. Ruhle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6, 2707–2711 (2006).
[CrossRef]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef]

L. Y. Cao, P. Y. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11, 1463–1468 (2011).
[CrossRef]

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6, 11–15 (2006).
[CrossRef]

R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, “Light coupling and modulation in coupled nanowire ring-Fabry-Perot cavity,” Nano Lett. 9, 2697–2703 (2009).
[CrossRef]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7, 3598–3602 (2007).
[CrossRef]

J. Schaefer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8, 1709–1712 (2008).
[CrossRef]

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, “Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers,” Nano Lett. 4, 197–204 (2004).
[CrossRef]

A. C. Scofield, J. N. Shapiro, A. Lin, A. D. Williams, P.-S. Wong, B. L. Liang, and D. L. Huffaker, “Bottom up photonic crystal cavities formed by patterned III–V nanopillars,” Nano Lett. 11, 2242–2246 (2011).
[CrossRef]

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode laser,” Nano Lett. 11, 1122–1126 (2011).
[CrossRef]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12, 5769–5774 (2012).
[CrossRef]

R.-M. Ma, X. Yin, R. F. Oulton, V. J. Sorger, and X. Zhang, “Multiplexed and electrically modulated plasmon laser circuit,” Nano Lett. 12, 5396–5402 (2012).
[CrossRef]

D. Li and C. Z. Ning, “Electrical injection in longitudinal and coaxial heterostructure nanowires: a comparative study through a three-dimensional simulation,” Nano Lett. 8, 4234–4237 (2008).
[CrossRef]

A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7, 2999–3006 (2007).
[CrossRef]

A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9, 784–788 (2009).
[CrossRef]

R. Chen, D. H. Li, B. Liu, Z. P. Peng, G. G. Gurzadyan, Q. H. Xiong, and H. D. Sun, “Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature,” Nano Lett. 10, 4956–4961 (2010).
[CrossRef]

Q. H. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. Voon, B. Lassen, and P. C. Eklund, “Optical properties of rectangular cross-sectional ZnS nanowires,” Nano Lett. 4, 1663–1668 (2004).
[CrossRef]

H. L. Peng, C. Xie, D. T. Schoen, K. McIlwrath, X. F. Zhang, and Y. Cui, “Ordered vacancy compounds and nanotube formation in CulnSe(2)-CdS core-shell nanowires,” Nano Lett. 7, 3734–3738 (2007).
[CrossRef]

B. Piccione, L. K. van Vugt, and R. Agarwal, “Propagation loss spectroscopy on single nanowire active waveguides,” Nano Lett. 10, 2251–2256 (2010).
[CrossRef]

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Oin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett. 7, 3300–3304 (2007).
[CrossRef]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917–920 (2005).
[CrossRef]

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6, 1808–1811 (2006).
[CrossRef]

Nanoscale (4)

D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3, 2783–2800 (2011).
[CrossRef]

X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, “Electrically pumped random lasers fabricated from ZnO nanowire arrays,” Nanoscale 4, 2843–2846 (2012).
[CrossRef]

T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale 2, 168–187 (2010).
[CrossRef]

Y. Ye, Y. G. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. M. Tong, and G. G. Qin, “Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method,” Nanoscale 3, 3072–3075 (2011).
[CrossRef]

Nanotechnology (3)

Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20, 045501 (2009).
[CrossRef]

Y. K. Liu, J. A. Zapien, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Wavelength-tunable lasing in single-crystal CdS1−xSex nanoribbons,” Nanotechnology 18, 365606 (2007).
[CrossRef]

S. Geburt, A. Thielmann, R. Roeder, C. Borschel, A. McDonnell, M. Kozlik, J. Kuehnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23, 365204 (2012).
[CrossRef]

Nat. Mater. (7)

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701–706 (2008).
[CrossRef]

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[CrossRef]

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
[CrossRef]

E. Bakkers, J. A. Van Dam, S. De Franceschi, L. P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis, “Epitaxial growth of InP nanowires on germanium,” Nat. Mater. 3, 769–773 (2004).
[CrossRef]

J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, “Structural properties of (111)B-oriented III-V nanowires,” Nat. Mater. 5, 574–580 (2006).
[CrossRef]

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6, 951–956 (2007).
[CrossRef]

W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,” Nat. Mater. 6, 841–850 (2007).
[CrossRef]

Nat. Nanotechnol. (2)

R. X. Yan, J.-H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. D. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7, 191–196 (2012).
[CrossRef]

S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6, 506–510 (2011).
[CrossRef]

Nat. Photonics (4)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics 3, 546–549 (2009).
[CrossRef]

L. Pan and D. B. Bogy, “Data storage: heat-assisted magnetic recording,” Nat. Photonics 3, 189–190 (2009).
[CrossRef]

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[CrossRef]

Nature (7)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456, 369–372 (2008).
[CrossRef]

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[CrossRef]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Opt. Commun. (1)

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[CrossRef]

Opt. Express (12)

Y. Ding, Q. Yang, X. Guo, S. S. Wang, F. X. Gu, J. Fu, Q. Wan, J. P. Cheng, and L. M. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17, 21813–21818 (2009).
[CrossRef]

X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, “Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si,” Opt. Express 17, 14426–14433 (2009).
[CrossRef]

Q. M. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20, 17873–17881 (2012).
[CrossRef]

A. Capua, O. Karni, G. Eisenstein, J. P. Reithmaier, and K. Yvind, “Extreme nonlinearities in InAs/InP nanowire gain media: the two-photon induced laser,” Opt. Express 20, 5987–5992 (2012).
[CrossRef]

K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790–8799 (2010).
[CrossRef]

S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17, 10881–10886 (2009).
[CrossRef]

P.-M. Coulon, M. Hugues, B. Alloing, E. Beraudo, M. Leroux, and J. Zuniga-Perez, “GaN microwires as optical microcavities: whispering gallery modes vs Fabry-Perot modes,” Opt. Express 20, 18707–18716 (2012).
[CrossRef]

Y. N. Zhang and M. Loncar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16, 17400–17409 (2008).
[CrossRef]

S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, “Modeling endface output patterns of optical micro/nanofibers,” Opt. Express 16, 8887–8895 (2008).
[CrossRef]

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[CrossRef]

J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, “Lasing dynamics in single ZnO nanorods,” Opt. Express 16, 1125–1131 (2008).
[CrossRef]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. (2)

D. G. Thomas and J. J. Hopfield, “Optical properties of bound exciton complexes in cadmium sulfide,” Phys. Rev. 128, 2135–2148 (1962).
[CrossRef]

K. Colbow, “Free-to-bound and bound-to-bound transitions in CdS,” Phys. Rev. 141, 742–749 (1966).
[CrossRef]

Phys. Rev. A (2)

J. Wiersig, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A 67, 023807 (2003).
[CrossRef]

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
[CrossRef]

Phys. Rev. B (2)

C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, “Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing,” Phys. Rev. B 75, 115203 (2007).
[CrossRef]

Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, “Vacancy-induced magnetism in ZnO thin films and nanowires,” Phys. Rev. B 77, 205411 (2008).
[CrossRef]

Phys. Rev. Lett. (10)

C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96, 075505 (2006).

M. A. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, “Room-temperature laser emission of ZnO nanowires explained by many-body theory,” Phys. Rev. Lett. 108, 157402 (2012).
[CrossRef]

A. Schleife, C. Roedl, F. Fuchs, K. Hannewald, and F. Bechstedt, “Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?” Phys. Rev. Lett. 107, 236405 (2011).
[CrossRef]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, “Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section,” Phys. Rev. Lett. 93, 103903 (2004).
[CrossRef]

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 143903 (2006).
[CrossRef]

R. N. Hall, R. O. Carlson, T. J. Soltys, G. E. Fenner, and J. D. Kingsley, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett. 9, 366–368 (1962).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

D. Magde and H. Mahr, “Exciton-exciton interaction in CdS, CdSe, and ZnO,” Phys. Rev. Lett. 24, 890–893 (1970).
[CrossRef]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

Phys. Status Solidi B (2)

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).

C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zuniga-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010).
[CrossRef]

Proc. IEEE (2)

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[CrossRef]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. USA 110, 865–869 (2013).
[CrossRef]

Proc. SPIE (1)

A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 64680I (2007).
[CrossRef]

Science (9)

Y. J. Lu, J. Kim, H. P. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. R. Chang, L. J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[CrossRef]

A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208–211 (1998).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269–1273 (2004).
[CrossRef]

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289–1292 (2001).
[CrossRef]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294, 1313–1317 (2001).
[CrossRef]

J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef]

P. D. Yang and C. M. Lieber, “Nanorod-superconductor composites: a pathway to materials with high critical current densities,” Science 273, 1836–1840 (1996).
[CrossRef]

Semicond. Sci. Technol. (2)

M. A. Zimmler, F. Capasso, S. Mueller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25, 024001 (2010).
[CrossRef]

P. C. Upadhya, Q. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol. 25, 024017 (2010).
[CrossRef]

Semiconductors (1)

A. N. Gruzintsev, G. A. Emelchenko, A. N. Redkin, W. T. Volkov, E. E. Yakimov, and G. Visimberga, “Mode structure of laser emission from ZnO Nanorods with one metal mirror,” Semiconductors 44, 1235–1240 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

J. B. Baxter and E. S. Aydil, “Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires,” Sol. Energy Mater. Sol. Cells 90, 607–622 (2006).
[CrossRef]

Sov. Phys. JETP (1)

N. G. Basov, O. N. Krokhin, and Y. M. Popov, “Production of negative-temperature states in p‐n junctions of degenerate semiconductors,” Sov. Phys. JETP 13, 1320–1321 (1961).

Vacuum (1)

C. Y. Luan, Y. K. Liu, Y. Jiang, J. S. Jie, I. Bello, S. T. Lee, and J. A. Zapien, “Composition tuning of room-temperature nanolasers,” Vacuum 86, 737–741 (2012).
[CrossRef]

Other (2)

K. Thonke, A. Reiser, M. Schirra, M. Feneberg, G. M. Prinz, T. Roeder, R. Sauer, J. Fallert, F. Stelzl, H. Kalt, S. Gsell, M. Schreck, and B. Stritzker, “ZnO nanostructures: optical resonators and lasing,” in Advances in Solid State Physics, R. Haug, ed. (Springer, 2009), pp. 39–56.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (35)

Figure 1
Figure 1

Semiconductor nanowire growth mechanism and typical products. (a) Typical setup for VLS growth. (b) Conventional Au–Ge binary phase diagram to show the composition and phase evolution during the nanowire growth process. Reproduced with permission from Wu and Yang, J. Am. Chem. Soc. 123, 3165–3166 (2001). ©2001 American Chemical Society [39]. (c) VLS nanowire growth mechanism. (d) X-ray diffraction pattern recorded on the Ge nanowires. Inset: scanning electron microscope (SEM) micrograph of Ge nanowires. The scale bar corresponds to 4 μm. Reproduced with permission from Y. Y. Wu and D. Yang, Chem. Mater. 12, 605–607 (2000). © 2000 American Chemical Society [50].

Figure 2
Figure 2

Index profile of an optical nanowire.

Figure 3
Figure 3

(a) Numerical solutions of propagation constant ( β ) of the H E 11 , T E 01 , and T E 01 modes in an air-clad ZnO nanowire at 450 nm wavelength. Dashed line indicates the single-mode condition for the ZnO nanowire. (b)–(d) Electric field of the H E 11 , T E 01 , and T E 01 modes in an air-clad ZnO nanowire at 450 nm wavelength with 240 nm diameter. Scale bar, 100 nm.

Figure 4
Figure 4

Typical results for mode analysis in semiconductor nanowires. (a)–(d) Electric field distribution of all guided modes of a waveguide in a freestanding hexagonal-cross-section semiconductor nanowire with a 240 nm diameter at a vacuum wavelength of 450 nm. Scale bar, 100 nm. (e)–(h) Electric field distribution of all modes in a freestanding triangular-cross-section semiconductor nanowire with a 200 nm diameter at a vacuum wavelength of 450 nm. Scale bar, 100 nm.

Figure 5
Figure 5

Coupling between closely contacted parallel nanowires. (a) 3D FEM simulation of light coupling between two 160 nm diameter ZnO nanowires at a vacuum wavelength of 633 nm. Scale bar, 200 nm. (b) Coupling efficiency between two nanowires with different diameters and coupling lengths. Diameters of the nanowires are denoted as x y , in which x and y stand for the diameters (unit of nm) of the input and output nanowires, respectively. Reproduced with permission, © 2007. Optical Society of America [72].

Figure 6
Figure 6

Endface reflectivity of waveguiding nanowires. (a) Reflection coefficient for a few of the lowest-order modes (385 nm) of a ZnO nanowire with a dielectric constant of 6 lying on a silica substrate. Zimmler et al., “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25, 024001 (2001). © 2006 IOP Publishing. Reproduced with permission. All rights reserved [79]. (b) Refractive-index-dependent endface reflectivity of H E 11 mode in nanowires with some typical diameters and wavelengths. Reproduced with permission, © 2009. Optical Society of America [80].

Figure 7
Figure 7

Normalized intensity of the far fields as a function of θ for (a)  T E 01 , T E 01 and (b)  H E 11 modes. Reproduced with permission, © 2004. Optical Society of America [81]. (c) Normalized intensity distributions along the y -axis in the x y plane ( z = 0 ) with distances of 100 nm ( x = 100 nm , near-field, in solid lines) and 3000 nm ( x = 3000 nm , far-field, in dashed lines) departed from the endfaces of a ZnO nanowire in air (red lines) and water (blue lines). Reproduced with permission, © 2008. Optical Society of America [82].

Figure 8
Figure 8

Substrate-induced effects in semiconductor nanowires. (a) 3D FDTD simulation of substrate-induced leakage of a ZnO ( n = 2.1 ) nanowire on silica ( n = 1.45 ) substrate. (b) Series of normalized emission spectra taken from a glass supported 315 μm long SnO 2 nanoribbon (cross section: 355 nm by 110 nm) as the pump spot was scanned away from the collection area. From Law et al., “Nanoribbon waveguides for subwavelength photonics integration,” Science 305, 1269–1273 (2004). Reprinted with permission from AAAS [71]. [Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher.]

Figure 9
Figure 9

Semiconductor nanowire F-P cavity. (a) Schematic of an F-P cavity laser. (b) F-P cavity formed by the nanowire’s endfaces. (c) F-P cavity formed by the hexagon’s endfaces parallel to the wire axis. Reproduced with permission from Van Vugt et al., Nano Lett. 6, 2707–2711 (2006). © 2006 American Chemical Society [83].

Figure 10
Figure 10

(a) SEM image of X-coupled CdSe nanowires. Both nanowires are 420 nm in diameter. (b) Optical microscope image of photoluminescence guiding and coupling in the X-coupled CdSe nanowires shown in (a). Reproduced with permission from Xiao et al., Appl. Phys. Lett. 99, 023109 (2011). © 2011, AIP Publishing LLC [91].

Figure 11
Figure 11

Semiconductor nanowire WGM cavities. (a) Schematic of a GaN ring structure showing the side-by-side overlap that enables evanescent coupling between cavity arms. The circulating optical modes within a resonator cavity containing a defect are theoretically equivalent to a photonic molecule. Reprinted with permission from Pauzauskie et al., Phys. Rev. Lett. 96, 143903 (2006) [87]. Copyright (2006) by the American Physical Society. http://prl.aps.org/abstract/PRL/v96/i14/e143903 [Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.] (b) Hexagonal-cross-section nanowire WGM cavity. Arrows indicate one possible direction of light circulation. Inset: intensity patterns of selected TM WGM for a hexagonal resonator. The mode numbers are indicated in the bottom right corners of the patterns. Czekalla et al., “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247, 1282–1293 (2010). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission [96].

Figure 12
Figure 12

Photonic-crystal-semiconductor-nanowire hybrid cavity. (a) Schematic of the CdS nanowire embedded photonic crystal with four engineered defects. Reproduced with permission from Barrelet et al., Nano Lett. 6, 11–15 (2006). © 2006 American Chemical Society [107]. (b) Schematic of a GaN nanowire embedded in a 2D photonic-crystal cavity. Reproduced with permission from Heo et al., Appl. Phys. Lett. 98, 021110 (2011). © 2011, AIP Publishing LLC [111].

Figure 13
Figure 13

(a) Optical microscope image of an MgF 2 -supported F-P resonator assembled using a 1.4-μm-diameter tellurite microfiber with a total length of about 1 mm. The white arrows indicate the direction of light propagation. (b) Typical transmission spectrum of an F-P resonator assembled with a 1.69 μm diameter tellurite microfiber. The dotted line stands for the theoretical fit. Reproduced with permission, © 2009. Optical Society of America [113].

Figure 14
Figure 14

Schematic model for optical pumping and spontaneous emission of a semiconductor nanowire.

Figure 15
Figure 15

PL spectra of ZnO nanowires of different diameters recorded at room temperature. Spectra A, B, and C correspond to nanowires with average diameters of 100, 50, and 25 nm, respectively. Yang et al., “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater. 12, 323–331 (2003). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission [9].

Figure 16
Figure 16

Typical experimental results of ZnO nanowire lasers. (a) 3D confocal PL image of a ZnO vertical nanowire cavity. Inset: SEM image of a ZnO vertical nanowire. Scale bar is 2 μm. (b) Diagram of a ZnO vertical nanowire cavity and its corresponding PL images collected along the nanowire. Lasing spectra of a single ZnO vertical nanowire cavity. Left inset: power dependence graph showing lasing threshold at roughly 400 μJ / cm 2 . Right inset: dark-field images of a ZnO nanowire under white light illumination (top) and lasing induced by 266 nm pulsed excitation (bottom). Scale bar is 2 μm. Reproduced with permission from Gargas et al., J. Am. Chem. Soc. 131, 2125–2127 (2009). © 2009 American Chemical Society [142].

Figure 17
Figure 17

Optical characterization of a 12.2 μm long, 250 nm diameter ZnO semiconductor nanowire laser. (a) Output spectra versus pump intensity of a ZnO nanowire laser. (b) SEM image and CCD images for the same nanowire as in (a) under different pump intensities. (c) Pump intensity dependence of the total output power (circles) for the same nanowire. (d) Same data of (c) fit on log–log scale. Zimmler et al., “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25, 024001 (2001). © 2006 IOP Publishing. Reproduced with permission. All rights reserved [79].

Figure 18
Figure 18

Room-temperature PL spectra of GaN nanowire array (solid line), 5 μm planar GaN film (dashed line), and 0.6 μm planar GaN film (dotted line). Spectral intensity for the planar GaN films has been magnified by 50 × . Reproduced with permission from Hersee et al., Nano Lett. 6, 1808–1811 (2006). © 2006. American Chemical Society [155].

Figure 19
Figure 19

Measured laser emission intensity of the GaN nanowire coupled to a DBR microcavity as a function of incident energy at 200 K. Inset: PL spectrum at different pumping power. Reprinted with permission from A. Das et al., Phys. Rev. Lett. 107, 066405 (2011). [158] Copyright (2011) by the American Physical Society. [Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.] http://prl.aps.org/abstract/PRL/v107/i6/e066405

Figure 20
Figure 20

PL spectrum of ZnS nanowires taken at room temperature excited by a 266 nm UV laser. Two strong emission bands near band edge and four weak defect luminescence bands were observed. Blue curves are Lorentzian line shape analyses after a least-squares multi-Lorentzian fit (red curves). The defect luminescence spectrum is multiplied by a factor of 40 in the figure for clarity. Reproduced with permission from Xiong et al., Nano Lett. 4, 1663–1668 (2004). © 2004 American Chemical Society [164].

Figure 21
Figure 21

Typical experimental results of ZnS nanowire lasers. (a) PL of a single ZnS nanoribbon (100 nm thickness, 60 μm length) excited by a 266 nm laser beam with different power densities. Inset (top left): optical image of the single ZnS nanoribbon dispersed on a transmission electron microscopy (TEM) grid; scale bar, 25 μm. Inset (top right): PL intensity versus input power density. Reproduced with permission from Zapien et al., Appl. Phys. Lett. 84, 1189–1191 (2004). © 2004, AIP Publishing LLC [30]. (b) Room-temperature PL spectra of multiple ZnS nanowires excited by a 266 nm laser beam with increasing power densities of 80, 130, and 170 kW / cm 2 . Inset: TEM image of a ZnS nanowire. Reproduced with permission from Ding et al., Appl. Phys. Lett. 85, 2361–2363 (2004). © 2004, AIP Publishing LLC [165].

Figure 22
Figure 22

PL spectra of a 40–μm–length, 100–nm–diameter CdS nanowire recorded at 4.2 K with excitation powers of 0.6, 1.5, 30, and 240 nJ / cm 2 for the black, blue, red, and green curves, respectively. Inset: peak intensities of I1 (black squares) and P (red circles) bands versus incident laser power. Solid lines are numerical fits to the data with power exponents of 0.95 for I1 and 1.8 for P . Reproduced with permission from Agarwal et al., Nano Lett. 5, 917–920 (2005). © 2005 American Chemical Society [173].

Figure 23
Figure 23

(a) Schematic of the electro-optic modulator (EOM) nanowire laser. At right, PL image and optical micrograph of a representative CdS nanowire EOM-laser device recorded below laser threshold. Scale bar, 5 μm. (b) Emission spectra of a CdS nanowire laser showing effect of a 30 V signal. (c) Modulation M versus V at the two indicated wavelengths for the EOM-laser in (b). Error bars reflect the standard deviation of the responses to 50 square-wave pulses at 0.5 Hz. Reproduced with permission from Greytak et al., Appl. Phys. Lett. 87, 151103 (2005). © 2005, AIP Publishing LLC [178].

Figure 24
Figure 24

Room-temperature EL spectra of a CdSe nanobelt under forward biases from 2 to 5 V incremented by 1 V. The inset is the room-temperature PL spectrum of the single CdSe nanobelt. Reproduced with permission from Liu et al., J. Phys. Chem. C 113, 14478–14481 (2009). © 2009 American Chemical Society [188].