Abstract

Several classes of non-planar metallic and dielectric waveguides have been proposed in the literature for guidance of terahertz (THz) or T-ray radiation. In this review, we focus on the development of dielectric waveguides, in the THz regime, with reduced loss and dispersion. First, we examine different THz spectroscopy configurations and fundamental equations employed for characterization of THz waveguides. Then we divide THz dielectric waveguides into three classes: solid-core, hollow-core, and porous-core waveguides. The guiding mechanism, fabrication steps, measured loss, and dispersion are presented for the waveguides in each class in chronological order. The goal of this review is to compare and contrast the current solutions for guiding THz radiation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95, 1509–1513 (2007).
    [CrossRef]
  2. W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
    [CrossRef]
  3. D. Mittleman, Sensing with Terahertz Radiation (Springer-Verlag, 2003).
  4. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science+Business Media, 2009).
  5. S. L. Dexheimer, Terahertz Spectroscopy Principles and Applications (CRC Press, 2008).
  6. G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, 1991).
  7. J. M. López-Higuera, L. R. Cobo, A. Q. Incera, and A. Cobo, “Fiber optic sensors in structural health monitoring,” J. Lightwave Technol. 29, 587–608 (2011).
    [CrossRef]
  8. D. R. Walt, “Fibre optic microarrays,” Chem. Soc. Rev. 39, 38–50 (2010).
    [CrossRef]
  9. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [CrossRef]
  10. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [CrossRef]
  11. T. M. Monro, “Beyond the diffraction limit,” Nat. Photonics 1, 89–90 (2007).
    [CrossRef]
  12. K. Eshraghian, “SoC emerging technologies,” Proc. IEEE 94, 1197–1213 (2006).
    [CrossRef]
  13. J. S. Melinger, S. S. Harsha, N. Laman, and D. Grischkowsky, “Guided-wave terahertz spectroscopy of molecular solids [Invited],” J. Opt. Soc. Am. B 26, A79–A89 (2009).
    [CrossRef]
  14. M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18, S601–S618 (2006).
    [CrossRef]
  15. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Appl. Phys. Lett. 97, 176805 (2006).
    [CrossRef]
  16. V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on a parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100, 231108 (2012).
    [CrossRef]
  17. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
    [CrossRef]
  18. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
    [CrossRef]
  19. S. Atakaramians, “Terahertz waveguides: a study of microwires and porous fibres,” Ph.D. thesis (The University of Adelaide, 2011).
  20. D. H. Auston, A. M. Johnson, P. R. Smith, and J. C. Bean, “Picosecond optoelectronic detection, sampling, and correlation-measurements in amorphous-semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
    [CrossRef]
  21. P. R. Smith, D. H. Auston, and W. M. Augustyniak, “Measurement of GaAs field-effect transistor electronic impulse-response by picosecond optical electronics,” Appl. Phys. Lett. 39, 739–741 (1981).
    [CrossRef]
  22. M. B. Ketchen, D. Grischkowsky, T. C. Chen, C. C. Chi, N. I. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
    [CrossRef]
  23. D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122–1135 (2000).
    [CrossRef]
  24. D. Grischkowsky, N. I. Duling, J. C. Chen, and C.-C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59, 1663–1666 (1987).
    [CrossRef]
  25. K. C. Gupta, R. Grag, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd ed. (Artech House, 1996).
  26. C. P. Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microwave Theory Tech. MT-17, 1087–1090 (1969).
    [CrossRef]
  27. C. Nguyen, Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Transmission Line Structures (Wiley, 2001).
  28. D. E. Cooper, “Picosecond optoelectronic measurement of microstrip dispersion,” Appl. Phys. Lett. 47, 33–35 (1985).
    [CrossRef]
  29. R. Sprik, I. N. Duling, C. C. Chi, and D. Grischkowsky, “Far infrared-spectroscopy with subpicosecond electrical pulses on transmission-lines,” Appl. Phys. Lett. 51, 548–550 (1987).
    [CrossRef]
  30. W. Withayachumnankul, “Engineering aspects of terahertz time-domain spectroscopy,” Ph.D. thesis (The University of Adelaide, 2009).
  31. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999).
    [CrossRef]
  32. M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
    [CrossRef]
  33. M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
    [CrossRef]
  34. A. Treizebre, T. Akalin, and B. Bocquet, “Planar excitation of Goubau transmission lines for THz bioMEMS,” IEEE Microw. Wirel. Compon. Lett. 15, 886–888 (2005).
    [CrossRef]
  35. T. Akalin, A. Treizebre, and B. Bocquet, “Single-wire transmission lines at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 54, 2762–2767 (2006).
    [CrossRef]
  36. Y. Xu and R. G. Bosisio, “A comprehensive study on the planar type of Goubau line for millimetre and submillimetre wave integrated circuits,” IET Microw. Antennas Propag. 1, 681–687 (2007).
    [CrossRef]
  37. L. Dazhang, J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, “On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors,” Appl. Phys. Lett. 95, 092903 (2009).
    [CrossRef]
  38. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006).
    [CrossRef]
  39. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
    [CrossRef]
  40. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009).
    [CrossRef]
  41. T.-I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
    [CrossRef]
  42. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005).
    [CrossRef]
  43. S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
    [CrossRef]
  44. Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
    [CrossRef]
  45. M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
    [CrossRef]
  46. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
    [CrossRef]
  47. S. Atakaramians, S. Afshar V., H. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
    [CrossRef]
  48. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
    [CrossRef]
  49. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
    [CrossRef]
  50. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
    [CrossRef]
  51. R. Mendis, “First broadband experimental study of planar THz waveguides,” Ph.D. thesis (Oklahoma State University, 2001).
  52. J. Werner, E. Kapon, A. C. V. Lehmen, R. Bhat, E. Colas, N. G. Stoffel, and S. A. Schwarz, “Reduced optical waveguide losses of a partially disordered GaAs/AlGaAs single quantum well laser structure for photonic integrated circuits,” Appl. Phys. Lett. 53, 1693–1695 (1988).
    [CrossRef]
  53. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944–9954 (2006).
    [CrossRef]
  54. R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
    [CrossRef]
  55. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
    [CrossRef]
  56. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26, A6–A13 (2009).
    [CrossRef]
  57. T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094 (2004).
    [CrossRef]
  58. A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett. 18, 428–430 (2008).
    [CrossRef]
  59. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
    [CrossRef]
  60. M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246–254 (1962).
  61. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “THz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004).
    [CrossRef]
  62. B. M. Fischer, “Broadband THz time-domain spectroscopy of biomolecules,” Ph.D. thesis (University of Freiburg, 2005).
  63. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).
  64. J. Balakrishnan, B. M. Fischer, and D. Abbott, “Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy,” Appl. Opt. 48, 2262–2266 (2009).
    [CrossRef]
  65. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
    [CrossRef]
  66. F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
    [CrossRef]
  67. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36, 666–668 (2011).
    [CrossRef]
  68. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Sci. 36, 467–495 (2006).
    [CrossRef]
  69. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
    [CrossRef]
  70. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
    [CrossRef]
  71. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
    [CrossRef]
  72. J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).
  73. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Pub. 4, 09004 (2009).
    [CrossRef]
  74. K. J. Rowland, “Guiding light in low-index media via multilayer waveguides,” Ph.D. thesis (The University of Adelaide, 2010).
  75. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef]
  76. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [CrossRef]
  77. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
    [CrossRef]
  78. T. Katagiri, Y. Matsuura, and M. Miyagi, “Photonic bandgap fiber with a silica core and multilayer dielectric cladding,” Opt. Lett. 29, 557–559 (2004).
    [CrossRef]
  79. F. Couny, F. Benabid, and P. S. Light, “Large-pitch Kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
    [CrossRef]
  80. A. Argyros and J. Pla, “Hollow-core polymer fibers with a Kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
    [CrossRef]
  81. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008).
    [CrossRef]
  82. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008).
    [CrossRef]
  83. K. J. Rowland, S. Afshar V., and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008).
    [CrossRef]
  84. K. J. Rowland, S. Afshar V., A. Stolyarov, Y. Fink, and T. M. Monro, “Bragg waveguides with low-index liquid cores,” Opt. Express 20, 48–62 (2012).
    [CrossRef]
  85. T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding THz waveguide,” Proc. SPIE 5135, 70–77 (2003).
    [CrossRef]
  86. T. Hidaka, I. Morohashi, K. Komori, H. Nakagawa, and H. Ito, “THz wave hollow waveguide with ferroelectric PVDF polymer as the cladding material,” in IEEE Conference on Lasers and Electro-Optics Europe (IEEE, 2000), paper CWF7.
  87. T. Hidaka, H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469–2473 (2005).
    [CrossRef]
  88. M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17, 14851–14864 (2009).
    [CrossRef]
  89. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
    [CrossRef]
  90. T. Ito, Y. Matsuura, M. Miyagi, H. Minarnide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
    [CrossRef]
  91. O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
    [CrossRef]
  92. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008).
    [CrossRef]
  93. X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009).
    [CrossRef]
  94. D. R. Chen and H. B. Chen, “A novel low-loss terahertz waveguide: polymer tube,” Opt. Express 18, 3762–3767 (2010).
    [CrossRef]
  95. F. Gérôme, R. Jamier, J. L. Auguste, G. Humbert, and J. M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35, 1157–1159 (2010).
    [CrossRef]
  96. R. A. Correa and J. Knight, “Specialty fibers: novel process eases production of hollow-core fiber,” Laser Focus World 44, 67–71 (2008).
  97. The confinement loss for axial mode propagation is the loss of power through the transverse structure, which is also known as leakage loss.
  98. Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
    [CrossRef]
  99. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13, 7779–7793 (2005).
    [CrossRef]
  100. Y. F. Geng, X. L. Tan, K. Zhong, P. Wang, and J. Q. Yao, “Low loss plastic terahertz photonic band-gap fibers,” Chin. Phys. Lett. 25, 3961–3963 (2008).
    [CrossRef]
  101. G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008).
    [CrossRef]
  102. L. Vincetti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51, 1711–1714 (2009).
    [CrossRef]
  103. L. Vincetti and A. Polemi, “Hollow core fiber for THz applications,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 2009), pp. 1–4.
  104. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
    [CrossRef]
  105. R. J. Yu, B. Zhang, Y. Q. Zhang, C. Q. Wu, Z. G. Tian, and X. Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
    [CrossRef]
  106. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28, 896–907 (2011).
    [CrossRef]
  107. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
    [CrossRef]
  108. L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for terahertz applications,” Opt. Fiber Technol. 15, 398–401 (2009).
    [CrossRef]
  109. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
    [CrossRef]
  110. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt. Express 19, 18470–18478 (2011).
    [CrossRef]
  111. D. S. Wu, A. Argyros, and S. G. Leon-Saval, “Reducing the size of hollow terahertz waveguides,” J. Lightwave Technol. 29, 97–103 (2011).
    [CrossRef]
  112. L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283, 979–984 (2010).
    [CrossRef]
  113. W. Withayachumnankul and D. Abbott, “Metamaterial in the terahertz regime,” IEEE Photon. J. 1, 99–118 (2009).
    [CrossRef]
  114. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
    [CrossRef]
  115. S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29, 2462–2477 (2012).
    [CrossRef]
  116. S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30, 851–867 (2013).
    [CrossRef]
  117. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
    [CrossRef]
  118. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
    [CrossRef]
  119. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
    [CrossRef]
  120. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [CrossRef]
  121. S. Atakaramians, S. Afshar Vahid, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss terahertz transmission,” Proc. SPIE 6414, 64140I (2006).
    [CrossRef]
  122. S. Afshar Vahid, S. Atakaramians, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss, low dispersion T-ray transmission in microwires,” in Proceedings of Quantum Electronics and Laser Science Conference (IEEE, 2007), paper JWA105.
  123. B. You, T. A. Liu, J. L. Peng, C. L. Pan, and J. Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17, 20675–20683 (2009).
    [CrossRef]
  124. B. W. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96, 051105 (2010).
    [CrossRef]
  125. H. W. Chen, C. M. Chiu, C. H. Lai, J. L. Kuo, P. J. Chiang, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Subwavelength dielectric-fiber-based THz coupler,” J. Lightwave Technol. 27, 1489–1495 (2009).
    [CrossRef]
  126. J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,” Opt. Express 16, 2494–2501 (2008).
    [CrossRef]
  127. M. Roze, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19, 9127–9138 (2011).
    [CrossRef]
  128. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
    [CrossRef]
  129. J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical-constants of some common low-loss polymers between 4 and 40  cm−1,” Infrared Phys. 21, 225–228 (1981).
    [CrossRef]
  130. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28, 1013–1018 (2011).
    [CrossRef]
  131. G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Crus, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
    [CrossRef]
  132. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
    [CrossRef]
  133. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
    [CrossRef]
  134. S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
    [CrossRef]
  135. S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
    [CrossRef]
  136. S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “Experimental investigation of dispersion properties of THz porous fibers,” in 33rd International IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.
  137. S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J. 1, 286–292 (2009).
    [CrossRef]
  138. S.-Y. Wang, “Microstructured optical fiber with improved transmission efficiency and durability,” U.S. patent6,418,258 (July9, 2002).
  139. X. Chen, M.-J. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express 12, 3888–3893 (2004).
    [CrossRef]
  140. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17, 8012–8028 (2009).
    [CrossRef]
  141. A. Dupuis, A. Mazhorova, F. Desevedavy, M. Roze, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18, 13813–13828 (2010).
    [CrossRef]
  142. G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibers,” Opt. Fiber Technol. 10, 325–335 (2004).
    [CrossRef]
  143. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15096 (2007).
    [CrossRef]
  144. H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-na microstructured polymer optical fiber,” Opt. Commun. 273, 133–137 (2007).
    [CrossRef]
  145. H. Ebendorff-Heidepriem, R. C. Moore, and T. M. Monro, “Progress in the fabrication of the next-generation soft glass microstructured optical fibers,” in 1st Workshop on Speciality Optical Fibers and Their Applications, Vol.1055 of AIP Conference Proceedings (AIP, 2008), pp. 95–98.
  146. S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibers,” Opt. Commun. 265, 513–520 (2006).
    [CrossRef]
  147. D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “Analysis and design of a continuous-wave terahertz photoconductive photomixer array source,” IEEE Trans. Antennas Propag. 53, 4044–4050 (2005).
    [CrossRef]

2013

2012

2011

S. Atakaramians, S. Afshar V., H. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36, 666–668 (2011).
[CrossRef]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[CrossRef]

D. S. Wu, A. Argyros, and S. G. Leon-Saval, “Reducing the size of hollow terahertz waveguides,” J. Lightwave Technol. 29, 97–103 (2011).
[CrossRef]

J. M. López-Higuera, L. R. Cobo, A. Q. Incera, and A. Cobo, “Fiber optic sensors in structural health monitoring,” J. Lightwave Technol. 29, 587–608 (2011).
[CrossRef]

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28, 896–907 (2011).
[CrossRef]

J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28, 1013–1018 (2011).
[CrossRef]

M. Roze, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19, 9127–9138 (2011).
[CrossRef]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt. Express 19, 18470–18478 (2011).
[CrossRef]

2010

2009

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[CrossRef]

L. Dazhang, J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, “On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors,” Appl. Phys. Lett. 95, 092903 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
[CrossRef]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J. 1, 286–292 (2009).
[CrossRef]

W. Withayachumnankul and D. Abbott, “Metamaterial in the terahertz regime,” IEEE Photon. J. 1, 99–118 (2009).
[CrossRef]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[CrossRef]

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for terahertz applications,” Opt. Fiber Technol. 15, 398–401 (2009).
[CrossRef]

L. Vincetti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51, 1711–1714 (2009).
[CrossRef]

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Pub. 4, 09004 (2009).
[CrossRef]

J. Balakrishnan, B. M. Fischer, and D. Abbott, “Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy,” Appl. Opt. 48, 2262–2266 (2009).
[CrossRef]

R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26, A6–A13 (2009).
[CrossRef]

A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17, 8012–8028 (2009).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
[CrossRef]

H. W. Chen, C. M. Chiu, C. H. Lai, J. L. Kuo, P. J. Chiang, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Subwavelength dielectric-fiber-based THz coupler,” J. Lightwave Technol. 27, 1489–1495 (2009).
[CrossRef]

J. S. Melinger, S. S. Harsha, N. Laman, and D. Grischkowsky, “Guided-wave terahertz spectroscopy of molecular solids [Invited],” J. Opt. Soc. Am. B 26, A79–A89 (2009).
[CrossRef]

X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
[CrossRef]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
[CrossRef]

M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17, 14851–14864 (2009).
[CrossRef]

B. You, T. A. Liu, J. L. Peng, C. L. Pan, and J. Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17, 20675–20683 (2009).
[CrossRef]

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009).
[CrossRef]

2008

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef]

J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,” Opt. Express 16, 2494–2501 (2008).
[CrossRef]

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008).
[CrossRef]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
[CrossRef]

G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008).
[CrossRef]

K. J. Rowland, S. Afshar V., and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008).
[CrossRef]

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008).
[CrossRef]

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Y. F. Geng, X. L. Tan, K. Zhong, P. Wang, and J. Q. Yao, “Low loss plastic terahertz photonic band-gap fibers,” Chin. Phys. Lett. 25, 3961–3963 (2008).
[CrossRef]

R. A. Correa and J. Knight, “Specialty fibers: novel process eases production of hollow-core fiber,” Laser Focus World 44, 67–71 (2008).

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
[CrossRef]

A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett. 18, 428–430 (2008).
[CrossRef]

2007

Y. Xu and R. G. Bosisio, “A comprehensive study on the planar type of Goubau line for millimetre and submillimetre wave integrated circuits,” IET Microw. Antennas Propag. 1, 681–687 (2007).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[CrossRef]

D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95, 1509–1513 (2007).
[CrossRef]

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

T. M. Monro, “Beyond the diffraction limit,” Nat. Photonics 1, 89–90 (2007).
[CrossRef]

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Crus, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

R. J. Yu, B. Zhang, Y. Q. Zhang, C. Q. Wu, Z. G. Tian, and X. Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-na microstructured polymer optical fiber,” Opt. Commun. 273, 133–137 (2007).
[CrossRef]

T. Ito, Y. Matsuura, M. Miyagi, H. Minarnide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
[CrossRef]

A. Argyros and J. Pla, “Hollow-core polymer fibers with a Kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15096 (2007).
[CrossRef]

2006

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibers,” Opt. Commun. 265, 513–520 (2006).
[CrossRef]

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006).
[CrossRef]

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944–9954 (2006).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch Kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss terahertz transmission,” Proc. SPIE 6414, 64140I (2006).
[CrossRef]

K. Eshraghian, “SoC emerging technologies,” Proc. IEEE 94, 1197–1213 (2006).
[CrossRef]

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18, S601–S618 (2006).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Appl. Phys. Lett. 97, 176805 (2006).
[CrossRef]

T. Akalin, A. Treizebre, and B. Bocquet, “Single-wire transmission lines at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 54, 2762–2767 (2006).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Sci. 36, 467–495 (2006).
[CrossRef]

2005

T.-I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

A. Treizebre, T. Akalin, and B. Bocquet, “Planar excitation of Goubau transmission lines for THz bioMEMS,” IEEE Microw. Wirel. Compon. Lett. 15, 886–888 (2005).
[CrossRef]

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “Analysis and design of a continuous-wave terahertz photoconductive photomixer array source,” IEEE Trans. Antennas Propag. 53, 4044–4050 (2005).
[CrossRef]

T. Hidaka, H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469–2473 (2005).
[CrossRef]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13, 7779–7793 (2005).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005).
[CrossRef]

2004

T. Katagiri, Y. Matsuura, and M. Miyagi, “Photonic bandgap fiber with a silica core and multilayer dielectric cladding,” Opt. Lett. 29, 557–559 (2004).
[CrossRef]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef]

J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “THz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004).
[CrossRef]

X. Chen, M.-J. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express 12, 3888–3893 (2004).
[CrossRef]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094 (2004).
[CrossRef]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibers,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

2003

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding THz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

2002

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

2001

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
[CrossRef]

2000

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122–1135 (2000).
[CrossRef]

1999

1998

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

1996

1994

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

1989

M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
[CrossRef]

1988

J. Werner, E. Kapon, A. C. V. Lehmen, R. Bhat, E. Colas, N. G. Stoffel, and S. A. Schwarz, “Reduced optical waveguide losses of a partially disordered GaAs/AlGaAs single quantum well laser structure for photonic integrated circuits,” Appl. Phys. Lett. 53, 1693–1695 (1988).
[CrossRef]

1987

R. Sprik, I. N. Duling, C. C. Chi, and D. Grischkowsky, “Far infrared-spectroscopy with subpicosecond electrical pulses on transmission-lines,” Appl. Phys. Lett. 51, 548–550 (1987).
[CrossRef]

D. Grischkowsky, N. I. Duling, J. C. Chen, and C.-C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59, 1663–1666 (1987).
[CrossRef]

1986

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C. C. Chi, N. I. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

1985

D. E. Cooper, “Picosecond optoelectronic measurement of microstrip dispersion,” Appl. Phys. Lett. 47, 33–35 (1985).
[CrossRef]

1981

P. R. Smith, D. H. Auston, and W. M. Augustyniak, “Measurement of GaAs field-effect transistor electronic impulse-response by picosecond optical electronics,” Appl. Phys. Lett. 39, 739–741 (1981).
[CrossRef]

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical-constants of some common low-loss polymers between 4 and 40  cm−1,” Infrared Phys. 21, 225–228 (1981).
[CrossRef]

1980

D. H. Auston, A. M. Johnson, P. R. Smith, and J. C. Bean, “Picosecond optoelectronic detection, sampling, and correlation-measurements in amorphous-semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
[CrossRef]

1969

C. P. Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microwave Theory Tech. MT-17, 1087–1090 (1969).
[CrossRef]

1962

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246–254 (1962).

Abbott, D.

S. Atakaramians, S. Afshar V., H. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
[CrossRef]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J. 1, 286–292 (2009).
[CrossRef]

W. Withayachumnankul and D. Abbott, “Metamaterial in the terahertz regime,” IEEE Photon. J. 1, 99–118 (2009).
[CrossRef]

J. Balakrishnan, B. M. Fischer, and D. Abbott, “Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy,” Appl. Opt. 48, 2262–2266 (2009).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
[CrossRef]

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95, 1509–1513 (2007).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss terahertz transmission,” Proc. SPIE 6414, 64140I (2006).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “Experimental investigation of dispersion properties of THz porous fibers,” in 33rd International IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.

S. Afshar Vahid, S. Atakaramians, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss, low dispersion T-ray transmission in microwires,” in Proceedings of Quantum Electronics and Laser Science Conference (IEEE, 2007), paper JWA105.

Adam, A. J. L.

Afshar V., S.

K. J. Rowland, S. Afshar V., A. Stolyarov, Y. Fink, and T. M. Monro, “Bragg waveguides with low-index liquid cores,” Opt. Express 20, 48–62 (2012).
[CrossRef]

S. Atakaramians, S. Afshar V., H. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J. 1, 286–292 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
[CrossRef]

K. J. Rowland, S. Afshar V., and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008).
[CrossRef]

Afshar Vahid, S.

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss terahertz transmission,” Proc. SPIE 6414, 64140I (2006).
[CrossRef]

S. Afshar Vahid, S. Atakaramians, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss, low dispersion T-ray transmission in microwires,” in Proceedings of Quantum Electronics and Laser Science Conference (IEEE, 2007), paper JWA105.

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “Experimental investigation of dispersion properties of THz porous fibers,” in 33rd International IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.

Akalin, T.

T. Akalin, A. Treizebre, and B. Bocquet, “Single-wire transmission lines at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 54, 2762–2767 (2006).
[CrossRef]

A. Treizebre, T. Akalin, and B. Bocquet, “Planar excitation of Goubau transmission lines for THz bioMEMS,” IEEE Microw. Wirel. Compon. Lett. 15, 886–888 (2005).
[CrossRef]

Akiyama, T.

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding THz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[CrossRef]

Allard, J.-F.

Almeida, V. R.

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Appl. Phys. Lett. 97, 176805 (2006).
[CrossRef]

Anthony, J.

Argyros, A.

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30, 851–867 (2013).
[CrossRef]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29, 2462–2477 (2012).
[CrossRef]

J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28, 1013–1018 (2011).
[CrossRef]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt. Express 19, 18470–18478 (2011).
[CrossRef]

D. S. Wu, A. Argyros, and S. G. Leon-Saval, “Reducing the size of hollow terahertz waveguides,” J. Lightwave Technol. 29, 97–103 (2011).
[CrossRef]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
[CrossRef]

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008).
[CrossRef]

A. Argyros and J. Pla, “Hollow-core polymer fibers with a Kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Astley, V.

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on a parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100, 231108 (2012).
[CrossRef]

Atakaramians, S.

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30, 851–867 (2013).
[CrossRef]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29, 2462–2477 (2012).
[CrossRef]

S. Atakaramians, S. Afshar V., H. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
[CrossRef]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J. 1, 286–292 (2009).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
[CrossRef]

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss terahertz transmission,” Proc. SPIE 6414, 64140I (2006).
[CrossRef]

S. Atakaramians, “Terahertz waveguides: a study of microwires and porous fibres,” Ph.D. thesis (The University of Adelaide, 2011).

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “Experimental investigation of dispersion properties of THz porous fibers,” in 33rd International IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.

S. Afshar Vahid, S. Atakaramians, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss, low dispersion T-ray transmission in microwires,” in Proceedings of Quantum Electronics and Laser Science Conference (IEEE, 2007), paper JWA105.

Atkin, D. M.

Auguste, J. L.

Augustyniak, W. M.

P. R. Smith, D. H. Auston, and W. M. Augustyniak, “Measurement of GaAs field-effect transistor electronic impulse-response by picosecond optical electronics,” Appl. Phys. Lett. 39, 739–741 (1981).
[CrossRef]

Auston, D. H.

P. R. Smith, D. H. Auston, and W. M. Augustyniak, “Measurement of GaAs field-effect transistor electronic impulse-response by picosecond optical electronics,” Appl. Phys. Lett. 39, 739–741 (1981).
[CrossRef]

D. H. Auston, A. M. Johnson, P. R. Smith, and J. C. Bean, “Picosecond optoelectronic detection, sampling, and correlation-measurements in amorphous-semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
[CrossRef]

Bahl, I.

K. C. Gupta, R. Grag, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd ed. (Artech House, 1996).

Bai, X. Z.

R. J. Yu, B. Zhang, Y. Q. Zhang, C. Q. Wu, Z. G. Tian, and X. Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Balakrishnan, J.

J. Balakrishnan, B. M. Fischer, and D. Abbott, “Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy,” Appl. Opt. 48, 2262–2266 (2009).
[CrossRef]

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Bang, O.

Barrios, C. A.

Bartal, G.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[CrossRef]

Barton, G.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibers,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

Barton, G. W.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibers,” Opt. Commun. 265, 513–520 (2006).
[CrossRef]

Bean, J. C.

D. H. Auston, A. M. Johnson, P. R. Smith, and J. C. Bean, “Picosecond optoelectronic detection, sampling, and correlation-measurements in amorphous-semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
[CrossRef]

Benabid, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[CrossRef]

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Pub. 4, 09004 (2009).
[CrossRef]

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008).
[CrossRef]

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Crus, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch Kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
[CrossRef]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

Bhartia, P.

K. C. Gupta, R. Grag, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd ed. (Artech House, 1996).

Bhat, R.

J. Werner, E. Kapon, A. C. V. Lehmen, R. Bhat, E. Colas, N. G. Stoffel, and S. A. Schwarz, “Reduced optical waveguide losses of a partially disordered GaAs/AlGaAs single quantum well laser structure for photonic integrated circuits,” Appl. Phys. Lett. 53, 1693–1695 (1988).
[CrossRef]

Bingham, A.

A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett. 18, 428–430 (2008).
[CrossRef]

Birch, J. R.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical-constants of some common low-loss polymers between 4 and 40  cm−1,” Infrared Phys. 21, 225–228 (1981).
[CrossRef]

Birks, T. A.

Blondy, J. M.

Bocquet, B.

T. Akalin, A. Treizebre, and B. Bocquet, “Single-wire transmission lines at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 54, 2762–2767 (2006).
[CrossRef]

A. Treizebre, T. Akalin, and B. Bocquet, “Planar excitation of Goubau transmission lines for THz bioMEMS,” IEEE Microw. Wirel. Compon. Lett. 15, 886–888 (2005).
[CrossRef]

Bosisio, R. G.

Y. Xu and R. G. Bosisio, “A comprehensive study on the planar type of Goubau line for millimetre and submillimetre wave integrated circuits,” IET Microw. Antennas Propag. 1, 681–687 (2007).
[CrossRef]

Bowden, B.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

Brechet, F.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
[CrossRef]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

Burnett, A. D.

L. Dazhang, J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, “On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors,” Appl. Phys. Lett. 95, 092903 (2009).
[CrossRef]

Byrne, M. B.

L. Dazhang, J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, “On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors,” Appl. Phys. Lett. 95, 092903 (2009).
[CrossRef]

Canning, J.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J. 1, 286–292 (2009).
[CrossRef]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Carberry, J. P.

Chang, H. C.

Chang, H.-C.

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Chen, D. R.

Chen, H. B.

Chen, H. W.

Chen, H.-W.

Chen, J. C.

D. Grischkowsky, N. I. Duling, J. C. Chen, and C.-C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59, 1663–1666 (1987).
[CrossRef]

Chen, L.-J.

Chen, T. C.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C. C. Chi, N. I. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Chen, X.

Chi, C. C.

R. Sprik, I. N. Duling, C. C. Chi, and D. Grischkowsky, “Far infrared-spectroscopy with subpicosecond electrical pulses on transmission-lines,” Appl. Phys. Lett. 51, 548–550 (1987).
[CrossRef]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C. C. Chi, N. I. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Chi, C.-C.

D. Grischkowsky, N. I. Duling, J. C. Chen, and C.-C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59, 1663–1666 (1987).
[CrossRef]

Chiang, P. J.

Chiu, C. M.

Chiu, C.-M.

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Cho, M.

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Chuen, M. O. L.

Cobo, A.

Cobo, L. R.

Colas, E.

J. Werner, E. Kapon, A. C. V. Lehmen, R. Bhat, E. Colas, N. G. Stoffel, and S. A. Schwarz, “Reduced optical waveguide losses of a partially disordered GaAs/AlGaAs single quantum well laser structure for photonic integrated circuits,” Appl. Phys. Lett. 53, 1693–1695 (1988).
[CrossRef]

Cook, K.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J. 1, 286–292 (2009).
[CrossRef]

Cooper, D. E.

D. E. Cooper, “Picosecond optoelectronic measurement of microstrip dispersion,” Appl. Phys. Lett. 47, 33–35 (1985).
[CrossRef]

Cordeiro, C. M. B.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Crus, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[CrossRef]

Correa, R. A.

R. A. Correa and J. Knight, “Specialty fibers: novel process eases production of hollow-core fiber,” Laser Focus World 44, 67–71 (2008).

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[CrossRef]

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Pub. 4, 09004 (2009).
[CrossRef]

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008).
[CrossRef]

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Crus, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch Kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
[CrossRef]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13, 7779–7793 (2005).
[CrossRef]

Crowley, A. M.

Crus, C. H. B.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Crus, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[CrossRef]

Cunningham, J.

L. Dazhang, J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, “On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors,” Appl. Phys. Lett. 95, 092903 (2009).
[CrossRef]

Cunningham, P. D.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Dai, J.

Davies, A. G.

L. Dazhang, J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, “On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors,” Appl. Phys. Lett. 95, 092903 (2009).
[CrossRef]

Dazhang, L.

L. Dazhang, J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, “On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors,” Appl. Phys. Lett. 95, 092903 (2009).
[CrossRef]

Desevedavy, F.

Dexheimer, S. L.

S. L. Dexheimer, Terahertz Spectroscopy Principles and Applications (CRC Press, 2008).

Docherty, A.

Dromey, J. D.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical-constants of some common low-loss polymers between 4 and 40  cm−1,” Infrared Phys. 21, 225–228 (1981).
[CrossRef]

Dubois, C.

Duling, I. N.

R. Sprik, I. N. Duling, C. C. Chi, and D. Grischkowsky, “Far infrared-spectroscopy with subpicosecond electrical pulses on transmission-lines,” Appl. Phys. Lett. 51, 548–550 (1987).
[CrossRef]

Duling, N. I.

D. Grischkowsky, N. I. Duling, J. C. Chen, and C.-C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59, 1663–1666 (1987).
[CrossRef]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C. C. Chi, N. I. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Dupuis, A.

Ebendorff-Heidepriem, H.

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
[CrossRef]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J. 1, 286–292 (2009).
[CrossRef]

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-na microstructured polymer optical fiber,” Opt. Commun. 273, 133–137 (2007).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15096 (2007).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Sci. 36, 467–495 (2006).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss terahertz transmission,” Proc. SPIE 6414, 64140I (2006).
[CrossRef]

H. Ebendorff-Heidepriem, R. C. Moore, and T. M. Monro, “Progress in the fabrication of the next-generation soft glass microstructured optical fibers,” in 1st Workshop on Speciality Optical Fibers and Their Applications, Vol.1055 of AIP Conference Proceedings (AIP, 2008), pp. 95–98.

S. Afshar Vahid, S. Atakaramians, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss, low dispersion T-ray transmission in microwires,” in Proceedings of Quantum Electronics and Laser Science Conference (IEEE, 2007), paper JWA105.

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “Experimental investigation of dispersion properties of THz porous fibers,” in 33rd International IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.

Ershad, S. M.

L. Dazhang, J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, “On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors,” Appl. Phys. Lett. 95, 092903 (2009).
[CrossRef]

Eshraghian, K.

K. Eshraghian, “SoC emerging technologies,” Proc. IEEE 94, 1197–1213 (2006).
[CrossRef]

Estacio, E.

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Fattinger, C.

M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
[CrossRef]

Ferguson, B.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Fernandez, F. A.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

Fink, Y.

K. J. Rowland, S. Afshar V., A. Stolyarov, Y. Fink, and T. M. Monro, “Bragg waveguides with low-index liquid cores,” Opt. Express 20, 48–62 (2012).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

Fischer, B. M.

J. Balakrishnan, B. M. Fischer, and D. Abbott, “Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy,” Appl. Opt. 48, 2262–2266 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
[CrossRef]

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss terahertz transmission,” Proc. SPIE 6414, 64140I (2006).
[CrossRef]

B. M. Fischer, “Broadband THz time-domain spectroscopy of biomolecules,” Ph.D. thesis (University of Freiburg, 2005).

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “Experimental investigation of dispersion properties of THz porous fibers,” in 33rd International IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.

S. Afshar Vahid, S. Atakaramians, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss, low dispersion T-ray transmission in microwires,” in Proceedings of Quantum Electronics and Laser Science Conference (IEEE, 2007), paper JWA105.

Fleming, S. C.

Först, M.

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18, S601–S618 (2006).
[CrossRef]

Fragnito, H. L.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Crus, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[CrossRef]

Gallagher, M. T.

Gallot, G.

Gan, J.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibers,” Opt. Commun. 265, 513–520 (2006).
[CrossRef]

Garcia-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Appl. Phys. Lett. 97, 176805 (2006).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Geng, Y. F.

Y. F. Geng, X. L. Tan, K. Zhong, P. Wang, and J. Q. Yao, “Low loss plastic terahertz photonic band-gap fibers,” Chin. Phys. Lett. 25, 3961–3963 (2008).
[CrossRef]

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

Genov, D. A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[CrossRef]

George, R.

Gérôme, F.

Gong, Y.

Goossen, K. W.

T.-I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Grag, R.

K. C. Gupta, R. Grag, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd ed. (Artech House, 1996).

Grischkowsky, D.

J. S. Melinger, S. S. Harsha, N. Laman, and D. Grischkowsky, “Guided-wave terahertz spectroscopy of molecular solids [Invited],” J. Opt. Soc. Am. B 26, A79–A89 (2009).
[CrossRef]

A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett. 18, 428–430 (2008).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094 (2004).
[CrossRef]

J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “THz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004).
[CrossRef]

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122–1135 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

D. Grischkowsky, N. I. Duling, J. C. Chen, and C.-C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59, 1663–1666 (1987).
[CrossRef]

R. Sprik, I. N. Duling, C. C. Chi, and D. Grischkowsky, “Far infrared-spectroscopy with subpicosecond electrical pulses on transmission-lines,” Appl. Phys. Lett. 51, 548–550 (1987).
[CrossRef]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C. C. Chi, N. I. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Gupta, K. C.

K. C. Gupta, R. Grag, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd ed. (Artech House, 1996).

Halas, N. J.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C. C. Chi, N. I. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Halbout, J.-M.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C. C. Chi, N. I. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Han, H.

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Han, Y.

Harrington, J. A.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[CrossRef]

J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).

Harsha, S. S.

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
[CrossRef]

Hayden, L. M.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Henry, G.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibers,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

Hidaka, T.

T. Hidaka, H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469–2473 (2005).
[CrossRef]

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding THz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[CrossRef]

T. Hidaka, I. Morohashi, K. Komori, H. Nakagawa, and H. Ito, “THz wave hollow waveguide with ferroelectric PVDF polymer as the cladding material,” in IEEE Conference on Lasers and Electro-Optics Europe (IEEE, 2000), paper CWF7.

Hsueh, Y.-C.

Hu, J.

Huang, Y.-J.

Humbert, G.

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Hwang, Y. J.

Hwang, Y.-J.

Ichikawa, S.

Incera, A. Q.

Ishibashi, K.

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
[CrossRef]

Ishikawa, A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[CrossRef]

Ito, H.

T. Ito, Y. Matsuura, M. Miyagi, H. Minarnide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
[CrossRef]

T. Hidaka, H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469–2473 (2005).
[CrossRef]

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding THz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[CrossRef]

T. Hidaka, I. Morohashi, K. Komori, H. Nakagawa, and H. Ito, “THz wave hollow waveguide with ferroelectric PVDF polymer as the cladding material,” in IEEE Conference on Lasers and Electro-Optics Europe (IEEE, 2000), paper CWF7.

Ito, T.

Iwai, K.

James, R.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

Jamier, R.

Jamison, S. P.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

Jen, A. K.-Y.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

T.-I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094 (2004).
[CrossRef]

Jepsen, P. U.

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

Johnson, A. M.

D. H. Auston, A. M. Johnson, P. R. Smith, and J. C. Bean, “Picosecond optoelectronic detection, sampling, and correlation-measurements in amorphous-semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
[CrossRef]

Jones, I.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Jones, J.

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on a parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100, 231108 (2012).
[CrossRef]

Jung, E.

Kao, T.-F.

Kapon, E.

J. Werner, E. Kapon, A. C. V. Lehmen, R. Bhat, E. Colas, N. G. Stoffel, and S. A. Schwarz, “Reduced optical waveguide losses of a partially disordered GaAs/AlGaAs single quantum well laser structure for photonic integrated circuits,” Appl. Phys. Lett. 53, 1693–1695 (1988).
[CrossRef]

Kash, J. A.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C. C. Chi, N. I. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Katagiri, T.

Kawano, Y.

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
[CrossRef]

Keiser, G.

G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, 1991).

Ketchen, M. B.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C. C. Chi, N. I. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Khanna, S.

L. Dazhang, J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, “On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors,” Appl. Phys. Lett. 95, 092903 (2009).
[CrossRef]

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Kim, J.

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

King, M. J.

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246–254 (1962).

Knight, J.

R. A. Correa and J. Knight, “Specialty fibers: novel process eases production of hollow-core fiber,” Laser Focus World 44, 67–71 (2008).

Knight, J. C.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Crus, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[CrossRef]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13, 7779–7793 (2005).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef]

Koch, K. W.

Komori, K.

T. Hidaka, I. Morohashi, K. Komori, H. Nakagawa, and H. Ito, “THz wave hollow waveguide with ferroelectric PVDF polymer as the cladding material,” in IEEE Conference on Lasers and Electro-Optics Europe (IEEE, 2000), paper CWF7.

Kuhlmey, B. T.

Kuo, C.-C.

Kuo, J. L.

Kurz, H.

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[CrossRef]

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18, S601–S618 (2006).
[CrossRef]

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944–9954 (2006).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005).
[CrossRef]

Lai, C. H.

Lai, C.-H.

Laman, N.

Large, M. C. J.

J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28, 1013–1018 (2011).
[CrossRef]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
[CrossRef]

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-na microstructured polymer optical fiber,” Opt. Commun. 273, 133–137 (2007).
[CrossRef]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibers,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

Law, S. H.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibers,” Opt. Commun. 265, 513–520 (2006).
[CrossRef]

Lee, Y.-S.

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science+Business Media, 2009).

Lehmen, A. C. V.

J. Werner, E. Kapon, A. C. V. Lehmen, R. Bhat, E. Colas, N. G. Stoffel, and S. A. Schwarz, “Reduced optical waveguide losses of a partially disordered GaAs/AlGaAs single quantum well laser structure for photonic integrated circuits,” Appl. Phys. Lett. 53, 1693–1695 (1988).
[CrossRef]

Leonhardt, R.

Leon-Saval, S. G.

Lesurf, J.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical-constants of some common low-loss polymers between 4 and 40  cm−1,” Infrared Phys. 21, 225–228 (1981).
[CrossRef]

Li, G. P.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C. C. Chi, N. I. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

Li, M.-J.

Li, Y.-T.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Light, P. S.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Pub. 4, 09004 (2009).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch Kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
[CrossRef]

Lin, H.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Linfield, E. H.

L. Dazhang, J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, “On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors,” Appl. Phys. Lett. 95, 092903 (2009).
[CrossRef]

Lipson, M.

Liu, T. A.

B. W. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96, 051105 (2010).
[CrossRef]

B. You, T. A. Liu, J. L. Peng, C. L. Pan, and J. Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17, 20675–20683 (2009).
[CrossRef]

López-Higuera, J. M.

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Lu, J. Y.

B. W. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96, 051105 (2010).
[CrossRef]

B. You, T. A. Liu, J. L. Peng, C. L. Pan, and J. Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17, 20675–20683 (2009).
[CrossRef]

Lu, J.-Y.

Luo, J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Lwin, R.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibers,” Opt. Commun. 265, 513–520 (2006).
[CrossRef]

Maeta, S.-I.

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding THz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[CrossRef]

Maier, S. A.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Crus, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Appl. Phys. Lett. 97, 176805 (2006).
[CrossRef]

Mangan, B. J.

Mansour, R. R.

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “Analysis and design of a continuous-wave terahertz photoconductive photomixer array source,” IEEE Trans. Antennas Propag. 53, 4044–4050 (2005).
[CrossRef]

Marchewka, A.

Marcou, J.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
[CrossRef]

Martin-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Appl. Phys. Lett. 97, 176805 (2006).
[CrossRef]

Matsuura, Y.

Mavrogordatos, T. K.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Mazhorova, A.

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

McGowan, R. W.

Melinger, J. S.

Mendis, R.

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on a parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100, 231108 (2012).
[CrossRef]

R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26, A6–A13 (2009).
[CrossRef]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

R. Mendis, “First broadband experimental study of planar THz waveguides,” Ph.D. thesis (Oklahoma State University, 2001).

Mickan, S. P.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Minamide, H.

T. Hidaka, H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469–2473 (2005).
[CrossRef]

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding THz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[CrossRef]

Minarnide, H.

Mitrofanov, O.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

Mittleman, D.

D. Mittleman, Sensing with Terahertz Radiation (Springer-Verlag, 2003).

Mittleman, D. M.

Miyagi, M.

Monro, T. M.

K. J. Rowland, S. Afshar V., A. Stolyarov, Y. Fink, and T. M. Monro, “Bragg waveguides with low-index liquid cores,” Opt. Express 20, 48–62 (2012).
[CrossRef]

S. Atakaramians, S. Afshar V., H. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
[CrossRef]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J. 1, 286–292 (2009).
[CrossRef]

K. J. Rowland, S. Afshar V., and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
[CrossRef]

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-na microstructured polymer optical fiber,” Opt. Commun. 273, 133–137 (2007).
[CrossRef]

T. M. Monro, “Beyond the diffraction limit,” Nat. Photonics 1, 89–90 (2007).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15096 (2007).
[CrossRef]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Sci. 36, 467–495 (2006).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss terahertz transmission,” Proc. SPIE 6414, 64140I (2006).
[CrossRef]

H. Ebendorff-Heidepriem, R. C. Moore, and T. M. Monro, “Progress in the fabrication of the next-generation soft glass microstructured optical fibers,” in 1st Workshop on Speciality Optical Fibers and Their Applications, Vol.1055 of AIP Conference Proceedings (AIP, 2008), pp. 95–98.

S. Afshar Vahid, S. Atakaramians, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss, low dispersion T-ray transmission in microwires,” in Proceedings of Quantum Electronics and Laser Science Conference (IEEE, 2007), paper JWA105.

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “Experimental investigation of dispersion properties of THz porous fibers,” in 33rd International IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.

Moon, K.

Moore, R. C.

H. Ebendorff-Heidepriem, R. C. Moore, and T. M. Monro, “Progress in the fabrication of the next-generation soft glass microstructured optical fibers,” in 1st Workshop on Speciality Optical Fibers and Their Applications, Vol.1055 of AIP Conference Proceedings (AIP, 2008), pp. 95–98.

Morohashi, I.

T. Hidaka, I. Morohashi, K. Komori, H. Nakagawa, and H. Ito, “THz wave hollow waveguide with ferroelectric PVDF polymer as the cladding material,” in IEEE Conference on Lasers and Electro-Optics Europe (IEEE, 2000), paper CWF7.

Morris, D.

Mortensen, N. A.

Mueller, E.

Nagel, M.

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[CrossRef]

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18, S601–S618 (2006).
[CrossRef]

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944–9954 (2006).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “Experimental investigation of dispersion properties of THz porous fibers,” in 33rd International IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.

Nakagawa, H.

T. Hidaka, I. Morohashi, K. Komori, H. Nakagawa, and H. Ito, “THz wave hollow waveguide with ferroelectric PVDF polymer as the cladding material,” in IEEE Conference on Lasers and Electro-Optics Europe (IEEE, 2000), paper CWF7.

Ng, B. W.-H.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Nguyen, C.

C. Nguyen, Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Transmission Line Structures (Wiley, 2001).

Nielsen, K.

Nishizawa, J.-I.

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Pagnoux, D.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
[CrossRef]

Pan, C. L.

B. W. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96, 051105 (2010).
[CrossRef]

B. You, T. A. Liu, J. L. Peng, C. L. Pan, and J. Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17, 20675–20683 (2009).
[CrossRef]

Pan, C.-L.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,” Opt. Express 16, 2494–2501 (2008).
[CrossRef]

Park, H.

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Paulose, V.

Pedersen, P.

Peng, J. L.

B. W. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96, 051105 (2010).
[CrossRef]

B. You, T. A. Liu, J. L. Peng, C. L. Pan, and J. Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17, 20675–20683 (2009).
[CrossRef]

Pla, J.

Planken, P. C. M.

Png, G. M.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Pobre, R.

Polemi, A.

L. Vincetti and A. Polemi, “Hollow core fiber for THz applications,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 2009), pp. 1–4.

Polishak, B.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Ponseca, C. S.

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Rasmussen, H.

S. Atakaramians, S. Afshar V., H. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

Rasmussen, H. K.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

Reichel, K. S.

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on a parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100, 231108 (2012).
[CrossRef]

Ren, G.

Roberts, P. J.

Rowland, K. J.

Roy, P.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
[CrossRef]

Roze, M.

Russell, P. S.

Russell, P. S. J.

Sabert, H.

Saeedkia, D.

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “Analysis and design of a continuous-wave terahertz photoconductive photomixer array source,” IEEE Trans. Antennas Propag. 53, 4044–4050 (2005).
[CrossRef]

Safavi-Naeini, S.

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “Analysis and design of a continuous-wave terahertz photoconductive photomixer array source,” IEEE Trans. Antennas Propag. 53, 4044–4050 (2005).
[CrossRef]

Sarukura, N.

Schwarz, S. A.

J. Werner, E. Kapon, A. C. V. Lehmen, R. Bhat, E. Colas, N. G. Stoffel, and S. A. Schwarz, “Reduced optical waveguide losses of a partially disordered GaAs/AlGaAs single quantum well laser structure for photonic integrated circuits,” Appl. Phys. Lett. 53, 1693–1695 (1988).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Shi, Y. W.

Shum, P.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Skorobogatiy, M.

Smith, P. R.

P. R. Smith, D. H. Auston, and W. M. Augustyniak, “Measurement of GaAs field-effect transistor electronic impulse-response by picosecond optical electronics,” Appl. Phys. Lett. 39, 739–741 (1981).
[CrossRef]

D. H. Auston, A. M. Johnson, P. R. Smith, and J. C. Bean, “Picosecond optoelectronic detection, sampling, and correlation-measurements in amorphous-semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
[CrossRef]

Sprik, R.

R. Sprik, I. N. Duling, C. C. Chi, and D. Grischkowsky, “Far infrared-spectroscopy with subpicosecond electrical pulses on transmission-lines,” Appl. Phys. Lett. 51, 548–550 (1987).
[CrossRef]

Stoeffler, K.

Stoffel, N. G.

J. Werner, E. Kapon, A. C. V. Lehmen, R. Bhat, E. Colas, N. G. Stoffel, and S. A. Schwarz, “Reduced optical waveguide losses of a partially disordered GaAs/AlGaAs single quantum well laser structure for photonic integrated circuits,” Appl. Phys. Lett. 53, 1693–1695 (1988).
[CrossRef]

Stolyarov, A.

Sun, C. K.

Sun, C.-K.

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Takeda, E.

Tamura, K.

Tan, X. L.

Y. F. Geng, X. L. Tan, K. Zhong, P. Wang, and J. Q. Yao, “Low loss plastic terahertz photonic band-gap fibers,” Chin. Phys. Lett. 25, 3961–3963 (2008).
[CrossRef]

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

Tang, X. L.

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

Tian, Z. G.

R. J. Yu, B. Zhang, Y. Q. Zhang, C. Q. Wu, Z. G. Tian, and X. Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Treizebre, A.

T. Akalin, A. Treizebre, and B. Bocquet, “Single-wire transmission lines at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 54, 2762–2767 (2006).
[CrossRef]

A. Treizebre, T. Akalin, and B. Bocquet, “Planar excitation of Goubau transmission lines for THz bioMEMS,” IEEE Microw. Wirel. Compon. Lett. 15, 886–888 (2005).
[CrossRef]

Twieg, R. J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Ung, B.

Ung, B. S.-Y.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Valdes, N. N.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Vallejo, F. A.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

van Eijkelenborg, M. A.

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
[CrossRef]

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-na microstructured polymer optical fiber,” Opt. Commun. 273, 133–137 (2007).
[CrossRef]

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibers,” Opt. Commun. 265, 513–520 (2006).
[CrossRef]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibers,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

van Exter, M.

M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
[CrossRef]

Venkataraman, N.

Vincetti, L.

L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283, 979–984 (2010).
[CrossRef]

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for terahertz applications,” Opt. Fiber Technol. 15, 398–401 (2009).
[CrossRef]

L. Vincetti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51, 1711–1714 (2009).
[CrossRef]

L. Vincetti and A. Polemi, “Hollow core fiber for THz applications,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 2009), pp. 1–4.

Wächter, M.

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005).
[CrossRef]

Walt, D. R.

D. R. Walt, “Fibre optic microarrays,” Chem. Soc. Rev. 39, 38–50 (2010).
[CrossRef]

Walther, M.

Wang, G.

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Wang, P.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

Y. F. Geng, X. L. Tan, K. Zhong, P. Wang, and J. Q. Yao, “Low loss plastic terahertz photonic band-gap fibers,” Chin. Phys. Lett. 25, 3961–3963 (2008).
[CrossRef]

Wang, S.-Y.

S.-Y. Wang, “Microstructured optical fiber with improved transmission efficiency and durability,” U.S. patent6,418,258 (July9, 2002).

Wang, Y. Y.

Wen, C. P.

C. P. Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microwave Theory Tech. MT-17, 1087–1090 (1969).
[CrossRef]

Werner, J.

J. Werner, E. Kapon, A. C. V. Lehmen, R. Bhat, E. Colas, N. G. Stoffel, and S. A. Schwarz, “Reduced optical waveguide losses of a partially disordered GaAs/AlGaAs single quantum well laser structure for photonic integrated circuits,” Appl. Phys. Lett. 53, 1693–1695 (1988).
[CrossRef]

Wheeler, N. V.

Wiederhecher, G. S.

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Crus, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[CrossRef]

Williams, J. C.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Wiltse, J. C.

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246–254 (1962).

Withayachumnankul, W.

W. Withayachumnankul and D. Abbott, “Metamaterial in the terahertz regime,” IEEE Photon. J. 1, 99–118 (2009).
[CrossRef]

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

W. Withayachumnankul, “Engineering aspects of terahertz time-domain spectroscopy,” Ph.D. thesis (The University of Adelaide, 2009).

Wood, C. D.

L. Dazhang, J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, “On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors,” Appl. Phys. Lett. 95, 092903 (2009).
[CrossRef]

Wood, W. A.

Wu, C. Q.

R. J. Yu, B. Zhang, Y. Q. Zhang, C. Q. Wu, Z. G. Tian, and X. Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Wu, D. S.

Xu, Q.

Xu, Y.

Y. Xu and R. G. Bosisio, “A comprehensive study on the planar type of Goubau line for millimetre and submillimetre wave integrated circuits,” IET Microw. Antennas Propag. 1, 681–687 (2007).
[CrossRef]

Yan, C.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibers,” Opt. Commun. 265, 513–520 (2006).
[CrossRef]

Yan, M.

Yao, J. Q.

Y. F. Geng, X. L. Tan, K. Zhong, P. Wang, and J. Q. Yao, “Low loss plastic terahertz photonic band-gap fibers,” Chin. Phys. Lett. 25, 3961–3963 (2008).
[CrossRef]

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

Yin, X.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

You, B.

You, B. W.

B. W. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96, 051105 (2010).
[CrossRef]

Yu, C.-P.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Yu, R. J.

R. J. Yu, B. Zhang, Y. Q. Zhang, C. Q. Wu, Z. G. Tian, and X. Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Yu, X.

Zagari, J.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibers,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

Zenteno, L. A.

Zhang, B.

R. J. Yu, B. Zhang, Y. Q. Zhang, C. Q. Wu, Z. G. Tian, and X. Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Zhang, J.

Zhang, S.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[CrossRef]

Zhang, W.

Zhang, X.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[CrossRef]

Zhang, X.-C.

D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95, 1509–1513 (2007).
[CrossRef]

Zhang, Y. Q.

R. J. Yu, B. Zhang, Y. Q. Zhang, C. Q. Wu, Z. G. Tian, and X. Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Zhong, K.

Y. F. Geng, X. L. Tan, K. Zhong, P. Wang, and J. Q. Yao, “Low loss plastic terahertz photonic band-gap fibers,” Chin. Phys. Lett. 25, 3961–3963 (2008).
[CrossRef]

Zhou, X.-H.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Annu. Rev. Mater. Sci.

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Sci. 36, 467–495 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. B

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

Appl. Phys. Lett.

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

D. H. Auston, A. M. Johnson, P. R. Smith, and J. C. Bean, “Picosecond optoelectronic detection, sampling, and correlation-measurements in amorphous-semiconductors,” Appl. Phys. Lett. 37, 371–373 (1980).
[CrossRef]

P. R. Smith, D. H. Auston, and W. M. Augustyniak, “Measurement of GaAs field-effect transistor electronic impulse-response by picosecond optical electronics,” Appl. Phys. Lett. 39, 739–741 (1981).
[CrossRef]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C. C. Chi, N. I. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[CrossRef]

D. E. Cooper, “Picosecond optoelectronic measurement of microstrip dispersion,” Appl. Phys. Lett. 47, 33–35 (1985).
[CrossRef]

R. Sprik, I. N. Duling, C. C. Chi, and D. Grischkowsky, “Far infrared-spectroscopy with subpicosecond electrical pulses on transmission-lines,” Appl. Phys. Lett. 51, 548–550 (1987).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Appl. Phys. Lett. 97, 176805 (2006).
[CrossRef]

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on a parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100, 231108 (2012).
[CrossRef]

L. Dazhang, J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, “On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors,” Appl. Phys. Lett. 95, 092903 (2009).
[CrossRef]

M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

T.-I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[CrossRef]

S. Atakaramians, S. Afshar V., H. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

J. Werner, E. Kapon, A. C. V. Lehmen, R. Bhat, E. Colas, N. G. Stoffel, and S. A. Schwarz, “Reduced optical waveguide losses of a partially disordered GaAs/AlGaAs single quantum well laser structure for photonic integrated circuits,” Appl. Phys. Lett. 53, 1693–1695 (1988).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094 (2004).
[CrossRef]

B. W. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 96, 051105 (2010).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

Chem. Soc. Rev.

D. R. Walt, “Fibre optic microarrays,” Chem. Soc. Rev. 39, 38–50 (2010).
[CrossRef]

Chin. Phys. Lett.

Y. F. Geng, X. L. Tan, K. Zhong, P. Wang, and J. Q. Yao, “Low loss plastic terahertz photonic band-gap fibers,” Chin. Phys. Lett. 25, 3961–3963 (2008).
[CrossRef]

Electron. Lett.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6, 1122–1135 (2000).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
[CrossRef]

A. Treizebre, T. Akalin, and B. Bocquet, “Planar excitation of Goubau transmission lines for THz bioMEMS,” IEEE Microw. Wirel. Compon. Lett. 15, 886–888 (2005).
[CrossRef]

IEEE Microw. Wireless Compon. Lett.

A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett. 18, 428–430 (2008).
[CrossRef]

IEEE Photon. J.

W. Withayachumnankul and D. Abbott, “Metamaterial in the terahertz regime,” IEEE Photon. J. 1, 99–118 (2009).
[CrossRef]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J. 1, 286–292 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

R. J. Yu, B. Zhang, Y. Q. Zhang, C. Q. Wu, Z. G. Tian, and X. Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

IEEE Trans. Antennas Propag.

D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “Analysis and design of a continuous-wave terahertz photoconductive photomixer array source,” IEEE Trans. Antennas Propag. 53, 4044–4050 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

T. Akalin, A. Treizebre, and B. Bocquet, “Single-wire transmission lines at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 54, 2762–2767 (2006).
[CrossRef]

C. P. Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microwave Theory Tech. MT-17, 1087–1090 (1969).
[CrossRef]

IEEE Trans. Terahertz Sci. Technol.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

IET Microw. Antennas Propag.

Y. Xu and R. G. Bosisio, “A comprehensive study on the planar type of Goubau line for millimetre and submillimetre wave integrated circuits,” IET Microw. Antennas Propag. 1, 681–687 (2007).
[CrossRef]

Infrared Phys.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical-constants of some common low-loss polymers between 4 and 40  cm−1,” Infrared Phys. 21, 225–228 (1981).
[CrossRef]

IRE Trans. Antennas Propag.

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246–254 (1962).

J. Appl. Phys.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

J. Eur. Opt. Soc. Rapid Pub.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Pub. 4, 09004 (2009).
[CrossRef]

J. Korean Phys. Soc.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

J. Lightwave Technol.

J. Opt. Soc. Am. B

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28, 896–907 (2011).
[CrossRef]

J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28, 1013–1018 (2011).
[CrossRef]

J. S. Melinger, S. S. Harsha, N. Laman, and D. Grischkowsky, “Guided-wave terahertz spectroscopy of molecular solids [Invited],” J. Opt. Soc. Am. B 26, A79–A89 (2009).
[CrossRef]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29, 2462–2477 (2012).
[CrossRef]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30, 851–867 (2013).
[CrossRef]

R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26, A6–A13 (2009).
[CrossRef]

T. Ito, Y. Matsuura, M. Miyagi, H. Minarnide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
[CrossRef]

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008).
[CrossRef]

J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “THz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

J. Phys. Condens. Matter

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18, S601–S618 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317–L319 (2004).
[CrossRef]

Laser Focus World

R. A. Correa and J. Knight, “Specialty fibers: novel process eases production of hollow-core fiber,” Laser Focus World 44, 67–71 (2008).

Microw. Opt. Technol. Lett.

L. Vincetti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51, 1711–1714 (2009).
[CrossRef]

Nat. Photonics

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
[CrossRef]

T. M. Monro, “Beyond the diffraction limit,” Nat. Photonics 1, 89–90 (2007).
[CrossRef]

G. S. Wiederhecher, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Crus, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007).
[CrossRef]

Nature

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[CrossRef]

Opt. Commun.

L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283, 979–984 (2010).
[CrossRef]

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
[CrossRef]

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibers,” Opt. Commun. 265, 513–520 (2006).
[CrossRef]

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-na microstructured polymer optical fiber,” Opt. Commun. 273, 133–137 (2007).
[CrossRef]

Opt. Express

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13, 7779–7793 (2005).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005).
[CrossRef]

X. Chen, M.-J. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express 12, 3888–3893 (2004).
[CrossRef]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[CrossRef]

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944–9954 (2006).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15096 (2007).
[CrossRef]

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef]

J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,” Opt. Express 16, 2494–2501 (2008).
[CrossRef]

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008).
[CrossRef]

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008).
[CrossRef]

A. Argyros and J. Pla, “Hollow-core polymer fibers with a Kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
[CrossRef]

G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008).
[CrossRef]

K. J. Rowland, S. Afshar V., and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008).
[CrossRef]

A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17, 8012–8028 (2009).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
[CrossRef]

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
[CrossRef]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
[CrossRef]

M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17, 14851–14864 (2009).
[CrossRef]

B. You, T. A. Liu, J. L. Peng, C. L. Pan, and J. Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17, 20675–20683 (2009).
[CrossRef]

A. Dupuis, A. Mazhorova, F. Desevedavy, M. Roze, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18, 13813–13828 (2010).
[CrossRef]

D. R. Chen and H. B. Chen, “A novel low-loss terahertz waveguide: polymer tube,” Opt. Express 18, 3762–3767 (2010).
[CrossRef]

M. Roze, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19, 9127–9138 (2011).
[CrossRef]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt. Express 19, 18470–18478 (2011).
[CrossRef]

K. J. Rowland, S. Afshar V., A. Stolyarov, Y. Fink, and T. M. Monro, “Bragg waveguides with low-index liquid cores,” Opt. Express 20, 48–62 (2012).
[CrossRef]

Opt. Fiber Technol.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibers,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for terahertz applications,” Opt. Fiber Technol. 15, 398–401 (2009).
[CrossRef]

Opt. Lett.

M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
[CrossRef]

T. Katagiri, Y. Matsuura, and M. Miyagi, “Photonic bandgap fiber with a silica core and multilayer dielectric cladding,” Opt. Lett. 29, 557–559 (2004).
[CrossRef]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch Kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
[CrossRef]

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006).
[CrossRef]

F. Gérôme, R. Jamier, J. L. Auguste, G. Humbert, and J. M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35, 1157–1159 (2010).
[CrossRef]

X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009).
[CrossRef]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36, 666–668 (2011).
[CrossRef]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[CrossRef]

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

Phys. Rev. Lett.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[CrossRef]

D. Grischkowsky, N. I. Duling, J. C. Chen, and C.-C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59, 1663–1666 (1987).
[CrossRef]

Proc. IEEE

K. Eshraghian, “SoC emerging technologies,” Proc. IEEE 94, 1197–1213 (2006).
[CrossRef]

D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95, 1509–1513 (2007).
[CrossRef]

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Proc. SPIE

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss terahertz transmission,” Proc. SPIE 6414, 64140I (2006).
[CrossRef]

T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding THz waveguide,” Proc. SPIE 5135, 70–77 (2003).
[CrossRef]

Science

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Other

S. Atakaramians, “Terahertz waveguides: a study of microwires and porous fibres,” Ph.D. thesis (The University of Adelaide, 2011).

D. Mittleman, Sensing with Terahertz Radiation (Springer-Verlag, 2003).

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science+Business Media, 2009).

S. L. Dexheimer, Terahertz Spectroscopy Principles and Applications (CRC Press, 2008).

G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, 1991).

K. C. Gupta, R. Grag, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd ed. (Artech House, 1996).

C. Nguyen, Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Transmission Line Structures (Wiley, 2001).

W. Withayachumnankul, “Engineering aspects of terahertz time-domain spectroscopy,” Ph.D. thesis (The University of Adelaide, 2009).

R. Mendis, “First broadband experimental study of planar THz waveguides,” Ph.D. thesis (Oklahoma State University, 2001).

L. Vincetti and A. Polemi, “Hollow core fiber for THz applications,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 2009), pp. 1–4.

S. Afshar Vahid, S. Atakaramians, B. M. Fischer, H. Ebendorff-Heidepriem, T. M. Monro, and D. Abbott, “Low loss, low dispersion T-ray transmission in microwires,” in Proceedings of Quantum Electronics and Laser Science Conference (IEEE, 2007), paper JWA105.

T. Hidaka, I. Morohashi, K. Komori, H. Nakagawa, and H. Ito, “THz wave hollow waveguide with ferroelectric PVDF polymer as the cladding material,” in IEEE Conference on Lasers and Electro-Optics Europe (IEEE, 2000), paper CWF7.

The confinement loss for axial mode propagation is the loss of power through the transverse structure, which is also known as leakage loss.

K. J. Rowland, “Guiding light in low-index media via multilayer waveguides,” Ph.D. thesis (The University of Adelaide, 2010).

B. M. Fischer, “Broadband THz time-domain spectroscopy of biomolecules,” Ph.D. thesis (University of Freiburg, 2005).

J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).

H. Ebendorff-Heidepriem, R. C. Moore, and T. M. Monro, “Progress in the fabrication of the next-generation soft glass microstructured optical fibers,” in 1st Workshop on Speciality Optical Fibers and Their Applications, Vol.1055 of AIP Conference Proceedings (AIP, 2008), pp. 95–98.

S.-Y. Wang, “Microstructured optical fiber with improved transmission efficiency and durability,” U.S. patent6,418,258 (July9, 2002).

S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “Experimental investigation of dispersion properties of THz porous fibers,” in 33rd International IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009), pp. 1–2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Figure 1
Figure 1

Schematic of the devices required for characterization of THz waveguides. The standard generation and coupling in techniques are shown in the left hand side of the figure (options A to C), while the detection and coupling out techniques are shown in the right-hand side of the figure (options D to H). Different combinations of these techniques can be employed for characterization of waveguides.

Figure 2
Figure 2

(a) Circular metallic waveguide, indicating the diameter, D . (b) Parallel-plate waveguide, indicating the width of the plates, b , and the separation of the plates, b . (c) Bare metal wire, indicating the wire diameter, D . (d) Metallic slot waveguides, indicating the plates’ width, w , the plates’ length, a , and the plates’ separation, d .

Figure 3
Figure 3

(a) Hollow-core single clad waveguide, indicating the diameter, d , and the dielectric/metal thickness, t . Hollow-core hybrid-clad waveguides: (b) metal waveguides with dielectric inner coating, indicating the diameter, d , and the dielectric thickness, t . (c) Metal waveguides with a thin layer of metamaterial (metal wires in dielectric) as its inner cladding.

Figure 4
Figure 4

(a) Teflon low-index pipe waveguide, indicating the diameter, D , and the Teflon thickness, t . (b) Experimental setup used for characterization of low-index pipe waveguide. Two tunable continuous-wave Gunn oscillator modules are used as the THz emitter. The THz radiation is coupled into the structure with a pair of parabolic mirrors. A Golay cell is used as the THz detector. Reproduced with permission, ©2009. Optical Society of America [40].

Figure 5
Figure 5

(a) Scanning electron microscope image of optical photonic bandgap fiber [96]. Published by courtesy of Jonathan Knight. (b) Concentric cylindrically periodic Bragg fiber with a large variation in index between the cladding layers. (c) Microscope image of a ring-structured Bragg fiber. Reproduced with permission, ©2008. Optical Society of America [39]. In contrast to omindirectional Bragg fiber, the ring-structured Bragg fiber is made up of a single material, and variation in index between the cladding layers is achieved by including alternating circular rings of air holes. (d) Cob/spider-web structured Bragg fiber. These Bragg fibers are also made up of single material (concentric layers of material and air), and struts are used to keep the structure together.

Figure 6
Figure 6

Cross section of Bragg fibers: (a) spider-web Bragg fiber (air–polymer) and (b) concentric Bragg fiber (polymer-doped polymer). Reprinted with permission from L. Vincetti, Microwave Opt. Technol. Lett. 51, 1711–1714 (2009) [102]. Copyright 2009, John Wiley and Sons.

Figure 7
Figure 7

(a) Scanning electron microscope image of the optical Kagomé fiber. Reproduced with permission, ©2006. Optical Society of America [79]. (b) THz hollow-core microstuctured fiber. Reprinted with permission from J.-Y. Lu, Appl. Phys. Lett. 92, 064105 (2008) [69]. Copyright [2008] American Institute of Physics LLC. (c) Optical micrograph of PMMA Kagomé fiber. Reproduced with permission, ©2011. Optical Society of America [110].

Figure 8
Figure 8

(a) Optical micrograph of a solid-core photonic crystal fiber. Reprinted with permission from H. Han, Appl. Phys. Lett. 80, 2634–2636 (2002) [70]. Copyright [2002] American Institute of Physics LLC. (b) Photograph of the cross section of a Teflon solid-core photonic crystal fiber [128]. Copyright 2004 The Japan Society of Applied Physics.

Figure 9
Figure 9

Photographs of two different solid-core photonic crystal fibers fabricated from COC. (a) Reproduced with permission, ©2011. Optical Society of America [130]. (b) Reproduced with permission, ©2009. Optical Society of America [50]. (c) Reflection arrangement considered for constant in- and out-coupling of the THz signal during loss measurements. Reproduced with permission, ©2009. Optical Society of America [50].

Figure 10
Figure 10

(a) Geometries of a slot rectangular waveguide (SRW) and a tube waveguide (TW). Reproduced with permission, ©2006. Optical Society of America [53]. (b) Electric-field enhancement within low-index discontinuity.

Figure 11
Figure 11

Power profile distribution of a porous fiber with holes on a triangular lattice: (a) Cross section and geometrical definitions of the triangular lattice porous fiber. (b) Normalized z -component of the Poynting vector, S z , profile along the dashed line shown in (a), of the fundamental mode of a polymer porous fiber with core radius of d core / 2 = 200 μm, hole radii of d hole / 2 = 20 μm , and 37% porosity at f = 0.5 THz ( λ = 600 μm ). The vertical dashed line represents the core to cladding interface, and the lower solid line represents the refractive index profile. (c) 2D and (d) 3D view of the normalized S z of the porous fiber. Note that S z is normalized by its maximum and the color bar shows the normalized S z . Reproduced with permission, ©2008. Optical Society of America [134].

Figure 12
Figure 12

Cross sections of porous fiber preforms fabricated based on (a) stacking technique, (b) structured molding based on sacrificial polymer technique, and (c) structured molding technique. Cross sections of porous fibers pulled from preforms shown (d) in part (a), (e) in part (b), and (f) in part (c). (a), (b), and (d) are reproduced with permission, ©2009. Optical Society of America [140]. (c), (e), and (f) are reproduced with permission, ©2010. Optical Society of America [141].

Figure 13
Figure 13

Images of SEM cross sections of (a) spider-web and (b) rectangular porous preforms fabricated based on the extrusion technique. Images of SEM cross sections of (c) spider-web and (d) rectangular porous waveguides. Reproduced with permission, ©2009. Optical Society of America [43].

Figure 14
Figure 14

Effective refractive indices of a 200 μm (green) and a 350 μm (red) diameter of spider-web porous fiber, a 250 μm diameter of microwire (black), and a 350 μm diameter of rectangular porous fiber x -polarization (blue) and y -polarization (cyan) as a function of frequency. The solid lines represent the theoretical results based on the real fiber, while the circles represent the measured experimental results. Reproduced with permission, ©2009. Optical Society of America [43].

Figure 15
Figure 15

Schematic of the THz TDS setup employed for characterization of porous fibers. Two parabolic mirrors and a metallic cone are employed to couple the THz pulses into the waveguide. Reprinted with permission from S. Atakaramians, Appl. Phys. Lett. 98, 121104 (2011) [47]. Copyright [2011] American Institute of Physics LLC.

Figure 16
Figure 16

(a) Absorption coefficient, α eff , and (b) effective refractive index of the propagating fundamental mode in a 600 μm COC spider-web porous fiber: black dots and red dashed lines represent the measured and theoretical values, respectively. The fiber cross section is shown in the inset of (a), and the calculated normalized group velocity is shown in the inset of (b). Reprinted with permission from S. Atakaramians, Appl. Phys. Lett. 98, 121104 (2011) [47]. Copyright [2011] American Institute of Physics LLC.

Tables (5)

Tables Icon

Table 1. Material Properties of Most Common Polymers Used for THz Waveguides a

Tables Icon

Table 2. Summary of Guiding Mechanism of Dielectric Waveguides

Tables Icon

Table 3. Summary of THz Hollow-Core Dielectric Waveguides a , b , c , d , e

Tables Icon

Table 4. Summary of THz Solid-Core Dielectric Waveguides a , b , c , d

Tables Icon

Table 5. Summary of THz Porous-Core Dielectric Waveguides a , b , c , d

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E out ( ω ) = E ref ( ω ) T 1 T 2 C 2 exp ( α L / 2 ) exp ( j β 0 n L ) ,
E out ( ω ) = E ref ( ω ) T 1 T 2 C 2 exp ( α eff L / 2 ) exp ( j β eff L ) ,
E out 1 ( ω ) E out 2 ( ω ) = exp ( α eff ( L 1 L 2 ) / 2 ) exp ( j β eff ( L 1 L 2 ) ) .

Metrics