Abstract

More than 30 years ago, the feasibility of detecting magnetic resonance in the Faraday-rotation noise spectrum of transmitted light was demonstrated experimentally. However, practical applications of this experimental approach have emerged only recently thanks, in particular, to a number of crucial technical advancements. This method has now become a popular and efficient tool for studying magnetic resonance and spin dynamics in atomic and solid-state paramagnets. In this paper, we present a review of research in the field of spin-noise spectroscopy, including its physical basis, its evolution since its first experimental demonstration, and its recent experimental advances. Main attention is paid to the specific capabilities of this technique that render it unique compared to other methods of magnetic and optical spectroscopy. The paper is primarily intended for experimentalists who may wish to use this novel optical technique.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
    [CrossRef]
  2. I. I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
    [CrossRef]
  3. E. B. Aleksandrov and V. S. Zapasskii, “Magnetic resonance in the Faraday rotation noise spectrum,” J. Exp. Theor. Phys. 54, 64–67 (1981).
  4. T. Sleator, E. L. Hahn, C. Hilbert, and J. Clarke, “Nuclear-spin noise,” Phys. Rev. Lett. 55, 1742–1745 (1985).
    [CrossRef]
  5. T. Mitsui, “Spontaneous noise spectroscopy of an atomic magnetic resonance,” Phys. Rev. Lett. 84, 5292–5295 (2000).
    [CrossRef]
  6. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, 1980).
  7. A. Kuzmich, K. Molmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997).
    [CrossRef]
  8. J. L. Sorensen, J. Hald, and E. S. Polzik, “Quantum noise of an atomic spin polarization measurement,” Phys. Rev. Lett. 80, 3487–3490 (1998).
    [CrossRef]
  9. M. Römer, J. H. Hubner, and M. Oestreich, “Spin noise spectroscopy in semiconductors,” Rev. Sci. Instrum. 78, 103903 (2007).
    [CrossRef]
  10. G. Müller, D. Schuh, J. Hubner, and M. Oestreich, “Electron-spin relaxation in bulk GaAs for doping densities close to the metal-to-insulator transition,” Phys. Rev. B 81, 075216 (2010).
    [CrossRef]
  11. S. A. Crooker, J. Brandt, S. Sandfort, A. Greilich, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Spin noise of electrons and holes in self-assembled quantum dots,” Phys. Rev. Lett. 104, 036601 (2010).
    [CrossRef]
  12. A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).
    [CrossRef]
  13. V. S. Zapasskii and P. P. Feofilov, “Development of polarization magneto-optics of paramagnetic crystals,” Sov. Phys. Usp. 18, 323–342 (1975).
    [CrossRef]
  14. R. Hanbury-Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
    [CrossRef]
  15. E. B. Aleksandrov, Yu. M. Golubev, A. V. Lomakin, and V. A. Noskin, “Intensity-fluctuation spectroscopy of optical fields with non-Gaussian statistics,” Sov. Phys. Usp. 26, 643–663 (1983).
    [CrossRef]
  16. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley Interscience, 1976).
  17. E. B. Aleksandrov, “Optical manifestations of the interference of nondegenerate atomic states,” Sov. Phys. Usp. 15, 436–451 (1973).
    [CrossRef]
  18. E. B. Aleksandrov, N. T. Kaliteevskii, and M. P. Chaika, “Superhigh-resolution spectroscopy based on interference of states,” Sov. Phys. Usp. 22, 760–767 (1979).
    [CrossRef]
  19. V. S. Zapasskii, “Optical detection of spin-system magnetization in rare-earth-activated crystals and glasses,” in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and M. F. Macfarlane, eds. (Elsevier, 1987), pp. 674–711.
  20. A. D. Buckingham and P. J. Stephens, “Magnetic optical activity,” Annu. Rev. Phys. Chem. 17, 399–432 (1966).
    [CrossRef]
  21. F. Meier and B. Zakharchenya, Optical Orientation, Vol.8 of Modern Problems in Condensed Matter Science Series (North-Holland, 1984).
  22. F. Bitter, “The optical detection of radiofrequency resonance,” Phys. Rev. 76, 833–835 (1949).
    [CrossRef]
  23. D. Budker and D. F. Jackson Kimball, eds., Optical Magnetometry (Cambridge University, 2013).
  24. R. Giri, S. Cronenberger, M. Vladimirova, D. Scalbert, K. V. Kavokin, M. M. Glazov, M. Nawrocki, A. Lematre, and J. Bloch, “Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity,” Phys. Rev. B 85, 195313 (2012).
    [CrossRef]
  25. H. G. Dehmelt, “Modulation of a light beam by precessing absorbing atoms,” Phys. Rev. 105, 1924–1925 (1957).
    [CrossRef]
  26. W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559–1565 (1957).
    [CrossRef]
  27. V. S. Zapasskii, G. G. Kozlov, and V. A. Malyshev, “Optical analogue of Gorter’s paramagnetic relaxation method,” Proc. SPIE 1274, 193–199 (1990).
    [CrossRef]
  28. C. J. Gorter, Paramagnetic Relaxation (Elsevier, 1947).
  29. E. B. Aleksandrov and V. S. Zapasskii, “Modulation magneto- optical spectroscopy of cross-relaxation resonances,” V. S. Sov. Phys. Solid State 20, 679–683 (1978).
  30. F. Bloch, “Nuclear induction,” Phys. Rev. 70, 460–474 (1946).
    [CrossRef]
  31. A. Kastler, “Displacement of energy levels of atoms by light,” J. Opt. Soc. Am. 53, 902–906 (1963).
    [CrossRef]
  32. A. Kastler, “Optical methods for studying Hertzian resonances,” Science 158, 214–221 (1967).
    [CrossRef]
  33. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
    [CrossRef]
  34. S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
    [CrossRef]
  35. V. S. Zapasskii, “Highly sensitive polarimetric measurements,” J. Appl. Spectrosc. 37, 857–869 (1982).
    [CrossRef]
  36. E. B. Aleksandrov and V. S. Zapasskii, “Millisecond sensitivity in polarimetric measurements,” Opt. Spectrosc. 41, 502–504 (1976).
  37. R. V. Jones, “Rotary ‘aether drag’,” Proc. R. Soc. A 349, 423–439 (1976).
    [CrossRef]
  38. P. Glasenapp, A. Greilich, I. I. Ryzhov, V. S. Zapasskii, D. R. Yakovlev, A. V. Kavokin, G. G. Kozlov, and M. Bayer, “Resources of polarimetric sensitivity in spin noise spectroscopy,” arXiv:1305.7337v1 [cond-mat.mes-hall] (31 May 2013).
  39. V. S. Zapasskii, “Depression of excess light noise in polarimetric measurements,” Opt. Spectrosc. 47, 450–451 (1979).
  40. S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. Smith, “Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance,” Nature 431, 49–52 (2004).
    [CrossRef]
  41. G. M. Müller, M. Oestreich, M. Römer, and J. Hubner, “Semiconductor spin noise spectroscopy: fundamentals, accomplishments, and challenges,” Physica E 43, 569–587 (2010).
    [CrossRef]
  42. A. A. Kharkevich, Spectra and Analysis (Springer, 1995).
  43. M. A. McCoy and R. R. Ernst, “Nuclear spin noise at room temperature,” Chem. Phys. Lett. 159, 587–593 (1989).
    [CrossRef]
  44. M. Gueron and J. L. Leroy, “NMR of water protons: the detection of their nuclear-spin noise, and a simple determination of absolute probe sensitivity based on radiation damping,” J. Magn. Reson. 85, 209–215 (1989).
    [CrossRef]
  45. N. Müller and A. Jerschow, “Nuclear spin noise imaging,” Proc. Natl. Acad. Sci. USA 103, 6790–6792 (2006).
    [CrossRef]
  46. T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume,” Science 339, 561–563 (2013).
    [CrossRef]
  47. E. B. Aleksandrov, V. P. Kozlov, and V. N. Kulyasov, “Noise spectrum of spontaneous emission,” Sov. Phys. JETP 39, 620–626 (1974).
  48. E. B. Aleksandrov and V. N. Kulyasov, “Spectra of fluctuations of spontaneous emission,” Opt. Spectrosc 40, 449–452 (1976).
  49. D. F. Smirnov and I. V. Sokolov, “Intensity fluctuation spectrum of the nonlinear resonance fluorescence of an atomic system,” Sov. Phys. JETP 43, 1079–1083 (1976).
  50. B. Mihaila, S. A. Crooker, D. G. Rickel, K. B. Blagoev, P. B. Littlewood, and D. L. Smith, “Quantitative study of spin noise spectroscopy in a classical gas of 41 K,” Phys. Rev. A 74, 043819 (2006).
    [CrossRef]
  51. W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Phys. Rev. Lett. 18, 577–580 (1967).
    [CrossRef]
  52. B. M. Gorbovitskii and V. I. Perel, “Aleksandrov and Zapasskii experiment and the Raman effect,” Opt. Spectrosc. 54, 229–230 (1983).
  53. D. Eden and H. Swinney, “Optical heterodyne studies of Brillouin scattering in xenon near the critical point,” Opt. Commun. 10, 191–194 (1974).
    [CrossRef]
  54. S. A. Crooker, L. Cheng, and D. L. Smith, “Spin noise of conduction electrons in n-type bulk GaAs,” Phys. Rev. B 79, 035208 (2009).
    [CrossRef]
  55. A. Kuzmich, N. P. Bigelow, and L. Mandel, “Atomic quantum non-demolition measurements and squeezing,” Europhys. Lett. 42, 481–486 (1998).
    [CrossRef]
  56. A. Kuzmich, L. Mandel, and N. P. Bigelow, “Generation of spin squeezing via continuous quantum nondemolition measurement,” Phys. Rev. Lett. 85, 1594–1597 (2000).
    [CrossRef]
  57. T. Yabuzaki, T. Mitsui, and U. Tanaka, “New type of high-resolution spectroscopy with a diode laser,” Phys. Rev. Lett. 67, 2453–2456 (1991).
    [CrossRef]
  58. D. H. McIntyre, C. E. Fairchild, J. Cooper, and F. Walser, “Diode laser noise spectroscopy of rubidium,” Opt. Lett. 18, 1816–1818 (1993).
    [CrossRef]
  59. T. Ito, N. Shimomura, and T. Yabuzaki, “Noise spectroscopy of K atoms with a diode laser,” J. Phys. Soc. Jpn. 72, 962–963 (2003).
    [CrossRef]
  60. M. Martinelly, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
    [CrossRef]
  61. P. Valente, H. Failache, and A. Lezama, “Diode laser noise-spectroscopy of low-frequency atomic fluctuations in rubidium vapor,” Eur. Phys. J. D 50, 133–140 (2008).
    [CrossRef]
  62. W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6, 280–281 (1961).
    [CrossRef]
  63. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento 36, 5–20 (1976).
    [CrossRef]
  64. S. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  65. E. B. Aleksandrov, M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Dynamic effects in nonlinear magneto-optics of atoms and molecules,” J. Opt. Soc. Am. B 22, 7–20 (2005).
    [CrossRef]
  66. R. Walser and P. Zoller, “Laser-noise-induced polarization fluctuations as a spectroscopic tool,” Phys. Rev. A 49, 5067–5077 (1994).
    [CrossRef]
  67. G. G. Kozlov and V. S. Zapasskii, “Light-intensity susceptibility and ‘active’ noise spectroscopy,” arXiv: 1206.1921v1 [physics.optics] (9 June 2012).
  68. M. Oestreich, M. Römer, R. G. Haug, and D. Hagele, “Spin noise spectroscopy in GaAs,” Phys. Rev. Lett. 95, 216603 (2005).
    [CrossRef]
  69. J. N. Kikkawa and D. D. Awschalom, “Resonant spin amplification in n-type GaAs,” Phys. Rev. Lett. 80, 4313–4316 (1998).
    [CrossRef]
  70. S. Starosielec and D. Hogele, “Ultrafast spin noise spectroscopy,” Appl. Phys. Lett. 93, 051116 (2008).
    [CrossRef]
  71. F. Berski, Y. Kuhn, J. G. Lonnemann, J. Hubner, and M. Oestreich, “Ultrahigh bandwidth spin noise spectroscopy: detection of large g-factor fluctuations in highly n-doped GaAs,” arXiv:1207.0081 [cond-mat.mes-hall] (30 June 2012).
  72. J. Hubner, J. G. Lonnemann, P. Zell, H. Kuhn, F. Berski, and M. Oestreich, “Rapid scanning of spin noise with two free running ultrafast oscillators,” Opt. Express 21, 5872–5878 (2013).
    [CrossRef]
  73. R. Rosenberg, C. B. Rubinstein, and D. R. Herriott, “Resonant optical Faraday rotator,” Appl. Opt. 3, 1079–1083 (1964).
    [CrossRef]
  74. H. Y. Ling, “Theoretical investigation of transmission through a Faraday-active Fabry–Perot etalon,” J. Opt. Soc. Am. A 11, 754–758 (1994).
    [CrossRef]
  75. A. V. Kavokin, M. R. Vladimirova, M. A. Kaliteevski, O. Lyngnes, J. D. Berger, H. M. Gibbs, and G. Khitrova, “Resonant Faraday rotation in a semiconductor microcavity,” Phys. Rev. B 56, 1087–1090 (1997).
    [CrossRef]
  76. G. Salis and M. Moser, “Faraday-rotation spectrum of electron spins in microcavity-embedded GaAs quantum wells,” Phys. Rev. B 72, 115325 (2005).
    [CrossRef]
  77. Y. Q. Li, D. W. Steuerman, J. Berezovsky, D. S. Seferos, G. Bazan, and D. D. Awschalom, “Cavity enhanced Faraday rotation of semiconductor quantum dots,” Appl. Phys. Lett. 88, 193126 (2006).
    [CrossRef]
  78. L. Dong, Y. Jiang, H. Chen, and Y. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107, 093101 (2010).
    [CrossRef]
  79. V. S. Zapasskii and S. G. Przhibelskii, “Cavity-enhanced optical anisotropy and all-optical spin noise spectrometer,” Opt. Spectrosc. 110, 917–924 (2011).
    [CrossRef]
  80. W. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429–A1450 (1964).
    [CrossRef]
  81. W. Chalupczak and R. M. Godun, “Near-resonance spin noise spectroscopy,” Phys. Rev. A 83, 032512 (2011).
    [CrossRef]
  82. H. Horn, G. M. Müller, E. M. Rasel, L. Santos, J. Hubner, and M. Oestreich, “Spin-noise spectroscopy under resonant optical probing conditions: coherent and nonlinear effects,” Phys. Rev. A 84, 043851 (2011).
    [CrossRef]
  83. Q. Huang and D. S. Steel, “Optical excitation effects on spin-noise spectroscopy in semiconductors,” Phys. Rev. B 83, 155204 (2011).
    [CrossRef]
  84. V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optical spectroscopy of spin noise,” Phys. Rev. Lett. 110, 176601 (2013).
    [CrossRef]
  85. J. Brossel and F. Bitter, “A new ‘double resonance’ method for investigating atomic energy levels. Application to Hg P13,” Phys. Rev. 86, 308–316 (1952).
    [CrossRef]
  86. E. B. Aleksandrov and V. S. Zapasskii, “Use of lasers to study magnetic resonance and magnetic relaxation,” J. Sov. Laser Res. 6, 291–296 (1985).
    [CrossRef]
  87. B. Mihaila, S. A. Crooker, K. B. Blagoev, D. G. Rickel, P. B. Littlewood, and D. L. Smith, “Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases,” Phys. Rev. A 74, 63608 (2006).
    [CrossRef]
  88. G. M. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hubner, and M. Oestreich, “Spin noise spectroscopy in GaAs (110) quantum wells: access to intrinsic spin lifetimes and equilibrium electron dynamics,” Phys. Rev. Lett. 101, 206601 (2008).
    [CrossRef]
  89. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
    [CrossRef]
  90. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  91. Yu. V. Pershin, V. A. Slipko, D. Roy, and N. A. Sinitsyn, “Two-beam spin noise spectroscopy,” Appl. Phys. Lett. 102, 202405 (2013).
    [CrossRef]
  92. M. Römer, J. Hubner, and M. Oestreich, “Spatially resolved doping concentration measurement in semiconductors via spin noise spectroscopy,” Appl. Phys. Lett. 94, 112105 (2009).
    [CrossRef]
  93. P. Michler, ed., Single Quantum Dots, Fundamentals, Applications and New Concepts (Springer, 2003).
  94. Z. Nussinov, M. F. Crommie, and A. V. Balatsky, “Noise spectroscopy of a single spin with spin-polarized STM,” Phys. Rev. B 68, 085402 (2003).
    [CrossRef]
  95. J. Miller, “Diamond defects enable nanoscale nuclear magnetic resonance,” Phys. Today 66(4), 12–14 (2013).
    [CrossRef]

2013 (5)

T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume,” Science 339, 561–563 (2013).
[CrossRef]

V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optical spectroscopy of spin noise,” Phys. Rev. Lett. 110, 176601 (2013).
[CrossRef]

Yu. V. Pershin, V. A. Slipko, D. Roy, and N. A. Sinitsyn, “Two-beam spin noise spectroscopy,” Appl. Phys. Lett. 102, 202405 (2013).
[CrossRef]

J. Miller, “Diamond defects enable nanoscale nuclear magnetic resonance,” Phys. Today 66(4), 12–14 (2013).
[CrossRef]

J. Hubner, J. G. Lonnemann, P. Zell, H. Kuhn, F. Berski, and M. Oestreich, “Rapid scanning of spin noise with two free running ultrafast oscillators,” Opt. Express 21, 5872–5878 (2013).
[CrossRef]

2012 (1)

R. Giri, S. Cronenberger, M. Vladimirova, D. Scalbert, K. V. Kavokin, M. M. Glazov, M. Nawrocki, A. Lematre, and J. Bloch, “Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity,” Phys. Rev. B 85, 195313 (2012).
[CrossRef]

2011 (4)

V. S. Zapasskii and S. G. Przhibelskii, “Cavity-enhanced optical anisotropy and all-optical spin noise spectrometer,” Opt. Spectrosc. 110, 917–924 (2011).
[CrossRef]

W. Chalupczak and R. M. Godun, “Near-resonance spin noise spectroscopy,” Phys. Rev. A 83, 032512 (2011).
[CrossRef]

H. Horn, G. M. Müller, E. M. Rasel, L. Santos, J. Hubner, and M. Oestreich, “Spin-noise spectroscopy under resonant optical probing conditions: coherent and nonlinear effects,” Phys. Rev. A 84, 043851 (2011).
[CrossRef]

Q. Huang and D. S. Steel, “Optical excitation effects on spin-noise spectroscopy in semiconductors,” Phys. Rev. B 83, 155204 (2011).
[CrossRef]

2010 (4)

L. Dong, Y. Jiang, H. Chen, and Y. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107, 093101 (2010).
[CrossRef]

G. M. Müller, M. Oestreich, M. Römer, and J. Hubner, “Semiconductor spin noise spectroscopy: fundamentals, accomplishments, and challenges,” Physica E 43, 569–587 (2010).
[CrossRef]

G. Müller, D. Schuh, J. Hubner, and M. Oestreich, “Electron-spin relaxation in bulk GaAs for doping densities close to the metal-to-insulator transition,” Phys. Rev. B 81, 075216 (2010).
[CrossRef]

S. A. Crooker, J. Brandt, S. Sandfort, A. Greilich, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Spin noise of electrons and holes in self-assembled quantum dots,” Phys. Rev. Lett. 104, 036601 (2010).
[CrossRef]

2009 (2)

S. A. Crooker, L. Cheng, and D. L. Smith, “Spin noise of conduction electrons in n-type bulk GaAs,” Phys. Rev. B 79, 035208 (2009).
[CrossRef]

M. Römer, J. Hubner, and M. Oestreich, “Spatially resolved doping concentration measurement in semiconductors via spin noise spectroscopy,” Appl. Phys. Lett. 94, 112105 (2009).
[CrossRef]

2008 (3)

G. M. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hubner, and M. Oestreich, “Spin noise spectroscopy in GaAs (110) quantum wells: access to intrinsic spin lifetimes and equilibrium electron dynamics,” Phys. Rev. Lett. 101, 206601 (2008).
[CrossRef]

P. Valente, H. Failache, and A. Lezama, “Diode laser noise-spectroscopy of low-frequency atomic fluctuations in rubidium vapor,” Eur. Phys. J. D 50, 133–140 (2008).
[CrossRef]

S. Starosielec and D. Hogele, “Ultrafast spin noise spectroscopy,” Appl. Phys. Lett. 93, 051116 (2008).
[CrossRef]

2007 (1)

M. Römer, J. H. Hubner, and M. Oestreich, “Spin noise spectroscopy in semiconductors,” Rev. Sci. Instrum. 78, 103903 (2007).
[CrossRef]

2006 (4)

Y. Q. Li, D. W. Steuerman, J. Berezovsky, D. S. Seferos, G. Bazan, and D. D. Awschalom, “Cavity enhanced Faraday rotation of semiconductor quantum dots,” Appl. Phys. Lett. 88, 193126 (2006).
[CrossRef]

N. Müller and A. Jerschow, “Nuclear spin noise imaging,” Proc. Natl. Acad. Sci. USA 103, 6790–6792 (2006).
[CrossRef]

B. Mihaila, S. A. Crooker, D. G. Rickel, K. B. Blagoev, P. B. Littlewood, and D. L. Smith, “Quantitative study of spin noise spectroscopy in a classical gas of 41 K,” Phys. Rev. A 74, 043819 (2006).
[CrossRef]

B. Mihaila, S. A. Crooker, K. B. Blagoev, D. G. Rickel, P. B. Littlewood, and D. L. Smith, “Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases,” Phys. Rev. A 74, 63608 (2006).
[CrossRef]

2005 (3)

E. B. Aleksandrov, M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Dynamic effects in nonlinear magneto-optics of atoms and molecules,” J. Opt. Soc. Am. B 22, 7–20 (2005).
[CrossRef]

G. Salis and M. Moser, “Faraday-rotation spectrum of electron spins in microcavity-embedded GaAs quantum wells,” Phys. Rev. B 72, 115325 (2005).
[CrossRef]

M. Oestreich, M. Römer, R. G. Haug, and D. Hagele, “Spin noise spectroscopy in GaAs,” Phys. Rev. Lett. 95, 216603 (2005).
[CrossRef]

2004 (3)

M. Martinelly, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

I. I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. Smith, “Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance,” Nature 431, 49–52 (2004).
[CrossRef]

2003 (2)

T. Ito, N. Shimomura, and T. Yabuzaki, “Noise spectroscopy of K atoms with a diode laser,” J. Phys. Soc. Jpn. 72, 962–963 (2003).
[CrossRef]

Z. Nussinov, M. F. Crommie, and A. V. Balatsky, “Noise spectroscopy of a single spin with spin-polarized STM,” Phys. Rev. B 68, 085402 (2003).
[CrossRef]

2001 (1)

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

2000 (2)

T. Mitsui, “Spontaneous noise spectroscopy of an atomic magnetic resonance,” Phys. Rev. Lett. 84, 5292–5295 (2000).
[CrossRef]

A. Kuzmich, L. Mandel, and N. P. Bigelow, “Generation of spin squeezing via continuous quantum nondemolition measurement,” Phys. Rev. Lett. 85, 1594–1597 (2000).
[CrossRef]

1998 (3)

A. Kuzmich, N. P. Bigelow, and L. Mandel, “Atomic quantum non-demolition measurements and squeezing,” Europhys. Lett. 42, 481–486 (1998).
[CrossRef]

J. N. Kikkawa and D. D. Awschalom, “Resonant spin amplification in n-type GaAs,” Phys. Rev. Lett. 80, 4313–4316 (1998).
[CrossRef]

J. L. Sorensen, J. Hald, and E. S. Polzik, “Quantum noise of an atomic spin polarization measurement,” Phys. Rev. Lett. 80, 3487–3490 (1998).
[CrossRef]

1997 (4)

A. Kuzmich, K. Molmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[CrossRef]

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

S. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

A. V. Kavokin, M. R. Vladimirova, M. A. Kaliteevski, O. Lyngnes, J. D. Berger, H. M. Gibbs, and G. Khitrova, “Resonant Faraday rotation in a semiconductor microcavity,” Phys. Rev. B 56, 1087–1090 (1997).
[CrossRef]

1994 (2)

R. Walser and P. Zoller, “Laser-noise-induced polarization fluctuations as a spectroscopic tool,” Phys. Rev. A 49, 5067–5077 (1994).
[CrossRef]

H. Y. Ling, “Theoretical investigation of transmission through a Faraday-active Fabry–Perot etalon,” J. Opt. Soc. Am. A 11, 754–758 (1994).
[CrossRef]

1993 (1)

1991 (1)

T. Yabuzaki, T. Mitsui, and U. Tanaka, “New type of high-resolution spectroscopy with a diode laser,” Phys. Rev. Lett. 67, 2453–2456 (1991).
[CrossRef]

1990 (2)

V. S. Zapasskii, G. G. Kozlov, and V. A. Malyshev, “Optical analogue of Gorter’s paramagnetic relaxation method,” Proc. SPIE 1274, 193–199 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1989 (3)

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
[CrossRef]

M. A. McCoy and R. R. Ernst, “Nuclear spin noise at room temperature,” Chem. Phys. Lett. 159, 587–593 (1989).
[CrossRef]

M. Gueron and J. L. Leroy, “NMR of water protons: the detection of their nuclear-spin noise, and a simple determination of absolute probe sensitivity based on radiation damping,” J. Magn. Reson. 85, 209–215 (1989).
[CrossRef]

1985 (2)

T. Sleator, E. L. Hahn, C. Hilbert, and J. Clarke, “Nuclear-spin noise,” Phys. Rev. Lett. 55, 1742–1745 (1985).
[CrossRef]

E. B. Aleksandrov and V. S. Zapasskii, “Use of lasers to study magnetic resonance and magnetic relaxation,” J. Sov. Laser Res. 6, 291–296 (1985).
[CrossRef]

1983 (2)

B. M. Gorbovitskii and V. I. Perel, “Aleksandrov and Zapasskii experiment and the Raman effect,” Opt. Spectrosc. 54, 229–230 (1983).

E. B. Aleksandrov, Yu. M. Golubev, A. V. Lomakin, and V. A. Noskin, “Intensity-fluctuation spectroscopy of optical fields with non-Gaussian statistics,” Sov. Phys. Usp. 26, 643–663 (1983).
[CrossRef]

1982 (1)

V. S. Zapasskii, “Highly sensitive polarimetric measurements,” J. Appl. Spectrosc. 37, 857–869 (1982).
[CrossRef]

1981 (1)

E. B. Aleksandrov and V. S. Zapasskii, “Magnetic resonance in the Faraday rotation noise spectrum,” J. Exp. Theor. Phys. 54, 64–67 (1981).

1979 (2)

E. B. Aleksandrov, N. T. Kaliteevskii, and M. P. Chaika, “Superhigh-resolution spectroscopy based on interference of states,” Sov. Phys. Usp. 22, 760–767 (1979).
[CrossRef]

V. S. Zapasskii, “Depression of excess light noise in polarimetric measurements,” Opt. Spectrosc. 47, 450–451 (1979).

1978 (1)

E. B. Aleksandrov and V. S. Zapasskii, “Modulation magneto- optical spectroscopy of cross-relaxation resonances,” V. S. Sov. Phys. Solid State 20, 679–683 (1978).

1976 (5)

E. B. Aleksandrov and V. S. Zapasskii, “Millisecond sensitivity in polarimetric measurements,” Opt. Spectrosc. 41, 502–504 (1976).

R. V. Jones, “Rotary ‘aether drag’,” Proc. R. Soc. A 349, 423–439 (1976).
[CrossRef]

E. B. Aleksandrov and V. N. Kulyasov, “Spectra of fluctuations of spontaneous emission,” Opt. Spectrosc 40, 449–452 (1976).

D. F. Smirnov and I. V. Sokolov, “Intensity fluctuation spectrum of the nonlinear resonance fluorescence of an atomic system,” Sov. Phys. JETP 43, 1079–1083 (1976).

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento 36, 5–20 (1976).
[CrossRef]

1975 (1)

V. S. Zapasskii and P. P. Feofilov, “Development of polarization magneto-optics of paramagnetic crystals,” Sov. Phys. Usp. 18, 323–342 (1975).
[CrossRef]

1974 (2)

E. B. Aleksandrov, V. P. Kozlov, and V. N. Kulyasov, “Noise spectrum of spontaneous emission,” Sov. Phys. JETP 39, 620–626 (1974).

D. Eden and H. Swinney, “Optical heterodyne studies of Brillouin scattering in xenon near the critical point,” Opt. Commun. 10, 191–194 (1974).
[CrossRef]

1973 (1)

E. B. Aleksandrov, “Optical manifestations of the interference of nondegenerate atomic states,” Sov. Phys. Usp. 15, 436–451 (1973).
[CrossRef]

1972 (1)

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

1967 (2)

A. Kastler, “Optical methods for studying Hertzian resonances,” Science 158, 214–221 (1967).
[CrossRef]

W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Phys. Rev. Lett. 18, 577–580 (1967).
[CrossRef]

1966 (1)

A. D. Buckingham and P. J. Stephens, “Magnetic optical activity,” Annu. Rev. Phys. Chem. 17, 399–432 (1966).
[CrossRef]

1964 (2)

1963 (1)

1961 (1)

W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6, 280–281 (1961).
[CrossRef]

1957 (2)

H. G. Dehmelt, “Modulation of a light beam by precessing absorbing atoms,” Phys. Rev. 105, 1924–1925 (1957).
[CrossRef]

W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559–1565 (1957).
[CrossRef]

1956 (1)

R. Hanbury-Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[CrossRef]

1955 (1)

A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).
[CrossRef]

1952 (1)

J. Brossel and F. Bitter, “A new ‘double resonance’ method for investigating atomic energy levels. Application to Hg P13,” Phys. Rev. 86, 308–316 (1952).
[CrossRef]

1949 (1)

F. Bitter, “The optical detection of radiofrequency resonance,” Phys. Rev. 76, 833–835 (1949).
[CrossRef]

1946 (1)

F. Bloch, “Nuclear induction,” Phys. Rev. 70, 460–474 (1946).
[CrossRef]

Aleksandrov, E. B.

E. B. Aleksandrov, M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Dynamic effects in nonlinear magneto-optics of atoms and molecules,” J. Opt. Soc. Am. B 22, 7–20 (2005).
[CrossRef]

E. B. Aleksandrov and V. S. Zapasskii, “Use of lasers to study magnetic resonance and magnetic relaxation,” J. Sov. Laser Res. 6, 291–296 (1985).
[CrossRef]

E. B. Aleksandrov, Yu. M. Golubev, A. V. Lomakin, and V. A. Noskin, “Intensity-fluctuation spectroscopy of optical fields with non-Gaussian statistics,” Sov. Phys. Usp. 26, 643–663 (1983).
[CrossRef]

E. B. Aleksandrov and V. S. Zapasskii, “Magnetic resonance in the Faraday rotation noise spectrum,” J. Exp. Theor. Phys. 54, 64–67 (1981).

E. B. Aleksandrov, N. T. Kaliteevskii, and M. P. Chaika, “Superhigh-resolution spectroscopy based on interference of states,” Sov. Phys. Usp. 22, 760–767 (1979).
[CrossRef]

E. B. Aleksandrov and V. S. Zapasskii, “Modulation magneto- optical spectroscopy of cross-relaxation resonances,” V. S. Sov. Phys. Solid State 20, 679–683 (1978).

E. B. Aleksandrov and V. N. Kulyasov, “Spectra of fluctuations of spontaneous emission,” Opt. Spectrosc 40, 449–452 (1976).

E. B. Aleksandrov and V. S. Zapasskii, “Millisecond sensitivity in polarimetric measurements,” Opt. Spectrosc. 41, 502–504 (1976).

E. B. Aleksandrov, V. P. Kozlov, and V. N. Kulyasov, “Noise spectrum of spontaneous emission,” Sov. Phys. JETP 39, 620–626 (1974).

E. B. Aleksandrov, “Optical manifestations of the interference of nondegenerate atomic states,” Sov. Phys. Usp. 15, 436–451 (1973).
[CrossRef]

Alzetta, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento 36, 5–20 (1976).
[CrossRef]

Auzinsh, M.

Awschalom, D. D.

Y. Q. Li, D. W. Steuerman, J. Berezovsky, D. S. Seferos, G. Bazan, and D. D. Awschalom, “Cavity enhanced Faraday rotation of semiconductor quantum dots,” Appl. Phys. Lett. 88, 193126 (2006).
[CrossRef]

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

J. N. Kikkawa and D. D. Awschalom, “Resonant spin amplification in n-type GaAs,” Phys. Rev. Lett. 80, 4313–4316 (1998).
[CrossRef]

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

Balatsky, A. V.

S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. Smith, “Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance,” Nature 431, 49–52 (2004).
[CrossRef]

Z. Nussinov, M. F. Crommie, and A. V. Balatsky, “Noise spectroscopy of a single spin with spin-polarized STM,” Phys. Rev. B 68, 085402 (2003).
[CrossRef]

Baumberg, J. J.

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

Bayer, M.

V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optical spectroscopy of spin noise,” Phys. Rev. Lett. 110, 176601 (2013).
[CrossRef]

S. A. Crooker, J. Brandt, S. Sandfort, A. Greilich, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Spin noise of electrons and holes in self-assembled quantum dots,” Phys. Rev. Lett. 104, 036601 (2010).
[CrossRef]

P. Glasenapp, A. Greilich, I. I. Ryzhov, V. S. Zapasskii, D. R. Yakovlev, A. V. Kavokin, G. G. Kozlov, and M. Bayer, “Resources of polarimetric sensitivity in spin noise spectroscopy,” arXiv:1305.7337v1 [cond-mat.mes-hall] (31 May 2013).

Bazan, G.

Y. Q. Li, D. W. Steuerman, J. Berezovsky, D. S. Seferos, G. Bazan, and D. D. Awschalom, “Cavity enhanced Faraday rotation of semiconductor quantum dots,” Appl. Phys. Lett. 88, 193126 (2006).
[CrossRef]

Bell, W. E.

W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6, 280–281 (1961).
[CrossRef]

W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559–1565 (1957).
[CrossRef]

Berezovsky, J.

Y. Q. Li, D. W. Steuerman, J. Berezovsky, D. S. Seferos, G. Bazan, and D. D. Awschalom, “Cavity enhanced Faraday rotation of semiconductor quantum dots,” Appl. Phys. Lett. 88, 193126 (2006).
[CrossRef]

Berger, J. D.

A. V. Kavokin, M. R. Vladimirova, M. A. Kaliteevski, O. Lyngnes, J. D. Berger, H. M. Gibbs, and G. Khitrova, “Resonant Faraday rotation in a semiconductor microcavity,” Phys. Rev. B 56, 1087–1090 (1997).
[CrossRef]

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley Interscience, 1976).

Berski, F.

J. Hubner, J. G. Lonnemann, P. Zell, H. Kuhn, F. Berski, and M. Oestreich, “Rapid scanning of spin noise with two free running ultrafast oscillators,” Opt. Express 21, 5872–5878 (2013).
[CrossRef]

F. Berski, Y. Kuhn, J. G. Lonnemann, J. Hubner, and M. Oestreich, “Ultrahigh bandwidth spin noise spectroscopy: detection of large g-factor fluctuations in highly n-doped GaAs,” arXiv:1207.0081 [cond-mat.mes-hall] (30 June 2012).

Bigelow, N. P.

A. Kuzmich, L. Mandel, and N. P. Bigelow, “Generation of spin squeezing via continuous quantum nondemolition measurement,” Phys. Rev. Lett. 85, 1594–1597 (2000).
[CrossRef]

A. Kuzmich, N. P. Bigelow, and L. Mandel, “Atomic quantum non-demolition measurements and squeezing,” Europhys. Lett. 42, 481–486 (1998).
[CrossRef]

Bitter, F.

J. Brossel and F. Bitter, “A new ‘double resonance’ method for investigating atomic energy levels. Application to Hg P13,” Phys. Rev. 86, 308–316 (1952).
[CrossRef]

F. Bitter, “The optical detection of radiofrequency resonance,” Phys. Rev. 76, 833–835 (1949).
[CrossRef]

Blagoev, K. B.

B. Mihaila, S. A. Crooker, K. B. Blagoev, D. G. Rickel, P. B. Littlewood, and D. L. Smith, “Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases,” Phys. Rev. A 74, 63608 (2006).
[CrossRef]

B. Mihaila, S. A. Crooker, D. G. Rickel, K. B. Blagoev, P. B. Littlewood, and D. L. Smith, “Quantitative study of spin noise spectroscopy in a classical gas of 41 K,” Phys. Rev. A 74, 043819 (2006).
[CrossRef]

Bloch, F.

F. Bloch, “Nuclear induction,” Phys. Rev. 70, 460–474 (1946).
[CrossRef]

Bloch, J.

R. Giri, S. Cronenberger, M. Vladimirova, D. Scalbert, K. V. Kavokin, M. M. Glazov, M. Nawrocki, A. Lematre, and J. Bloch, “Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity,” Phys. Rev. B 85, 195313 (2012).
[CrossRef]

Bloom, A. L.

W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6, 280–281 (1961).
[CrossRef]

W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559–1565 (1957).
[CrossRef]

Brandt, J.

S. A. Crooker, J. Brandt, S. Sandfort, A. Greilich, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Spin noise of electrons and holes in self-assembled quantum dots,” Phys. Rev. Lett. 104, 036601 (2010).
[CrossRef]

Brossel, J.

J. Brossel and F. Bitter, “A new ‘double resonance’ method for investigating atomic energy levels. Application to Hg P13,” Phys. Rev. 86, 308–316 (1952).
[CrossRef]

Buckingham, A. D.

A. D. Buckingham and P. J. Stephens, “Magnetic optical activity,” Annu. Rev. Phys. Chem. 17, 399–432 (1966).
[CrossRef]

Budker, D.

Buhrman, R. A.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Chaika, M. P.

E. B. Aleksandrov, N. T. Kaliteevskii, and M. P. Chaika, “Superhigh-resolution spectroscopy based on interference of states,” Sov. Phys. Usp. 22, 760–767 (1979).
[CrossRef]

Chalupczak, W.

W. Chalupczak and R. M. Godun, “Near-resonance spin noise spectroscopy,” Phys. Rev. A 83, 032512 (2011).
[CrossRef]

Chen, H.

L. Dong, Y. Jiang, H. Chen, and Y. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107, 093101 (2010).
[CrossRef]

Cheng, L.

S. A. Crooker, L. Cheng, and D. L. Smith, “Spin noise of conduction electrons in n-type bulk GaAs,” Phys. Rev. B 79, 035208 (2009).
[CrossRef]

Chtchelkanova, A. Y.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Clarke, J.

T. Sleator, E. L. Hahn, C. Hilbert, and J. Clarke, “Nuclear-spin noise,” Phys. Rev. Lett. 55, 1742–1745 (1985).
[CrossRef]

Cooper, J.

Crommie, M. F.

Z. Nussinov, M. F. Crommie, and A. V. Balatsky, “Noise spectroscopy of a single spin with spin-polarized STM,” Phys. Rev. B 68, 085402 (2003).
[CrossRef]

Cronenberger, S.

R. Giri, S. Cronenberger, M. Vladimirova, D. Scalbert, K. V. Kavokin, M. M. Glazov, M. Nawrocki, A. Lematre, and J. Bloch, “Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity,” Phys. Rev. B 85, 195313 (2012).
[CrossRef]

Crooker, S. A.

V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optical spectroscopy of spin noise,” Phys. Rev. Lett. 110, 176601 (2013).
[CrossRef]

S. A. Crooker, J. Brandt, S. Sandfort, A. Greilich, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Spin noise of electrons and holes in self-assembled quantum dots,” Phys. Rev. Lett. 104, 036601 (2010).
[CrossRef]

S. A. Crooker, L. Cheng, and D. L. Smith, “Spin noise of conduction electrons in n-type bulk GaAs,” Phys. Rev. B 79, 035208 (2009).
[CrossRef]

B. Mihaila, S. A. Crooker, K. B. Blagoev, D. G. Rickel, P. B. Littlewood, and D. L. Smith, “Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases,” Phys. Rev. A 74, 63608 (2006).
[CrossRef]

B. Mihaila, S. A. Crooker, D. G. Rickel, K. B. Blagoev, P. B. Littlewood, and D. L. Smith, “Quantitative study of spin noise spectroscopy in a classical gas of 41 K,” Phys. Rev. A 74, 043819 (2006).
[CrossRef]

S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. Smith, “Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance,” Nature 431, 49–52 (2004).
[CrossRef]

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

Cruz, L. S.

M. Martinelly, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

Das Sarma, S.

I. I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

Daughton, J. M.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Dehmelt, H. G.

H. G. Dehmelt, “Modulation of a light beam by precessing absorbing atoms,” Phys. Rev. 105, 1924–1925 (1957).
[CrossRef]

Dong, L.

L. Dong, Y. Jiang, H. Chen, and Y. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107, 093101 (2010).
[CrossRef]

Du, J.

T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume,” Science 339, 561–563 (2013).
[CrossRef]

Eden, D.

D. Eden and H. Swinney, “Optical heterodyne studies of Brillouin scattering in xenon near the critical point,” Opt. Commun. 10, 191–194 (1974).
[CrossRef]

Ernst, R. R.

M. A. McCoy and R. R. Ernst, “Nuclear spin noise at room temperature,” Chem. Phys. Lett. 159, 587–593 (1989).
[CrossRef]

Fabian, J.

I. I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

Failache, H.

P. Valente, H. Failache, and A. Lezama, “Diode laser noise-spectroscopy of low-frequency atomic fluctuations in rubidium vapor,” Eur. Phys. J. D 50, 133–140 (2008).
[CrossRef]

M. Martinelly, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

Fairchild, C. E.

Felinto, D.

M. Martinelly, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

Feofilov, P. P.

V. S. Zapasskii and P. P. Feofilov, “Development of polarization magneto-optics of paramagnetic crystals,” Sov. Phys. Usp. 18, 323–342 (1975).
[CrossRef]

Flack, F.

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

Forrester, A. T.

A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).
[CrossRef]

Gibbs, H. M.

A. V. Kavokin, M. R. Vladimirova, M. A. Kaliteevski, O. Lyngnes, J. D. Berger, H. M. Gibbs, and G. Khitrova, “Resonant Faraday rotation in a semiconductor microcavity,” Phys. Rev. B 56, 1087–1090 (1997).
[CrossRef]

Giri, R.

R. Giri, S. Cronenberger, M. Vladimirova, D. Scalbert, K. V. Kavokin, M. M. Glazov, M. Nawrocki, A. Lematre, and J. Bloch, “Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity,” Phys. Rev. B 85, 195313 (2012).
[CrossRef]

Glasenapp, P.

P. Glasenapp, A. Greilich, I. I. Ryzhov, V. S. Zapasskii, D. R. Yakovlev, A. V. Kavokin, G. G. Kozlov, and M. Bayer, “Resources of polarimetric sensitivity in spin noise spectroscopy,” arXiv:1305.7337v1 [cond-mat.mes-hall] (31 May 2013).

Glazov, M. M.

R. Giri, S. Cronenberger, M. Vladimirova, D. Scalbert, K. V. Kavokin, M. M. Glazov, M. Nawrocki, A. Lematre, and J. Bloch, “Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity,” Phys. Rev. B 85, 195313 (2012).
[CrossRef]

Godun, R. M.

W. Chalupczak and R. M. Godun, “Near-resonance spin noise spectroscopy,” Phys. Rev. A 83, 032512 (2011).
[CrossRef]

Golubev, Yu. M.

E. B. Aleksandrov, Yu. M. Golubev, A. V. Lomakin, and V. A. Noskin, “Intensity-fluctuation spectroscopy of optical fields with non-Gaussian statistics,” Sov. Phys. Usp. 26, 643–663 (1983).
[CrossRef]

Gorbovitskii, B. M.

B. M. Gorbovitskii and V. I. Perel, “Aleksandrov and Zapasskii experiment and the Raman effect,” Opt. Spectrosc. 54, 229–230 (1983).

Gorter, C. J.

C. J. Gorter, Paramagnetic Relaxation (Elsevier, 1947).

Gozzini, A.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento 36, 5–20 (1976).
[CrossRef]

Greilich, A.

V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optical spectroscopy of spin noise,” Phys. Rev. Lett. 110, 176601 (2013).
[CrossRef]

S. A. Crooker, J. Brandt, S. Sandfort, A. Greilich, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Spin noise of electrons and holes in self-assembled quantum dots,” Phys. Rev. Lett. 104, 036601 (2010).
[CrossRef]

P. Glasenapp, A. Greilich, I. I. Ryzhov, V. S. Zapasskii, D. R. Yakovlev, A. V. Kavokin, G. G. Kozlov, and M. Bayer, “Resources of polarimetric sensitivity in spin noise spectroscopy,” arXiv:1305.7337v1 [cond-mat.mes-hall] (31 May 2013).

Gudmundsen, R. A.

A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).
[CrossRef]

Gueron, M.

M. Gueron and J. L. Leroy, “NMR of water protons: the detection of their nuclear-spin noise, and a simple determination of absolute probe sensitivity based on radiation damping,” J. Magn. Reson. 85, 209–215 (1989).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Hagele, D.

M. Oestreich, M. Römer, R. G. Haug, and D. Hagele, “Spin noise spectroscopy in GaAs,” Phys. Rev. Lett. 95, 216603 (2005).
[CrossRef]

Hahn, E. L.

T. Sleator, E. L. Hahn, C. Hilbert, and J. Clarke, “Nuclear-spin noise,” Phys. Rev. Lett. 55, 1742–1745 (1985).
[CrossRef]

Hald, J.

J. L. Sorensen, J. Hald, and E. S. Polzik, “Quantum noise of an atomic spin polarization measurement,” Phys. Rev. Lett. 80, 3487–3490 (1998).
[CrossRef]

Hanbury-Brown, R.

R. Hanbury-Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[CrossRef]

Happer, W.

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Phys. Rev. Lett. 18, 577–580 (1967).
[CrossRef]

Harris, S.

S. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Haug, R. G.

M. Oestreich, M. Römer, R. G. Haug, and D. Hagele, “Spin noise spectroscopy in GaAs,” Phys. Rev. Lett. 95, 216603 (2005).
[CrossRef]

Herriott, D. R.

Hilbert, C.

T. Sleator, E. L. Hahn, C. Hilbert, and J. Clarke, “Nuclear-spin noise,” Phys. Rev. Lett. 55, 1742–1745 (1985).
[CrossRef]

Hogele, D.

S. Starosielec and D. Hogele, “Ultrafast spin noise spectroscopy,” Appl. Phys. Lett. 93, 051116 (2008).
[CrossRef]

Horn, H.

H. Horn, G. M. Müller, E. M. Rasel, L. Santos, J. Hubner, and M. Oestreich, “Spin-noise spectroscopy under resonant optical probing conditions: coherent and nonlinear effects,” Phys. Rev. A 84, 043851 (2011).
[CrossRef]

Huang, Q.

Q. Huang and D. S. Steel, “Optical excitation effects on spin-noise spectroscopy in semiconductors,” Phys. Rev. B 83, 155204 (2011).
[CrossRef]

Hubner, J.

J. Hubner, J. G. Lonnemann, P. Zell, H. Kuhn, F. Berski, and M. Oestreich, “Rapid scanning of spin noise with two free running ultrafast oscillators,” Opt. Express 21, 5872–5878 (2013).
[CrossRef]

H. Horn, G. M. Müller, E. M. Rasel, L. Santos, J. Hubner, and M. Oestreich, “Spin-noise spectroscopy under resonant optical probing conditions: coherent and nonlinear effects,” Phys. Rev. A 84, 043851 (2011).
[CrossRef]

G. Müller, D. Schuh, J. Hubner, and M. Oestreich, “Electron-spin relaxation in bulk GaAs for doping densities close to the metal-to-insulator transition,” Phys. Rev. B 81, 075216 (2010).
[CrossRef]

G. M. Müller, M. Oestreich, M. Römer, and J. Hubner, “Semiconductor spin noise spectroscopy: fundamentals, accomplishments, and challenges,” Physica E 43, 569–587 (2010).
[CrossRef]

M. Römer, J. Hubner, and M. Oestreich, “Spatially resolved doping concentration measurement in semiconductors via spin noise spectroscopy,” Appl. Phys. Lett. 94, 112105 (2009).
[CrossRef]

G. M. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hubner, and M. Oestreich, “Spin noise spectroscopy in GaAs (110) quantum wells: access to intrinsic spin lifetimes and equilibrium electron dynamics,” Phys. Rev. Lett. 101, 206601 (2008).
[CrossRef]

F. Berski, Y. Kuhn, J. G. Lonnemann, J. Hubner, and M. Oestreich, “Ultrahigh bandwidth spin noise spectroscopy: detection of large g-factor fluctuations in highly n-doped GaAs,” arXiv:1207.0081 [cond-mat.mes-hall] (30 June 2012).

Hubner, J. H.

M. Römer, J. H. Hubner, and M. Oestreich, “Spin noise spectroscopy in semiconductors,” Rev. Sci. Instrum. 78, 103903 (2007).
[CrossRef]

Ito, T.

T. Ito, N. Shimomura, and T. Yabuzaki, “Noise spectroscopy of K atoms with a diode laser,” J. Phys. Soc. Jpn. 72, 962–963 (2003).
[CrossRef]

Jerschow, A.

N. Müller and A. Jerschow, “Nuclear spin noise imaging,” Proc. Natl. Acad. Sci. USA 103, 6790–6792 (2006).
[CrossRef]

Jiang, Y.

L. Dong, Y. Jiang, H. Chen, and Y. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107, 093101 (2010).
[CrossRef]

Johnson, P. O.

A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).
[CrossRef]

Jones, R. V.

R. V. Jones, “Rotary ‘aether drag’,” Proc. R. Soc. A 349, 423–439 (1976).
[CrossRef]

Kaliteevski, M. A.

A. V. Kavokin, M. R. Vladimirova, M. A. Kaliteevski, O. Lyngnes, J. D. Berger, H. M. Gibbs, and G. Khitrova, “Resonant Faraday rotation in a semiconductor microcavity,” Phys. Rev. B 56, 1087–1090 (1997).
[CrossRef]

Kaliteevskii, N. T.

E. B. Aleksandrov, N. T. Kaliteevskii, and M. P. Chaika, “Superhigh-resolution spectroscopy based on interference of states,” Sov. Phys. Usp. 22, 760–767 (1979).
[CrossRef]

Kastler, A.

A. Kastler, “Optical methods for studying Hertzian resonances,” Science 158, 214–221 (1967).
[CrossRef]

A. Kastler, “Displacement of energy levels of atoms by light,” J. Opt. Soc. Am. 53, 902–906 (1963).
[CrossRef]

Kavokin, A. V.

A. V. Kavokin, M. R. Vladimirova, M. A. Kaliteevski, O. Lyngnes, J. D. Berger, H. M. Gibbs, and G. Khitrova, “Resonant Faraday rotation in a semiconductor microcavity,” Phys. Rev. B 56, 1087–1090 (1997).
[CrossRef]

P. Glasenapp, A. Greilich, I. I. Ryzhov, V. S. Zapasskii, D. R. Yakovlev, A. V. Kavokin, G. G. Kozlov, and M. Bayer, “Resources of polarimetric sensitivity in spin noise spectroscopy,” arXiv:1305.7337v1 [cond-mat.mes-hall] (31 May 2013).

Kavokin, K. V.

R. Giri, S. Cronenberger, M. Vladimirova, D. Scalbert, K. V. Kavokin, M. M. Glazov, M. Nawrocki, A. Lematre, and J. Bloch, “Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity,” Phys. Rev. B 85, 195313 (2012).
[CrossRef]

Kharkevich, A. A.

A. A. Kharkevich, Spectra and Analysis (Springer, 1995).

Khitrova, G.

A. V. Kavokin, M. R. Vladimirova, M. A. Kaliteevski, O. Lyngnes, J. D. Berger, H. M. Gibbs, and G. Khitrova, “Resonant Faraday rotation in a semiconductor microcavity,” Phys. Rev. B 56, 1087–1090 (1997).
[CrossRef]

Kikkawa, J. N.

J. N. Kikkawa and D. D. Awschalom, “Resonant spin amplification in n-type GaAs,” Phys. Rev. Lett. 80, 4313–4316 (1998).
[CrossRef]

Kimball, D. F.

Kozlov, G. G.

V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optical spectroscopy of spin noise,” Phys. Rev. Lett. 110, 176601 (2013).
[CrossRef]

V. S. Zapasskii, G. G. Kozlov, and V. A. Malyshev, “Optical analogue of Gorter’s paramagnetic relaxation method,” Proc. SPIE 1274, 193–199 (1990).
[CrossRef]

G. G. Kozlov and V. S. Zapasskii, “Light-intensity susceptibility and ‘active’ noise spectroscopy,” arXiv: 1206.1921v1 [physics.optics] (9 June 2012).

P. Glasenapp, A. Greilich, I. I. Ryzhov, V. S. Zapasskii, D. R. Yakovlev, A. V. Kavokin, G. G. Kozlov, and M. Bayer, “Resources of polarimetric sensitivity in spin noise spectroscopy,” arXiv:1305.7337v1 [cond-mat.mes-hall] (31 May 2013).

Kozlov, V. P.

E. B. Aleksandrov, V. P. Kozlov, and V. N. Kulyasov, “Noise spectrum of spontaneous emission,” Sov. Phys. JETP 39, 620–626 (1974).

Kuhn, H.

Kuhn, Y.

F. Berski, Y. Kuhn, J. G. Lonnemann, J. Hubner, and M. Oestreich, “Ultrahigh bandwidth spin noise spectroscopy: detection of large g-factor fluctuations in highly n-doped GaAs,” arXiv:1207.0081 [cond-mat.mes-hall] (30 June 2012).

Kulyasov, V. N.

E. B. Aleksandrov and V. N. Kulyasov, “Spectra of fluctuations of spontaneous emission,” Opt. Spectrosc 40, 449–452 (1976).

E. B. Aleksandrov, V. P. Kozlov, and V. N. Kulyasov, “Noise spectrum of spontaneous emission,” Sov. Phys. JETP 39, 620–626 (1974).

Kuzmich, A.

A. Kuzmich, L. Mandel, and N. P. Bigelow, “Generation of spin squeezing via continuous quantum nondemolition measurement,” Phys. Rev. Lett. 85, 1594–1597 (2000).
[CrossRef]

A. Kuzmich, N. P. Bigelow, and L. Mandel, “Atomic quantum non-demolition measurements and squeezing,” Europhys. Lett. 42, 481–486 (1998).
[CrossRef]

A. Kuzmich, K. Molmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[CrossRef]

Lamb, W. E.

W. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429–A1450 (1964).
[CrossRef]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, 1980).

Lematre, A.

R. Giri, S. Cronenberger, M. Vladimirova, D. Scalbert, K. V. Kavokin, M. M. Glazov, M. Nawrocki, A. Lematre, and J. Bloch, “Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity,” Phys. Rev. B 85, 195313 (2012).
[CrossRef]

Leroy, J. L.

M. Gueron and J. L. Leroy, “NMR of water protons: the detection of their nuclear-spin noise, and a simple determination of absolute probe sensitivity based on radiation damping,” J. Magn. Reson. 85, 209–215 (1989).
[CrossRef]

Lezama, A.

P. Valente, H. Failache, and A. Lezama, “Diode laser noise-spectroscopy of low-frequency atomic fluctuations in rubidium vapor,” Eur. Phys. J. D 50, 133–140 (2008).
[CrossRef]

M. Martinelly, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

Li, Y.

V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optical spectroscopy of spin noise,” Phys. Rev. Lett. 110, 176601 (2013).
[CrossRef]

Li, Y. Q.

Y. Q. Li, D. W. Steuerman, J. Berezovsky, D. S. Seferos, G. Bazan, and D. D. Awschalom, “Cavity enhanced Faraday rotation of semiconductor quantum dots,” Appl. Phys. Lett. 88, 193126 (2006).
[CrossRef]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, 1980).

Ling, H. Y.

Littlewood, P. B.

B. Mihaila, S. A. Crooker, D. G. Rickel, K. B. Blagoev, P. B. Littlewood, and D. L. Smith, “Quantitative study of spin noise spectroscopy in a classical gas of 41 K,” Phys. Rev. A 74, 043819 (2006).
[CrossRef]

B. Mihaila, S. A. Crooker, K. B. Blagoev, D. G. Rickel, P. B. Littlewood, and D. L. Smith, “Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases,” Phys. Rev. A 74, 63608 (2006).
[CrossRef]

Lomakin, A. V.

E. B. Aleksandrov, Yu. M. Golubev, A. V. Lomakin, and V. A. Noskin, “Intensity-fluctuation spectroscopy of optical fields with non-Gaussian statistics,” Sov. Phys. Usp. 26, 643–663 (1983).
[CrossRef]

Lonnemann, J. G.

J. Hubner, J. G. Lonnemann, P. Zell, H. Kuhn, F. Berski, and M. Oestreich, “Rapid scanning of spin noise with two free running ultrafast oscillators,” Opt. Express 21, 5872–5878 (2013).
[CrossRef]

F. Berski, Y. Kuhn, J. G. Lonnemann, J. Hubner, and M. Oestreich, “Ultrahigh bandwidth spin noise spectroscopy: detection of large g-factor fluctuations in highly n-doped GaAs,” arXiv:1207.0081 [cond-mat.mes-hall] (30 June 2012).

Lyngnes, O.

A. V. Kavokin, M. R. Vladimirova, M. A. Kaliteevski, O. Lyngnes, J. D. Berger, H. M. Gibbs, and G. Khitrova, “Resonant Faraday rotation in a semiconductor microcavity,” Phys. Rev. B 56, 1087–1090 (1997).
[CrossRef]

Malyshev, V. A.

V. S. Zapasskii, G. G. Kozlov, and V. A. Malyshev, “Optical analogue of Gorter’s paramagnetic relaxation method,” Proc. SPIE 1274, 193–199 (1990).
[CrossRef]

Mandel, L.

A. Kuzmich, L. Mandel, and N. P. Bigelow, “Generation of spin squeezing via continuous quantum nondemolition measurement,” Phys. Rev. Lett. 85, 1594–1597 (2000).
[CrossRef]

A. Kuzmich, N. P. Bigelow, and L. Mandel, “Atomic quantum non-demolition measurements and squeezing,” Europhys. Lett. 42, 481–486 (1998).
[CrossRef]

Martinelly, M.

M. Martinelly, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

Mathur, B. S.

W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Phys. Rev. Lett. 18, 577–580 (1967).
[CrossRef]

McCoy, M. A.

M. A. McCoy and R. R. Ernst, “Nuclear spin noise at room temperature,” Chem. Phys. Lett. 159, 587–593 (1989).
[CrossRef]

McIntyre, D. H.

Meier, F.

F. Meier and B. Zakharchenya, Optical Orientation, Vol.8 of Modern Problems in Condensed Matter Science Series (North-Holland, 1984).

Meijer, J.

T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume,” Science 339, 561–563 (2013).
[CrossRef]

Meriles, C. A.

T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume,” Science 339, 561–563 (2013).
[CrossRef]

Mihaila, B.

B. Mihaila, S. A. Crooker, D. G. Rickel, K. B. Blagoev, P. B. Littlewood, and D. L. Smith, “Quantitative study of spin noise spectroscopy in a classical gas of 41 K,” Phys. Rev. A 74, 043819 (2006).
[CrossRef]

B. Mihaila, S. A. Crooker, K. B. Blagoev, D. G. Rickel, P. B. Littlewood, and D. L. Smith, “Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases,” Phys. Rev. A 74, 63608 (2006).
[CrossRef]

Miller, J.

J. Miller, “Diamond defects enable nanoscale nuclear magnetic resonance,” Phys. Today 66(4), 12–14 (2013).
[CrossRef]

Mitsui, T.

T. Mitsui, “Spontaneous noise spectroscopy of an atomic magnetic resonance,” Phys. Rev. Lett. 84, 5292–5295 (2000).
[CrossRef]

T. Yabuzaki, T. Mitsui, and U. Tanaka, “New type of high-resolution spectroscopy with a diode laser,” Phys. Rev. Lett. 67, 2453–2456 (1991).
[CrossRef]

Moi, L.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento 36, 5–20 (1976).
[CrossRef]

Molmer, K.

A. Kuzmich, K. Molmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[CrossRef]

Moser, M.

G. Salis and M. Moser, “Faraday-rotation spectrum of electron spins in microcavity-embedded GaAs quantum wells,” Phys. Rev. B 72, 115325 (2005).
[CrossRef]

Müller, G.

G. Müller, D. Schuh, J. Hubner, and M. Oestreich, “Electron-spin relaxation in bulk GaAs for doping densities close to the metal-to-insulator transition,” Phys. Rev. B 81, 075216 (2010).
[CrossRef]

Müller, G. M.

H. Horn, G. M. Müller, E. M. Rasel, L. Santos, J. Hubner, and M. Oestreich, “Spin-noise spectroscopy under resonant optical probing conditions: coherent and nonlinear effects,” Phys. Rev. A 84, 043851 (2011).
[CrossRef]

G. M. Müller, M. Oestreich, M. Römer, and J. Hubner, “Semiconductor spin noise spectroscopy: fundamentals, accomplishments, and challenges,” Physica E 43, 569–587 (2010).
[CrossRef]

G. M. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hubner, and M. Oestreich, “Spin noise spectroscopy in GaAs (110) quantum wells: access to intrinsic spin lifetimes and equilibrium electron dynamics,” Phys. Rev. Lett. 101, 206601 (2008).
[CrossRef]

Müller, N.

N. Müller and A. Jerschow, “Nuclear spin noise imaging,” Proc. Natl. Acad. Sci. USA 103, 6790–6792 (2006).
[CrossRef]

Nawrocki, M.

R. Giri, S. Cronenberger, M. Vladimirova, D. Scalbert, K. V. Kavokin, M. M. Glazov, M. Nawrocki, A. Lematre, and J. Bloch, “Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity,” Phys. Rev. B 85, 195313 (2012).
[CrossRef]

Noskin, V. A.

E. B. Aleksandrov, Yu. M. Golubev, A. V. Lomakin, and V. A. Noskin, “Intensity-fluctuation spectroscopy of optical fields with non-Gaussian statistics,” Sov. Phys. Usp. 26, 643–663 (1983).
[CrossRef]

Nussenzveig, P.

M. Martinelly, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

Nussinov, Z.

Z. Nussinov, M. F. Crommie, and A. V. Balatsky, “Noise spectroscopy of a single spin with spin-polarized STM,” Phys. Rev. B 68, 085402 (2003).
[CrossRef]

Oestreich, M.

J. Hubner, J. G. Lonnemann, P. Zell, H. Kuhn, F. Berski, and M. Oestreich, “Rapid scanning of spin noise with two free running ultrafast oscillators,” Opt. Express 21, 5872–5878 (2013).
[CrossRef]

H. Horn, G. M. Müller, E. M. Rasel, L. Santos, J. Hubner, and M. Oestreich, “Spin-noise spectroscopy under resonant optical probing conditions: coherent and nonlinear effects,” Phys. Rev. A 84, 043851 (2011).
[CrossRef]

G. Müller, D. Schuh, J. Hubner, and M. Oestreich, “Electron-spin relaxation in bulk GaAs for doping densities close to the metal-to-insulator transition,” Phys. Rev. B 81, 075216 (2010).
[CrossRef]

G. M. Müller, M. Oestreich, M. Römer, and J. Hubner, “Semiconductor spin noise spectroscopy: fundamentals, accomplishments, and challenges,” Physica E 43, 569–587 (2010).
[CrossRef]

M. Römer, J. Hubner, and M. Oestreich, “Spatially resolved doping concentration measurement in semiconductors via spin noise spectroscopy,” Appl. Phys. Lett. 94, 112105 (2009).
[CrossRef]

G. M. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hubner, and M. Oestreich, “Spin noise spectroscopy in GaAs (110) quantum wells: access to intrinsic spin lifetimes and equilibrium electron dynamics,” Phys. Rev. Lett. 101, 206601 (2008).
[CrossRef]

M. Römer, J. H. Hubner, and M. Oestreich, “Spin noise spectroscopy in semiconductors,” Rev. Sci. Instrum. 78, 103903 (2007).
[CrossRef]

M. Oestreich, M. Römer, R. G. Haug, and D. Hagele, “Spin noise spectroscopy in GaAs,” Phys. Rev. Lett. 95, 216603 (2005).
[CrossRef]

F. Berski, Y. Kuhn, J. G. Lonnemann, J. Hubner, and M. Oestreich, “Ultrahigh bandwidth spin noise spectroscopy: detection of large g-factor fluctuations in highly n-doped GaAs,” arXiv:1207.0081 [cond-mat.mes-hall] (30 June 2012).

Orriols, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento 36, 5–20 (1976).
[CrossRef]

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley Interscience, 1976).

Perel, V. I.

B. M. Gorbovitskii and V. I. Perel, “Aleksandrov and Zapasskii experiment and the Raman effect,” Opt. Spectrosc. 54, 229–230 (1983).

Pershin, Yu. V.

Yu. V. Pershin, V. A. Slipko, D. Roy, and N. A. Sinitsyn, “Two-beam spin noise spectroscopy,” Appl. Phys. Lett. 102, 202405 (2013).
[CrossRef]

Pezzagna, S.

T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume,” Science 339, 561–563 (2013).
[CrossRef]

Polzik, E. S.

J. L. Sorensen, J. Hald, and E. S. Polzik, “Quantum noise of an atomic spin polarization measurement,” Phys. Rev. Lett. 80, 3487–3490 (1998).
[CrossRef]

A. Kuzmich, K. Molmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[CrossRef]

Przhibelskii, S. G.

V. S. Zapasskii and S. G. Przhibelskii, “Cavity-enhanced optical anisotropy and all-optical spin noise spectrometer,” Opt. Spectrosc. 110, 917–924 (2011).
[CrossRef]

Rasel, E. M.

H. Horn, G. M. Müller, E. M. Rasel, L. Santos, J. Hubner, and M. Oestreich, “Spin-noise spectroscopy under resonant optical probing conditions: coherent and nonlinear effects,” Phys. Rev. A 84, 043851 (2011).
[CrossRef]

Reinhard, F.

T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume,” Science 339, 561–563 (2013).
[CrossRef]

Reuter, D.

V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optical spectroscopy of spin noise,” Phys. Rev. Lett. 110, 176601 (2013).
[CrossRef]

S. A. Crooker, J. Brandt, S. Sandfort, A. Greilich, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Spin noise of electrons and holes in self-assembled quantum dots,” Phys. Rev. Lett. 104, 036601 (2010).
[CrossRef]

Rickel, D. G.

B. Mihaila, S. A. Crooker, D. G. Rickel, K. B. Blagoev, P. B. Littlewood, and D. L. Smith, “Quantitative study of spin noise spectroscopy in a classical gas of 41 K,” Phys. Rev. A 74, 043819 (2006).
[CrossRef]

B. Mihaila, S. A. Crooker, K. B. Blagoev, D. G. Rickel, P. B. Littlewood, and D. L. Smith, “Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases,” Phys. Rev. A 74, 63608 (2006).
[CrossRef]

S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. Smith, “Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance,” Nature 431, 49–52 (2004).
[CrossRef]

Rochester, S. M.

Römer, M.

G. M. Müller, M. Oestreich, M. Römer, and J. Hubner, “Semiconductor spin noise spectroscopy: fundamentals, accomplishments, and challenges,” Physica E 43, 569–587 (2010).
[CrossRef]

M. Römer, J. Hubner, and M. Oestreich, “Spatially resolved doping concentration measurement in semiconductors via spin noise spectroscopy,” Appl. Phys. Lett. 94, 112105 (2009).
[CrossRef]

G. M. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hubner, and M. Oestreich, “Spin noise spectroscopy in GaAs (110) quantum wells: access to intrinsic spin lifetimes and equilibrium electron dynamics,” Phys. Rev. Lett. 101, 206601 (2008).
[CrossRef]

M. Römer, J. H. Hubner, and M. Oestreich, “Spin noise spectroscopy in semiconductors,” Rev. Sci. Instrum. 78, 103903 (2007).
[CrossRef]

M. Oestreich, M. Römer, R. G. Haug, and D. Hagele, “Spin noise spectroscopy in GaAs,” Phys. Rev. Lett. 95, 216603 (2005).
[CrossRef]

Rosenberg, R.

Roukes, M. L.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Roy, D.

Yu. V. Pershin, V. A. Slipko, D. Roy, and N. A. Sinitsyn, “Two-beam spin noise spectroscopy,” Appl. Phys. Lett. 102, 202405 (2013).
[CrossRef]

Rubinstein, C. B.

Ryzhov, I. I.

P. Glasenapp, A. Greilich, I. I. Ryzhov, V. S. Zapasskii, D. R. Yakovlev, A. V. Kavokin, G. G. Kozlov, and M. Bayer, “Resources of polarimetric sensitivity in spin noise spectroscopy,” arXiv:1305.7337v1 [cond-mat.mes-hall] (31 May 2013).

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
[CrossRef]

Salis, G.

G. Salis and M. Moser, “Faraday-rotation spectrum of electron spins in microcavity-embedded GaAs quantum wells,” Phys. Rev. B 72, 115325 (2005).
[CrossRef]

Samarth, N.

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

Sandfort, S.

S. A. Crooker, J. Brandt, S. Sandfort, A. Greilich, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Spin noise of electrons and holes in self-assembled quantum dots,” Phys. Rev. Lett. 104, 036601 (2010).
[CrossRef]

Santos, L.

H. Horn, G. M. Müller, E. M. Rasel, L. Santos, J. Hubner, and M. Oestreich, “Spin-noise spectroscopy under resonant optical probing conditions: coherent and nonlinear effects,” Phys. Rev. A 84, 043851 (2011).
[CrossRef]

Scalbert, D.

R. Giri, S. Cronenberger, M. Vladimirova, D. Scalbert, K. V. Kavokin, M. M. Glazov, M. Nawrocki, A. Lematre, and J. Bloch, “Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity,” Phys. Rev. B 85, 195313 (2012).
[CrossRef]

Schuh, D.

G. Müller, D. Schuh, J. Hubner, and M. Oestreich, “Electron-spin relaxation in bulk GaAs for doping densities close to the metal-to-insulator transition,” Phys. Rev. B 81, 075216 (2010).
[CrossRef]

G. M. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hubner, and M. Oestreich, “Spin noise spectroscopy in GaAs (110) quantum wells: access to intrinsic spin lifetimes and equilibrium electron dynamics,” Phys. Rev. Lett. 101, 206601 (2008).
[CrossRef]

Seferos, D. S.

Y. Q. Li, D. W. Steuerman, J. Berezovsky, D. S. Seferos, G. Bazan, and D. D. Awschalom, “Cavity enhanced Faraday rotation of semiconductor quantum dots,” Appl. Phys. Lett. 88, 193126 (2006).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
[CrossRef]

Shi, F.

T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume,” Science 339, 561–563 (2013).
[CrossRef]

Shi, Y.

L. Dong, Y. Jiang, H. Chen, and Y. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107, 093101 (2010).
[CrossRef]

Shimomura, N.

T. Ito, N. Shimomura, and T. Yabuzaki, “Noise spectroscopy of K atoms with a diode laser,” J. Phys. Soc. Jpn. 72, 962–963 (2003).
[CrossRef]

Sinitsyn, N. A.

Yu. V. Pershin, V. A. Slipko, D. Roy, and N. A. Sinitsyn, “Two-beam spin noise spectroscopy,” Appl. Phys. Lett. 102, 202405 (2013).
[CrossRef]

Sleator, T.

T. Sleator, E. L. Hahn, C. Hilbert, and J. Clarke, “Nuclear-spin noise,” Phys. Rev. Lett. 55, 1742–1745 (1985).
[CrossRef]

Slipko, V. A.

Yu. V. Pershin, V. A. Slipko, D. Roy, and N. A. Sinitsyn, “Two-beam spin noise spectroscopy,” Appl. Phys. Lett. 102, 202405 (2013).
[CrossRef]

Smirnov, D. F.

D. F. Smirnov and I. V. Sokolov, “Intensity fluctuation spectrum of the nonlinear resonance fluorescence of an atomic system,” Sov. Phys. JETP 43, 1079–1083 (1976).

Smith, D.

S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. Smith, “Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance,” Nature 431, 49–52 (2004).
[CrossRef]

Smith, D. L.

S. A. Crooker, L. Cheng, and D. L. Smith, “Spin noise of conduction electrons in n-type bulk GaAs,” Phys. Rev. B 79, 035208 (2009).
[CrossRef]

B. Mihaila, S. A. Crooker, K. B. Blagoev, D. G. Rickel, P. B. Littlewood, and D. L. Smith, “Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases,” Phys. Rev. A 74, 63608 (2006).
[CrossRef]

B. Mihaila, S. A. Crooker, D. G. Rickel, K. B. Blagoev, P. B. Littlewood, and D. L. Smith, “Quantitative study of spin noise spectroscopy in a classical gas of 41 K,” Phys. Rev. A 74, 043819 (2006).
[CrossRef]

Sokolov, I. V.

D. F. Smirnov and I. V. Sokolov, “Intensity fluctuation spectrum of the nonlinear resonance fluorescence of an atomic system,” Sov. Phys. JETP 43, 1079–1083 (1976).

Sorensen, J. L.

J. L. Sorensen, J. Hald, and E. S. Polzik, “Quantum noise of an atomic spin polarization measurement,” Phys. Rev. Lett. 80, 3487–3490 (1998).
[CrossRef]

Starosielec, S.

S. Starosielec and D. Hogele, “Ultrafast spin noise spectroscopy,” Appl. Phys. Lett. 93, 051116 (2008).
[CrossRef]

Staudacher, T.

T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume,” Science 339, 561–563 (2013).
[CrossRef]

Steel, D. S.

Q. Huang and D. S. Steel, “Optical excitation effects on spin-noise spectroscopy in semiconductors,” Phys. Rev. B 83, 155204 (2011).
[CrossRef]

Stephens, P. J.

A. D. Buckingham and P. J. Stephens, “Magnetic optical activity,” Annu. Rev. Phys. Chem. 17, 399–432 (1966).
[CrossRef]

Steuerman, D. W.

Y. Q. Li, D. W. Steuerman, J. Berezovsky, D. S. Seferos, G. Bazan, and D. D. Awschalom, “Cavity enhanced Faraday rotation of semiconductor quantum dots,” Appl. Phys. Lett. 88, 193126 (2006).
[CrossRef]

Swinney, H.

D. Eden and H. Swinney, “Optical heterodyne studies of Brillouin scattering in xenon near the critical point,” Opt. Commun. 10, 191–194 (1974).
[CrossRef]

Tanaka, U.

T. Yabuzaki, T. Mitsui, and U. Tanaka, “New type of high-resolution spectroscopy with a diode laser,” Phys. Rev. Lett. 67, 2453–2456 (1991).
[CrossRef]

Treger, D. M.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Twiss, R. Q.

R. Hanbury-Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[CrossRef]

Valente, P.

P. Valente, H. Failache, and A. Lezama, “Diode laser noise-spectroscopy of low-frequency atomic fluctuations in rubidium vapor,” Eur. Phys. J. D 50, 133–140 (2008).
[CrossRef]

M. Martinelly, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
[CrossRef]

Vladimirova, M.

R. Giri, S. Cronenberger, M. Vladimirova, D. Scalbert, K. V. Kavokin, M. M. Glazov, M. Nawrocki, A. Lematre, and J. Bloch, “Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity,” Phys. Rev. B 85, 195313 (2012).
[CrossRef]

Vladimirova, M. R.

A. V. Kavokin, M. R. Vladimirova, M. A. Kaliteevski, O. Lyngnes, J. D. Berger, H. M. Gibbs, and G. Khitrova, “Resonant Faraday rotation in a semiconductor microcavity,” Phys. Rev. B 56, 1087–1090 (1997).
[CrossRef]

von Molnar, S.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Walser, F.

Walser, R.

R. Walser and P. Zoller, “Laser-noise-induced polarization fluctuations as a spectroscopic tool,” Phys. Rev. A 49, 5067–5077 (1994).
[CrossRef]

Wegscheider, W.

G. M. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hubner, and M. Oestreich, “Spin noise spectroscopy in GaAs (110) quantum wells: access to intrinsic spin lifetimes and equilibrium electron dynamics,” Phys. Rev. Lett. 101, 206601 (2008).
[CrossRef]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wieck, A. D.

V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optical spectroscopy of spin noise,” Phys. Rev. Lett. 110, 176601 (2013).
[CrossRef]

S. A. Crooker, J. Brandt, S. Sandfort, A. Greilich, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Spin noise of electrons and holes in self-assembled quantum dots,” Phys. Rev. Lett. 104, 036601 (2010).
[CrossRef]

Wolf, S. A.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

Wrachtrup, J.

T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume,” Science 339, 561–563 (2013).
[CrossRef]

Yabuzaki, T.

T. Ito, N. Shimomura, and T. Yabuzaki, “Noise spectroscopy of K atoms with a diode laser,” J. Phys. Soc. Jpn. 72, 962–963 (2003).
[CrossRef]

T. Yabuzaki, T. Mitsui, and U. Tanaka, “New type of high-resolution spectroscopy with a diode laser,” Phys. Rev. Lett. 67, 2453–2456 (1991).
[CrossRef]

Yakovlev, D. R.

V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optical spectroscopy of spin noise,” Phys. Rev. Lett. 110, 176601 (2013).
[CrossRef]

S. A. Crooker, J. Brandt, S. Sandfort, A. Greilich, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Spin noise of electrons and holes in self-assembled quantum dots,” Phys. Rev. Lett. 104, 036601 (2010).
[CrossRef]

P. Glasenapp, A. Greilich, I. I. Ryzhov, V. S. Zapasskii, D. R. Yakovlev, A. V. Kavokin, G. G. Kozlov, and M. Bayer, “Resources of polarimetric sensitivity in spin noise spectroscopy,” arXiv:1305.7337v1 [cond-mat.mes-hall] (31 May 2013).

Yashchuk, V. V.

Zakharchenya, B.

F. Meier and B. Zakharchenya, Optical Orientation, Vol.8 of Modern Problems in Condensed Matter Science Series (North-Holland, 1984).

Zapasskii, V. S.

V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optical spectroscopy of spin noise,” Phys. Rev. Lett. 110, 176601 (2013).
[CrossRef]

V. S. Zapasskii and S. G. Przhibelskii, “Cavity-enhanced optical anisotropy and all-optical spin noise spectrometer,” Opt. Spectrosc. 110, 917–924 (2011).
[CrossRef]

V. S. Zapasskii, G. G. Kozlov, and V. A. Malyshev, “Optical analogue of Gorter’s paramagnetic relaxation method,” Proc. SPIE 1274, 193–199 (1990).
[CrossRef]

E. B. Aleksandrov and V. S. Zapasskii, “Use of lasers to study magnetic resonance and magnetic relaxation,” J. Sov. Laser Res. 6, 291–296 (1985).
[CrossRef]

V. S. Zapasskii, “Highly sensitive polarimetric measurements,” J. Appl. Spectrosc. 37, 857–869 (1982).
[CrossRef]

E. B. Aleksandrov and V. S. Zapasskii, “Magnetic resonance in the Faraday rotation noise spectrum,” J. Exp. Theor. Phys. 54, 64–67 (1981).

V. S. Zapasskii, “Depression of excess light noise in polarimetric measurements,” Opt. Spectrosc. 47, 450–451 (1979).

E. B. Aleksandrov and V. S. Zapasskii, “Modulation magneto- optical spectroscopy of cross-relaxation resonances,” V. S. Sov. Phys. Solid State 20, 679–683 (1978).

E. B. Aleksandrov and V. S. Zapasskii, “Millisecond sensitivity in polarimetric measurements,” Opt. Spectrosc. 41, 502–504 (1976).

V. S. Zapasskii and P. P. Feofilov, “Development of polarization magneto-optics of paramagnetic crystals,” Sov. Phys. Usp. 18, 323–342 (1975).
[CrossRef]

P. Glasenapp, A. Greilich, I. I. Ryzhov, V. S. Zapasskii, D. R. Yakovlev, A. V. Kavokin, G. G. Kozlov, and M. Bayer, “Resources of polarimetric sensitivity in spin noise spectroscopy,” arXiv:1305.7337v1 [cond-mat.mes-hall] (31 May 2013).

G. G. Kozlov and V. S. Zapasskii, “Light-intensity susceptibility and ‘active’ noise spectroscopy,” arXiv: 1206.1921v1 [physics.optics] (9 June 2012).

V. S. Zapasskii, “Optical detection of spin-system magnetization in rare-earth-activated crystals and glasses,” in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and M. F. Macfarlane, eds. (Elsevier, 1987), pp. 674–711.

Zell, P.

Zoller, P.

R. Walser and P. Zoller, “Laser-noise-induced polarization fluctuations as a spectroscopic tool,” Phys. Rev. A 49, 5067–5077 (1994).
[CrossRef]

Žutic, I. I.

I. I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

A. D. Buckingham and P. J. Stephens, “Magnetic optical activity,” Annu. Rev. Phys. Chem. 17, 399–432 (1966).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Y. Q. Li, D. W. Steuerman, J. Berezovsky, D. S. Seferos, G. Bazan, and D. D. Awschalom, “Cavity enhanced Faraday rotation of semiconductor quantum dots,” Appl. Phys. Lett. 88, 193126 (2006).
[CrossRef]

Yu. V. Pershin, V. A. Slipko, D. Roy, and N. A. Sinitsyn, “Two-beam spin noise spectroscopy,” Appl. Phys. Lett. 102, 202405 (2013).
[CrossRef]

M. Römer, J. Hubner, and M. Oestreich, “Spatially resolved doping concentration measurement in semiconductors via spin noise spectroscopy,” Appl. Phys. Lett. 94, 112105 (2009).
[CrossRef]

S. Starosielec and D. Hogele, “Ultrafast spin noise spectroscopy,” Appl. Phys. Lett. 93, 051116 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

M. A. McCoy and R. R. Ernst, “Nuclear spin noise at room temperature,” Chem. Phys. Lett. 159, 587–593 (1989).
[CrossRef]

Eur. Phys. J. D (1)

P. Valente, H. Failache, and A. Lezama, “Diode laser noise-spectroscopy of low-frequency atomic fluctuations in rubidium vapor,” Eur. Phys. J. D 50, 133–140 (2008).
[CrossRef]

Europhys. Lett. (1)

A. Kuzmich, N. P. Bigelow, and L. Mandel, “Atomic quantum non-demolition measurements and squeezing,” Europhys. Lett. 42, 481–486 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Appl. Phys. (1)

L. Dong, Y. Jiang, H. Chen, and Y. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107, 093101 (2010).
[CrossRef]

J. Appl. Spectrosc. (1)

V. S. Zapasskii, “Highly sensitive polarimetric measurements,” J. Appl. Spectrosc. 37, 857–869 (1982).
[CrossRef]

J. Exp. Theor. Phys. (1)

E. B. Aleksandrov and V. S. Zapasskii, “Magnetic resonance in the Faraday rotation noise spectrum,” J. Exp. Theor. Phys. 54, 64–67 (1981).

J. Magn. Reson. (1)

M. Gueron and J. L. Leroy, “NMR of water protons: the detection of their nuclear-spin noise, and a simple determination of absolute probe sensitivity based on radiation damping,” J. Magn. Reson. 85, 209–215 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (1)

T. Ito, N. Shimomura, and T. Yabuzaki, “Noise spectroscopy of K atoms with a diode laser,” J. Phys. Soc. Jpn. 72, 962–963 (2003).
[CrossRef]

J. Sov. Laser Res. (1)

E. B. Aleksandrov and V. S. Zapasskii, “Use of lasers to study magnetic resonance and magnetic relaxation,” J. Sov. Laser Res. 6, 291–296 (1985).
[CrossRef]

Nature (2)

S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. Smith, “Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance,” Nature 431, 49–52 (2004).
[CrossRef]

R. Hanbury-Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[CrossRef]

Nuovo Cimento (1)

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for observation of RF transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento 36, 5–20 (1976).
[CrossRef]

Opt. Commun. (1)

D. Eden and H. Swinney, “Optical heterodyne studies of Brillouin scattering in xenon near the critical point,” Opt. Commun. 10, 191–194 (1974).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Spectrosc (1)

E. B. Aleksandrov and V. N. Kulyasov, “Spectra of fluctuations of spontaneous emission,” Opt. Spectrosc 40, 449–452 (1976).

Opt. Spectrosc. (4)

V. S. Zapasskii, “Depression of excess light noise in polarimetric measurements,” Opt. Spectrosc. 47, 450–451 (1979).

B. M. Gorbovitskii and V. I. Perel, “Aleksandrov and Zapasskii experiment and the Raman effect,” Opt. Spectrosc. 54, 229–230 (1983).

E. B. Aleksandrov and V. S. Zapasskii, “Millisecond sensitivity in polarimetric measurements,” Opt. Spectrosc. 41, 502–504 (1976).

V. S. Zapasskii and S. G. Przhibelskii, “Cavity-enhanced optical anisotropy and all-optical spin noise spectrometer,” Opt. Spectrosc. 110, 917–924 (2011).
[CrossRef]

Phys. Rev. (7)

W. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134, A1429–A1450 (1964).
[CrossRef]

J. Brossel and F. Bitter, “A new ‘double resonance’ method for investigating atomic energy levels. Application to Hg P13,” Phys. Rev. 86, 308–316 (1952).
[CrossRef]

F. Bloch, “Nuclear induction,” Phys. Rev. 70, 460–474 (1946).
[CrossRef]

F. Bitter, “The optical detection of radiofrequency resonance,” Phys. Rev. 76, 833–835 (1949).
[CrossRef]

H. G. Dehmelt, “Modulation of a light beam by precessing absorbing atoms,” Phys. Rev. 105, 1924–1925 (1957).
[CrossRef]

W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559–1565 (1957).
[CrossRef]

A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).
[CrossRef]

Phys. Rev. A (6)

B. Mihaila, S. A. Crooker, D. G. Rickel, K. B. Blagoev, P. B. Littlewood, and D. L. Smith, “Quantitative study of spin noise spectroscopy in a classical gas of 41 K,” Phys. Rev. A 74, 043819 (2006).
[CrossRef]

M. Martinelly, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzveig, and A. Lezama, “Noise spectroscopy of nonlinear magneto-optical resonances in Rb vapor,” Phys. Rev. A 69, 043809 (2004).
[CrossRef]

R. Walser and P. Zoller, “Laser-noise-induced polarization fluctuations as a spectroscopic tool,” Phys. Rev. A 49, 5067–5077 (1994).
[CrossRef]

B. Mihaila, S. A. Crooker, K. B. Blagoev, D. G. Rickel, P. B. Littlewood, and D. L. Smith, “Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases,” Phys. Rev. A 74, 63608 (2006).
[CrossRef]

W. Chalupczak and R. M. Godun, “Near-resonance spin noise spectroscopy,” Phys. Rev. A 83, 032512 (2011).
[CrossRef]

H. Horn, G. M. Müller, E. M. Rasel, L. Santos, J. Hubner, and M. Oestreich, “Spin-noise spectroscopy under resonant optical probing conditions: coherent and nonlinear effects,” Phys. Rev. A 84, 043851 (2011).
[CrossRef]

Phys. Rev. B (8)

Q. Huang and D. S. Steel, “Optical excitation effects on spin-noise spectroscopy in semiconductors,” Phys. Rev. B 83, 155204 (2011).
[CrossRef]

Z. Nussinov, M. F. Crommie, and A. V. Balatsky, “Noise spectroscopy of a single spin with spin-polarized STM,” Phys. Rev. B 68, 085402 (2003).
[CrossRef]

A. V. Kavokin, M. R. Vladimirova, M. A. Kaliteevski, O. Lyngnes, J. D. Berger, H. M. Gibbs, and G. Khitrova, “Resonant Faraday rotation in a semiconductor microcavity,” Phys. Rev. B 56, 1087–1090 (1997).
[CrossRef]

G. Salis and M. Moser, “Faraday-rotation spectrum of electron spins in microcavity-embedded GaAs quantum wells,” Phys. Rev. B 72, 115325 (2005).
[CrossRef]

S. A. Crooker, L. Cheng, and D. L. Smith, “Spin noise of conduction electrons in n-type bulk GaAs,” Phys. Rev. B 79, 035208 (2009).
[CrossRef]

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

G. Müller, D. Schuh, J. Hubner, and M. Oestreich, “Electron-spin relaxation in bulk GaAs for doping densities close to the metal-to-insulator transition,” Phys. Rev. B 81, 075216 (2010).
[CrossRef]

R. Giri, S. Cronenberger, M. Vladimirova, D. Scalbert, K. V. Kavokin, M. M. Glazov, M. Nawrocki, A. Lematre, and J. Bloch, “Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity,” Phys. Rev. B 85, 195313 (2012).
[CrossRef]

Phys. Rev. Lett. (13)

S. A. Crooker, J. Brandt, S. Sandfort, A. Greilich, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Spin noise of electrons and holes in self-assembled quantum dots,” Phys. Rev. Lett. 104, 036601 (2010).
[CrossRef]

T. Sleator, E. L. Hahn, C. Hilbert, and J. Clarke, “Nuclear-spin noise,” Phys. Rev. Lett. 55, 1742–1745 (1985).
[CrossRef]

T. Mitsui, “Spontaneous noise spectroscopy of an atomic magnetic resonance,” Phys. Rev. Lett. 84, 5292–5295 (2000).
[CrossRef]

A. Kuzmich, K. Molmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[CrossRef]

J. L. Sorensen, J. Hald, and E. S. Polzik, “Quantum noise of an atomic spin polarization measurement,” Phys. Rev. Lett. 80, 3487–3490 (1998).
[CrossRef]

W. Happer and B. S. Mathur, “Off-resonant light as a probe of optically pumped alkali vapors,” Phys. Rev. Lett. 18, 577–580 (1967).
[CrossRef]

M. Oestreich, M. Römer, R. G. Haug, and D. Hagele, “Spin noise spectroscopy in GaAs,” Phys. Rev. Lett. 95, 216603 (2005).
[CrossRef]

J. N. Kikkawa and D. D. Awschalom, “Resonant spin amplification in n-type GaAs,” Phys. Rev. Lett. 80, 4313–4316 (1998).
[CrossRef]

A. Kuzmich, L. Mandel, and N. P. Bigelow, “Generation of spin squeezing via continuous quantum nondemolition measurement,” Phys. Rev. Lett. 85, 1594–1597 (2000).
[CrossRef]

T. Yabuzaki, T. Mitsui, and U. Tanaka, “New type of high-resolution spectroscopy with a diode laser,” Phys. Rev. Lett. 67, 2453–2456 (1991).
[CrossRef]

W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6, 280–281 (1961).
[CrossRef]

G. M. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hubner, and M. Oestreich, “Spin noise spectroscopy in GaAs (110) quantum wells: access to intrinsic spin lifetimes and equilibrium electron dynamics,” Phys. Rev. Lett. 101, 206601 (2008).
[CrossRef]

V. S. Zapasskii, A. Greilich, S. A. Crooker, Y. Li, G. G. Kozlov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optical spectroscopy of spin noise,” Phys. Rev. Lett. 110, 176601 (2013).
[CrossRef]

Phys. Today (2)

J. Miller, “Diamond defects enable nanoscale nuclear magnetic resonance,” Phys. Today 66(4), 12–14 (2013).
[CrossRef]

S. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Physica E (1)

G. M. Müller, M. Oestreich, M. Römer, and J. Hubner, “Semiconductor spin noise spectroscopy: fundamentals, accomplishments, and challenges,” Physica E 43, 569–587 (2010).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

N. Müller and A. Jerschow, “Nuclear spin noise imaging,” Proc. Natl. Acad. Sci. USA 103, 6790–6792 (2006).
[CrossRef]

Proc. R. Soc. A (1)

R. V. Jones, “Rotary ‘aether drag’,” Proc. R. Soc. A 349, 423–439 (1976).
[CrossRef]

Proc. SPIE (1)

V. S. Zapasskii, G. G. Kozlov, and V. A. Malyshev, “Optical analogue of Gorter’s paramagnetic relaxation method,” Proc. SPIE 1274, 193–199 (1990).
[CrossRef]

Rev. Mod. Phys. (2)

I. I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).
[CrossRef]

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Römer, J. H. Hubner, and M. Oestreich, “Spin noise spectroscopy in semiconductors,” Rev. Sci. Instrum. 78, 103903 (2007).
[CrossRef]

Science (3)

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001).
[CrossRef]

A. Kastler, “Optical methods for studying Hertzian resonances,” Science 158, 214–221 (1967).
[CrossRef]

T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume,” Science 339, 561–563 (2013).
[CrossRef]

Sov. Phys. JETP (2)

E. B. Aleksandrov, V. P. Kozlov, and V. N. Kulyasov, “Noise spectrum of spontaneous emission,” Sov. Phys. JETP 39, 620–626 (1974).

D. F. Smirnov and I. V. Sokolov, “Intensity fluctuation spectrum of the nonlinear resonance fluorescence of an atomic system,” Sov. Phys. JETP 43, 1079–1083 (1976).

Sov. Phys. Usp. (4)

V. S. Zapasskii and P. P. Feofilov, “Development of polarization magneto-optics of paramagnetic crystals,” Sov. Phys. Usp. 18, 323–342 (1975).
[CrossRef]

E. B. Aleksandrov, Yu. M. Golubev, A. V. Lomakin, and V. A. Noskin, “Intensity-fluctuation spectroscopy of optical fields with non-Gaussian statistics,” Sov. Phys. Usp. 26, 643–663 (1983).
[CrossRef]

E. B. Aleksandrov, “Optical manifestations of the interference of nondegenerate atomic states,” Sov. Phys. Usp. 15, 436–451 (1973).
[CrossRef]

E. B. Aleksandrov, N. T. Kaliteevskii, and M. P. Chaika, “Superhigh-resolution spectroscopy based on interference of states,” Sov. Phys. Usp. 22, 760–767 (1979).
[CrossRef]

V. S. Sov. Phys. Solid State (1)

E. B. Aleksandrov and V. S. Zapasskii, “Modulation magneto- optical spectroscopy of cross-relaxation resonances,” V. S. Sov. Phys. Solid State 20, 679–683 (1978).

Other (11)

P. Glasenapp, A. Greilich, I. I. Ryzhov, V. S. Zapasskii, D. R. Yakovlev, A. V. Kavokin, G. G. Kozlov, and M. Bayer, “Resources of polarimetric sensitivity in spin noise spectroscopy,” arXiv:1305.7337v1 [cond-mat.mes-hall] (31 May 2013).

C. J. Gorter, Paramagnetic Relaxation (Elsevier, 1947).

D. Budker and D. F. Jackson Kimball, eds., Optical Magnetometry (Cambridge University, 2013).

F. Meier and B. Zakharchenya, Optical Orientation, Vol.8 of Modern Problems in Condensed Matter Science Series (North-Holland, 1984).

V. S. Zapasskii, “Optical detection of spin-system magnetization in rare-earth-activated crystals and glasses,” in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and M. F. Macfarlane, eds. (Elsevier, 1987), pp. 674–711.

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley Interscience, 1976).

L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, 1980).

A. A. Kharkevich, Spectra and Analysis (Springer, 1995).

G. G. Kozlov and V. S. Zapasskii, “Light-intensity susceptibility and ‘active’ noise spectroscopy,” arXiv: 1206.1921v1 [physics.optics] (9 June 2012).

F. Berski, Y. Kuhn, J. G. Lonnemann, J. Hubner, and M. Oestreich, “Ultrahigh bandwidth spin noise spectroscopy: detection of large g-factor fluctuations in highly n-doped GaAs,” arXiv:1207.0081 [cond-mat.mes-hall] (30 June 2012).

P. Michler, ed., Single Quantum Dots, Fundamentals, Applications and New Concepts (Springer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Figure 1
Figure 1

Simplified scheme of the experiment of Forrester et al. [12]. Lower inset shows schematically the optical spectrum of the detected Zeeman doublet of Hg vapor (left) and the detected spectrum of the LIN.

Figure 2
Figure 2

Geometry of the experiment of Hanbury-Brown and Twiss with its characteristic parameters.

Figure 3
Figure 3

The two experimental arrangements used in conventional optical spectroscopy (a) and in the spectroscopy of LIN (b).

Figure 4
Figure 4

Formation of the “paramagnetic” part of the Faraday rotation in a longitudinal magnetic field for the simplest case of transition between two magnetic doublets (inset). Due to redistribution of populations over the ground-state sublevels, the absorption coefficients ( k + and k ) and refractive indices ( n + and n ) for two circular polarizations become different. These differences ( Δ k and Δ n ) give rise to magnetic circular dichroism and Faraday rotation, respectively. Magnetic splitting of the transition energies is supposed negligible compared to the linewidth.

Figure 5
Figure 5

Magnetization M of a spin system in a static external magnetic field B , due to permanent motion of individual spins, exhibits random fluctuations both in its magnitude (along the magnetization M ) and in its direction (across the mean magnetization).

Figure 6
Figure 6

Measuring the spin noise (FR noise) of a spin system in an external magnetic field. The left and right panels correspond to longitudinal and transverse orientation of the magnetic field with respect to the light propagation (the Faraday and Voigt configurations, respectively). (a) Experimental arrangement, (b) a sketch of the temporal dependence of the noise signal, (c) the shape of the autocorrelation function of the noise signal, and (d) the spectrum of the signal.

Figure 7
Figure 7

Two schemes for measuring polarimetric signals with a balanced detector (left side) and behavior of the detector photocurrents versus azimuth of the polarization plane of the incident light φ (right side). (a) Standard 45° geometry. At φ = 45 ° , the photocurrents become equal, and the current flowing through the resistor R vanishes for any light intensity. (b) The scheme with variable polarization extinction. The beam is split by a nonpolarizing beam splitter (NPBS), retaining polarization of the light beam, and the level of polarization extinction is set in each arm independently (using polarizers P 1 and P 2 ) to equalize photocurrents. At high extinction (at small angles of detuning δ from the crossed position), the steepness of the dependence I ( φ ) may become much higher. PD1 and PD2, photodetectors; P 1 and P 2 , polarizers.

Figure 8
Figure 8

Simplified schematic of the experimental setup used for detecting magnetic resonance in the Faraday rotation noise spectrum of sodium atoms [3].

Figure 9
Figure 9

A sketch of the Faraday rotation spectrum of sodium atoms (a) and experimental plots of the EPR signal in the Faraday rotation noise (b) for two wavelengths of the probe beam (indicated by arrows). Due to modulation of the applied magnetic field, the signal, in this experiment, was proportional to the derivative of the FR noise power with respect to the magnetic field.

Figure 10
Figure 10

Schematic of the experimental setup for active SNS. In contrast to conventional SNS, the transmitted light is not subject to polarization analysis, the beam is not necessarily focused on the sample, and no intensity noise suppression is used.

Figure 11
Figure 11

The figures show schematically how the spectrum of a broadband signal is accumulated in the sweeping (a) and real-time FFT spectral analyzer (b). In the first case, the detection system successively passes through each frequency channel, ignoring, at that moment, all other channels. In the second case, the signals of all frequency channels are accumulated simultaneously. The curves are shifted for clarity.

Figure 12
Figure 12

Ultrafast SNS. (a) Schematic of the experimental setup. The sample is probed by a train of pairs of ultrashort pulses with variable delay Δ t . (b) Dependence of the noise signal on the time delay. Vectorial diagrams show summation of the contributions of the two pulses to the FR signal for different ratios of the time delay Δ t and the Larmor precession period T . (c) Resulting dependence of the noise signal on the time delay Δ t , corresponding to resonant transient of the system or to its autocorrelation function (ACF), and the spin resonance spectrum obtained by Fourier transform of the autocorrelation function.

Figure 13
Figure 13

Frequency dependence of the polarization signal gain factor ( Γ ) in a Fabry–Perot cavity for a sample placed at the edge of the cavity (a) and in the middle of it (b). The frequency F is given in the units of intermodal spacing f 0 = c / 2 L . Panel (c) illustrates the synchronism of the light traveling over the cavity with oscillations of anisotropy of the intracavity sample (for F = 1 ). The layers in the center of the cavity and near its edge (green) depict the medium with oscillating anisotropy, the black sinusoid is the time variation of the anisotropy, and the red lines show propagation of the light beam.

Figure 14
Figure 14

Schematic of an all-optical spin-noise spectrometer.

Figure 15
Figure 15

Optical spectra of absorption (a), FR (b), and FR noise power (c) and (d) of a hypothetical paramagnet with two closely spaced optical transitions. Spectra (c) and (d) correspond to the cases when optical transitions are associated with the same spin system or with two different spin systems, respectively.

Figure 16
Figure 16

Typical spectra of optical absorption (a), Faraday rotation (b), and FR noise for the cases of homogeneously (c) and inhomogeneously (d) broadened bands. The two lower plots show schematically how the spin-noise spectra (red peaks) vary with the optical frequency of the probe beam ( ν ).

Figure 17
Figure 17

Schematic of the Z -scan arrangement (a) and characteristic dependence of the transmitted light intensity on position of the sample Z for the sample with optical nonlinearity.

Figure 18
Figure 18

Schematic of a two-beam intensity-noise-based experiment demonstrating detection of a spot illuminated by a pump beam with the other beam (probe) scanning over the sample layer. The noise modulating the light beam is supposed to be caused by microscopic dynamics of the illuminated spot.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ω = E ( t ) E * ( t + τ ) e i ω τ d τ .
I ω 2 = I ( t ) I ( t + τ ) e i ω τ d τ ,
φ = σ F S z d ,
Δ φ min Δ f / 2 I η ,
Δ φ n 0 l / n 0 l S = n 0 l / S .
φ ( ω ) = φ i ( ω ) .
δ φ 2 ( ω ) ( φ i ( ω ) ) 2 .
δ φ 2 ( ω ) φ i ( ω ) 2 .

Metrics