Abstract

This tutorial reviews various noncontact optical sensing techniques that can be used to measure distances to objects, and related parameters such as displacements, surface profiles, velocities and vibrations. The techniques that are discussed and compared include intensity-based sensing, triangulation, time-of-flight sensing, confocal sensing, Doppler sensing, and various kinds of interferometric sensing with both high- and low-coherence sources.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [CrossRef]
  2. P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
    [CrossRef]
  3. P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008).
    [CrossRef]
  4. J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile Robots: Sensors and Techniques (A. K. Peters, 1995).
  5. C. Menadier, C. Kissinger, and H. Adkins, “The fotonic sensor,” Instruments Control Syst. 40, 114–120 (1967).
  6. “Fiber optic sensors: Introduction,” http://www.efunda.com/DesignStandards/sensors/fotonic/fotonic_intro.cfm.
  7. R. O. Cook and C. W. Hamm, “Fiber optic lever displacement transducer,” Appl. Opt. 18(19), 3230–3241 (1979).
    [CrossRef] [PubMed]
  8. A. Shimamoto and K. Tanaka, “Geometrical analysis of an optical fiber bundle displacement sensor,” Appl. Opt. 35(34), 6767–6774 (1996).
    [CrossRef] [PubMed]
  9. H. Wang, “Reflective fibre optical displacement sensors for the inspection of tilted objects,” Opt. Quantum Electron. 28(11), 1655–1668 (1996).
    [CrossRef]
  10. H. Golnabi and P. Azimi, “Design and operation of a double-fiber displacement sensor,” Opt. Commun. 281(4), 614–620 (2008).
    [CrossRef]
  11. W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sens. Actuators A Phys. 49(1–2), 51–55 (1995).
    [CrossRef]
  12. J. A. Powell, “A simple two fiber optical displacement sensor,” Rev. Sci. Instrum. 45(2), 302–303 (1974).
    [CrossRef]
  13. V. Trudel and Y. St-Amant, “One- and two-dimensional single-mode differential fiber-optic displacement sensor for submillimeter measurements,” Appl. Opt. 47(8), 1082–1089 (2008).
    [CrossRef] [PubMed]
  14. http://www.efunda.com/DesignStandards/sensors/fotonic/fotonic_theory.cfm 36.
  15. The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
    [CrossRef] [PubMed]
  16. P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997).
    [CrossRef]
  17. G. Berkovic, S. Zilberman, and E. Shafir, “Size effect in fiber optic displacement sensors,” in Optical Sensors, OSA Technical Digest (online) (Optical Society of America, 2012) SM4F.6.
  18. J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002).
    [CrossRef]
  19. G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967).
    [CrossRef]
  20. M. Johnson, “Fiber displacement sensors for metrology and control,” Opt. Eng. 24, 961–965 (1985).
  21. J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38(2), 227–232 (1999).
    [CrossRef]
  22. C. P. Cockshott and S. J. Pacaud, “Compensation of an optical fibre reflective sensor,” Sens. Actuators 17(1–2), 167–171 (1989).
    [CrossRef]
  23. Y. Libo and Q. Anping, “Fiber-optic diaphragm pressure sensor with automatic intensity compensation,” Sens. Actuators A Phys. 28(1), 29–33 (1991).
    [CrossRef]
  24. A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).
  25. See, for example, “Thales,” http://en.wikipedia.org/wiki/Thales.
  26. Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21(5), 339–341 (1989).
    [CrossRef]
  27. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
    [CrossRef]
  28. R. G. Dorsch, G. Häusler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33(7), 1306–1314 (1994).
    [CrossRef] [PubMed]
  29. M. Rioux, “Laser range finder based on synchronized scanners,” Appl. Opt. 23(21), 3837–3844 (1984).
    [CrossRef] [PubMed]
  30. K.-C. Fan, “A non-contact automatic measurement for free-form surface profiles,” Comput. Integrated Manuf. Syst. 10(4), 277–285 (1997).
    [CrossRef]
  31. Y. Yakimovsky and R. Cunningham, “A system for extracting three-dimensional measurements from a stereo pair of TV cameras,” Comput. Graphics Image Process. 7(2), 195–210 (1978).
    [CrossRef]
  32. J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37(31), 7298–7304 (1998).
    [CrossRef] [PubMed]
  33. J. Pehkonen, P. Palojärvi, and J. Kostamovaara, “Receiver channel with resonance-based timing detection for a laser range finder,” IEEE Trans. Circ. Syst. 53(3), 569–577 (2006).
    [CrossRef]
  34. D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65(2), 206–220 (1977).
    [CrossRef]
  35. P. J. Besl, “Active optical range imaging sensors,” Mach. Vis. Appl. 1(2), 127–152 (1988).
    [CrossRef]
  36. R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
    [CrossRef]
  37. A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras,” Appl. Opt. 49(23), 4392–4403 (2010).
    [CrossRef] [PubMed]
  38. Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.
  39. J. E. Nettleton, B. W. Schilling, D. N. Barr, and J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39(15), 2428–2432 (2000).
    [CrossRef] [PubMed]
  40. C. T. Allen, K. Shi, and R. G. Plumb, “The use of ground-penetrating radar with a cooperative target,” IEEE Geosci. Remote Sensing 36(5), 1821–1825 (1998).
    [CrossRef]
  41. B. Saleh, Introduction to Subsurface Imaging (Cambridge University Press, 2011), p. 38.
  42. H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
    [CrossRef]
  43. L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000).
    [CrossRef]
  44. H. J. Tiziani and H.-M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt. 33(10), 1838–1843 (1994).
    [CrossRef] [PubMed]
  45. J. Cohen-Sabban, J. Gaillard-Groleas, and P. J. Crepin, “Extended-field confocal imaging for 3D surface sensing,” Proc. SPIE 5252, 366–371 (2004).
    [CrossRef]
  46. J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
    [CrossRef]
  47. T. Dabbs and M. Glass, “Fiber-optic confocal microscope: FOCON,” Appl. Opt. 31(16), 3030–3035 (1992).
    [CrossRef] [PubMed]
  48. R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92(4–6), 315–325 (1992).
    [CrossRef]
  49. E. Shafir and G. Berkovic, “Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity,” Appl. Opt. 45(30), 7772–7777 (2006).
    [CrossRef] [PubMed]
  50. E. Shafir and G. Berkovic, “Multi-wavelength fiber optic displacement sensing,” Proc. SPIE 5952, 59520X (2005).
    [CrossRef]
  51. K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
    [CrossRef]
  52. G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
    [CrossRef]
  53. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  54. A. Koch and R. Ulrich, “Fiber-optic displacement sensor with 0.02 µm resolution by white-light interferometry,” Sens. Actuators A Phys. 25(1-3), 201–207 (1990).
    [CrossRef]
  55. H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibre,” Electron. Lett. 17(17), 603–605 (1981).
    [CrossRef]
  56. Y.-J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
    [CrossRef]
  57. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
    [CrossRef]
  58. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
    [CrossRef]
  59. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
    [CrossRef] [PubMed]
  60. C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
    [PubMed]
  61. W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006).
    [CrossRef]
  62. M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
    [CrossRef]
  63. B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30(21), 2975–2979 (1991).
    [CrossRef] [PubMed]
  64. E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011).
    [CrossRef]
  65. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  66. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
    [CrossRef]
  67. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
    [CrossRef] [PubMed]
  68. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
    [CrossRef]
  69. C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11(21), 2753–2761 (2003).
    [CrossRef] [PubMed]
  70. P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
    [CrossRef] [PubMed]
  71. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
    [CrossRef] [PubMed]
  72. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
    [CrossRef] [PubMed]
  73. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
    [CrossRef]
  74. G. Sirat and D. Psaltis, “Conoscopic holography,” Opt. Lett. 10(1), 4–6 (1985).
    [CrossRef] [PubMed]
  75. Y. Malet and G. Y. Sirat, “Conoscopic holography application: multipurpose rangefinders,” J. Opt. 29(3), 183–187 (1998).
    [CrossRef]
  76. W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
    [CrossRef]
  77. E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
    [CrossRef]
  78. Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
    [CrossRef]
  79. J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
    [CrossRef]
  80. R. K. Raney, “Synthetic aperture imaging radar and moving targets,” IEEE Trans. Aerosp. Electron. Syst. AES-7(3), 499–505 (1971).
    [CrossRef]
  81. V. Gusmeroli and M. Martinelli, “Distributed laser Doppler velocimeter,” Opt. Lett. 16(17), 1358–1360 (1991).
    [CrossRef] [PubMed]
  82. A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
    [PubMed]
  83. K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7(1), 105–113 (1968).
    [CrossRef]
  84. J. W. Bilbro, “Atmospheric laser Doppler velocimetry—An overview,” Opt. Eng. 19, 533–542 (1980).
  85. M. Harris, G. Constant, and C. Ward, “Continuous-wave bistatic laser Doppler wind sensor,” Appl. Opt. 40(9), 1501–1506 (2001).
    [CrossRef] [PubMed]
  86. O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
    [CrossRef]
  87. L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
    [CrossRef]
  88. W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50(1), 73–78 (1979).
    [CrossRef] [PubMed]
  89. P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
    [CrossRef]
  90. R. Bogue, “Three-dimensional measurements: a review of technologies and applications,” Sensor Rev. 30(2), 102–106 (2010).
    [CrossRef]
  91. C. Cristalli, N. Paone, and R. M. Rodríguez, “Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements,” Mech. Syst. Signal Process. 20(6), 1350–1361 (2006).
    [CrossRef]
  92. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12(9), 2071–2074 (1973).
    [CrossRef] [PubMed]
  93. K. Alzahrani, D. Burton, F. Lilley, M. Gdeisat, F. Bezombes, and M. Qudeisat, “Absolute distance measurement with micrometer accuracy using a Michelson interferometer and the iterative synthetic wavelength principle,” Opt. Express 20(5), 5658–5682 (2012).
    [CrossRef] [PubMed]
  94. D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9(7), 1031–1035 (1998).
    [CrossRef]
  95. P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
    [CrossRef]
  96. J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser,” Appl. Opt. 38(28), 5981–5994 (1999).
    [CrossRef] [PubMed]
  97. F. Pollinger, K. Meiners-Hagen, M. Wedde, and A. Abou-Zeid, “Diode-laser-based high-precision absolute distance interferometer of 20 m range,” Appl. Opt. 48(32), 6188–6194 (2009).
    [CrossRef] [PubMed]
  98. G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985).
    [CrossRef]
  99. K. Määtta, J. Kostamovaara, and R. Myllylä, “Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques,” Appl. Opt. 32(27), 5334–5347 (1993).
    [CrossRef] [PubMed]
  100. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
    [CrossRef] [PubMed]
  101. E. Shafir and G. Berkovic, “Compact fibre optic probe for simultaneous distance and velocity determination,” Meas. Sci. Technol. 12, 943–947 (2001).
  102. H.-J. Yang, J. Deibel, S. Nyberg, and K. Riles, “High-precision absolute distance and vibration measurement with frequency scanned interferometry,” Appl. Opt. 44(19), 3937–3944 (2005).
    [CrossRef] [PubMed]
  103. S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
    [CrossRef]
  104. F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37(28), 6684–6689 (1998).
    [CrossRef] [PubMed]
  105. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
    [CrossRef]
  106. S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photonics Rev. 6(3), 393–417 (2012).
    [CrossRef]
  107. L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
    [CrossRef]
  108. F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
    [CrossRef] [PubMed]
  109. D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt. 46(9), 1486–1491 (2007).
    [CrossRef] [PubMed]
  110. M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
    [CrossRef]
  111. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).
  112. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
    [CrossRef]
  113. S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999).
    [CrossRef]
  114. L. Ren, G. Song, M. Conditt, P. C. Noble, and H. Li, “Fiber Bragg grating displacement sensor for movement measurement of tendons and ligaments,” Appl. Opt. 46(28), 6867–6871 (2007).
    [CrossRef] [PubMed]
  115. T. Thiel, J. Meissner, and U. Kliebold, “Autonomous crack response monitoring on civil structures with fiber Bragg grating displacement sensors,” Proc. SPIE 5855, 1068–1071 (2005).
    [CrossRef]
  116. S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
    [CrossRef]
  117. X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
    [CrossRef]
  118. J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
    [CrossRef]
  119. P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010).
    [CrossRef]
  120. P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
    [CrossRef]
  121. Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
    [CrossRef]
  122. D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).

2012 (2)

2011 (6)

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011).
[CrossRef] [PubMed]

P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[CrossRef]

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011).
[CrossRef]

W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[CrossRef]

2010 (4)

R. Bogue, “Three-dimensional measurements: a review of technologies and applications,” Sensor Rev. 30(2), 102–106 (2010).
[CrossRef]

The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[CrossRef] [PubMed]

P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010).
[CrossRef]

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras,” Appl. Opt. 49(23), 4392–4403 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (4)

V. Trudel and Y. St-Amant, “One- and two-dimensional single-mode differential fiber-optic displacement sensor for submillimeter measurements,” Appl. Opt. 47(8), 1082–1089 (2008).
[CrossRef] [PubMed]

H. Golnabi and P. Azimi, “Design and operation of a double-fiber displacement sensor,” Opt. Commun. 281(4), 614–620 (2008).
[CrossRef]

P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008).
[CrossRef]

G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[CrossRef]

2007 (8)

A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[CrossRef]

E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[CrossRef]

D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt. 46(9), 1486–1491 (2007).
[CrossRef] [PubMed]

L. Ren, G. Song, M. Conditt, P. C. Noble, and H. Li, “Fiber Bragg grating displacement sensor for movement measurement of tendons and ligaments,” Appl. Opt. 46(28), 6867–6871 (2007).
[CrossRef] [PubMed]

J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[CrossRef]

D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

2006 (8)

E. Shafir and G. Berkovic, “Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity,” Appl. Opt. 45(30), 7772–7777 (2006).
[CrossRef] [PubMed]

W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006).
[CrossRef]

M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[CrossRef]

C. Cristalli, N. Paone, and R. M. Rodríguez, “Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements,” Mech. Syst. Signal Process. 20(6), 1350–1361 (2006).
[CrossRef]

O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[CrossRef]

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[CrossRef]

K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

J. Pehkonen, P. Palojärvi, and J. Kostamovaara, “Receiver channel with resonance-based timing detection for a laser range finder,” IEEE Trans. Circ. Syst. 53(3), 569–577 (2006).
[CrossRef]

2005 (5)

E. Shafir and G. Berkovic, “Multi-wavelength fiber optic displacement sensing,” Proc. SPIE 5952, 59520X (2005).
[CrossRef]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef]

H.-J. Yang, J. Deibel, S. Nyberg, and K. Riles, “High-precision absolute distance and vibration measurement with frequency scanned interferometry,” Appl. Opt. 44(19), 3937–3944 (2005).
[CrossRef] [PubMed]

X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[CrossRef]

T. Thiel, J. Meissner, and U. Kliebold, “Autonomous crack response monitoring on civil structures with fiber Bragg grating displacement sensors,” Proc. SPIE 5855, 1068–1071 (2005).
[CrossRef]

2004 (5)

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[CrossRef] [PubMed]

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

J. Cohen-Sabban, J. Gaillard-Groleas, and P. J. Crepin, “Extended-field confocal imaging for 3D surface sensing,” Proc. SPIE 5252, 366–371 (2004).
[CrossRef]

J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[CrossRef]

2003 (1)

2002 (2)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002).
[CrossRef]

2001 (5)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[CrossRef]

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

E. Shafir and G. Berkovic, “Compact fibre optic probe for simultaneous distance and velocity determination,” Meas. Sci. Technol. 12, 943–947 (2001).

M. Harris, G. Constant, and C. Ward, “Continuous-wave bistatic laser Doppler wind sensor,” Appl. Opt. 40(9), 1501–1506 (2001).
[CrossRef] [PubMed]

2000 (5)

J. E. Nettleton, B. W. Schilling, D. N. Barr, and J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39(15), 2428–2432 (2000).
[CrossRef] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[CrossRef] [PubMed]

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000).
[CrossRef]

1999 (4)

J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38(2), 227–232 (1999).
[CrossRef]

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[CrossRef]

J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser,” Appl. Opt. 38(28), 5981–5994 (1999).
[CrossRef] [PubMed]

S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999).
[CrossRef]

1998 (7)

F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37(28), 6684–6689 (1998).
[CrossRef] [PubMed]

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37(31), 7298–7304 (1998).
[CrossRef] [PubMed]

Y. Malet and G. Y. Sirat, “Conoscopic holography application: multipurpose rangefinders,” J. Opt. 29(3), 183–187 (1998).
[CrossRef]

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9(7), 1031–1035 (1998).
[CrossRef]

C. T. Allen, K. Shi, and R. G. Plumb, “The use of ground-penetrating radar with a cooperative target,” IEEE Geosci. Remote Sensing 36(5), 1821–1825 (1998).
[CrossRef]

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[CrossRef]

1997 (3)

K.-C. Fan, “A non-contact automatic measurement for free-form surface profiles,” Comput. Integrated Manuf. Syst. 10(4), 277–285 (1997).
[CrossRef]

P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997).
[CrossRef]

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[CrossRef]

1996 (5)

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[CrossRef] [PubMed]

A. Shimamoto and K. Tanaka, “Geometrical analysis of an optical fiber bundle displacement sensor,” Appl. Opt. 35(34), 6767–6774 (1996).
[CrossRef] [PubMed]

H. Wang, “Reflective fibre optical displacement sensors for the inspection of tilted objects,” Opt. Quantum Electron. 28(11), 1655–1668 (1996).
[CrossRef]

Y.-J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[CrossRef]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[CrossRef]

1995 (3)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[CrossRef]

W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sens. Actuators A Phys. 49(1–2), 51–55 (1995).
[CrossRef]

1994 (2)

1993 (1)

1992 (2)

T. Dabbs and M. Glass, “Fiber-optic confocal microscope: FOCON,” Appl. Opt. 31(16), 3030–3035 (1992).
[CrossRef] [PubMed]

R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92(4–6), 315–325 (1992).
[CrossRef]

1991 (4)

Y. Libo and Q. Anping, “Fiber-optic diaphragm pressure sensor with automatic intensity compensation,” Sens. Actuators A Phys. 28(1), 29–33 (1991).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30(21), 2975–2979 (1991).
[CrossRef] [PubMed]

V. Gusmeroli and M. Martinelli, “Distributed laser Doppler velocimeter,” Opt. Lett. 16(17), 1358–1360 (1991).
[CrossRef] [PubMed]

1990 (1)

A. Koch and R. Ulrich, “Fiber-optic displacement sensor with 0.02 µm resolution by white-light interferometry,” Sens. Actuators A Phys. 25(1-3), 201–207 (1990).
[CrossRef]

1989 (3)

C. P. Cockshott and S. J. Pacaud, “Compensation of an optical fibre reflective sensor,” Sens. Actuators 17(1–2), 167–171 (1989).
[CrossRef]

Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21(5), 339–341 (1989).
[CrossRef]

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).

1988 (1)

P. J. Besl, “Active optical range imaging sensors,” Mach. Vis. Appl. 1(2), 127–152 (1988).
[CrossRef]

1985 (3)

M. Johnson, “Fiber displacement sensors for metrology and control,” Opt. Eng. 24, 961–965 (1985).

G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985).
[CrossRef]

G. Sirat and D. Psaltis, “Conoscopic holography,” Opt. Lett. 10(1), 4–6 (1985).
[CrossRef] [PubMed]

1984 (1)

1982 (1)

A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
[PubMed]

1981 (1)

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibre,” Electron. Lett. 17(17), 603–605 (1981).
[CrossRef]

1980 (1)

J. W. Bilbro, “Atmospheric laser Doppler velocimetry—An overview,” Opt. Eng. 19, 533–542 (1980).

1979 (2)

W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50(1), 73–78 (1979).
[CrossRef] [PubMed]

R. O. Cook and C. W. Hamm, “Fiber optic lever displacement transducer,” Appl. Opt. 18(19), 3230–3241 (1979).
[CrossRef] [PubMed]

1978 (1)

Y. Yakimovsky and R. Cunningham, “A system for extracting three-dimensional measurements from a stereo pair of TV cameras,” Comput. Graphics Image Process. 7(2), 195–210 (1978).
[CrossRef]

1977 (1)

D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65(2), 206–220 (1977).
[CrossRef]

1974 (1)

J. A. Powell, “A simple two fiber optical displacement sensor,” Rev. Sci. Instrum. 45(2), 302–303 (1974).
[CrossRef]

1973 (1)

1972 (1)

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[CrossRef]

1971 (1)

R. K. Raney, “Synthetic aperture imaging radar and moving targets,” IEEE Trans. Aerosp. Electron. Syst. AES-7(3), 499–505 (1971).
[CrossRef]

1968 (1)

K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7(1), 105–113 (1968).
[CrossRef]

1967 (2)

C. Menadier, C. Kissinger, and H. Adkins, “The fotonic sensor,” Instruments Control Syst. 40, 114–120 (1967).

G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967).
[CrossRef]

1965 (1)

J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[CrossRef]

1964 (1)

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
[CrossRef]

Abou-Zeid, A.

Adkins, H.

C. Menadier, C. Kissinger, and H. Adkins, “The fotonic sensor,” Instruments Control Syst. 40, 114–120 (1967).

Albin, S.

J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38(2), 227–232 (1999).
[CrossRef]

Allen, C. T.

C. T. Allen, K. Shi, and R. G. Plumb, “The use of ground-penetrating radar with a cooperative target,” IEEE Geosci. Remote Sensing 36(5), 1821–1825 (1998).
[CrossRef]

Alzahrani, K.

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Ancona, A.

Anping, Q.

Y. Libo and Q. Anping, “Fiber-optic diaphragm pressure sensor with automatic intensity compensation,” Sens. Actuators A Phys. 28(1), 29–33 (1991).
[CrossRef]

Appelbaum, G.

E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[CrossRef]

Azimi, P.

H. Golnabi and P. Azimi, “Design and operation of a double-fiber displacement sensor,” Opt. Commun. 281(4), 614–620 (2008).
[CrossRef]

Baier, H.

S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
[CrossRef]

Barker, L. M.

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[CrossRef]

Barr, D. N.

Bartulovic, V.

M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[CrossRef]

Beheim, G.

G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985).
[CrossRef]

Berkovic, G.

E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011).
[CrossRef]

G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[CrossRef]

E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[CrossRef]

E. Shafir and G. Berkovic, “Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity,” Appl. Opt. 45(30), 7772–7777 (2006).
[CrossRef] [PubMed]

E. Shafir and G. Berkovic, “Multi-wavelength fiber optic displacement sensing,” Proc. SPIE 5952, 59520X (2005).
[CrossRef]

E. Shafir and G. Berkovic, “Compact fibre optic probe for simultaneous distance and velocity determination,” Meas. Sci. Technol. 12, 943–947 (2001).

G. Berkovic, S. Zilberman, and E. Shafir, “Size effect in fiber optic displacement sensors,” in Optical Sensors, OSA Technical Digest (online) (Optical Society of America, 2012) SM4F.6.

Besl, P. J.

P. J. Besl, “Active optical range imaging sensors,” Mach. Vis. Appl. 1(2), 127–152 (1988).
[CrossRef]

Bezombes, F.

Biedermann, B. R.

Bilbro, J. W.

J. W. Bilbro, “Atmospheric laser Doppler velocimetry—An overview,” Opt. Eng. 19, 533–542 (1980).

Bogue, R.

R. Bogue, “Three-dimensional measurements: a review of technologies and applications,” Sensor Rev. 30(2), 102–106 (2010).
[CrossRef]

Boisrobert, C. Y.

Boltryk, P. J.

P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008).
[CrossRef]

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[CrossRef] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[CrossRef] [PubMed]

Borenstein, J.

J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile Robots: Sensors and Techniques (A. K. Peters, 1995).

Bosch, T.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37(28), 6684–6689 (1998).
[CrossRef] [PubMed]

Bouma, B. E.

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[CrossRef] [PubMed]

Brain, A. E.

D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65(2), 206–220 (1977).
[CrossRef]

Brambilla, G.

P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[CrossRef]

Brambilla, M.

Brezinski, M. E.

P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[CrossRef] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[CrossRef] [PubMed]

Bril, M.

G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[CrossRef]

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Browning, K. A.

K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7(1), 105–113 (1968).
[CrossRef]

Buller, G. S.

Burton, D.

Carnegie, D. A.

Castellini, P.

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[CrossRef]

Chan, D.

Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.

Chang, K.-M.

W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sens. Actuators A Phys. 49(1–2), 51–55 (1995).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Choi, S. S.

S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999).
[CrossRef]

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef]

Cockshott, C. P.

C. P. Cockshott and S. J. Pacaud, “Compensation of an optical fibre reflective sensor,” Sens. Actuators 17(1–2), 167–171 (1989).
[CrossRef]

Coe, P. A.

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

Cohen-Sabban, J.

J. Cohen-Sabban, J. Gaillard-Groleas, and P. J. Crepin, “Extended-field confocal imaging for 3D surface sensing,” Proc. SPIE 5252, 366–371 (2004).
[CrossRef]

Columbo, L.

Conditt, M.

Constant, G.

Cook, R. O.

Cova, S.

Cree, M. J.

Crepin, P. J.

J. Cohen-Sabban, J. Gaillard-Groleas, and P. J. Crepin, “Extended-field confocal imaging for 3D surface sensing,” Proc. SPIE 5252, 366–371 (2004).
[CrossRef]

Cristalli, C.

C. Cristalli, N. Paone, and R. M. Rodríguez, “Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements,” Mech. Syst. Signal Process. 20(6), 1350–1361 (2006).
[CrossRef]

Cui, Y.

Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.

Cummins, H. Z.

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
[CrossRef]

Cunningham, R.

Y. Yakimovsky and R. Cunningham, “A system for extracting three-dimensional measurements from a stereo pair of TV cameras,” Comput. Graphics Image Process. 7(2), 195–210 (1978).
[CrossRef]

Dabbicco, M.

Dabbs, T.

Danielson, B. L.

De Lucia, F.

Deibel, J.

Ding, L.

X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[CrossRef]

Donati, S.

S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photonics Rev. 6(3), 393–417 (2012).
[CrossRef]

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[CrossRef]

Dong, X.

X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[CrossRef]

Dorrington, A. A.

Dorsch, R. G.

Drexler, W.

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[CrossRef] [PubMed]

Duda, R. O.

D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65(2), 206–220 (1977).
[CrossRef]

Dufour, M. L.

M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[CrossRef]

Eigenwillig, C. M.

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[CrossRef]

Everett, H. R.

J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile Robots: Sensors and Techniques (A. K. Peters, 1995).

Fan, K.-C.

K.-C. Fan, “A non-contact automatic measurement for free-form surface profiles,” Comput. Integrated Manuf. Syst. 10(4), 277–285 (1997).
[CrossRef]

Fang, X.

S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999).
[CrossRef]

Faria, J. A. B.

P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[CrossRef]

Farrell, G.

P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[CrossRef]

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010).
[CrossRef]

Feng, L.

J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile Robots: Sensors and Techniques (A. K. Peters, 1995).

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Foreman, J. W.

J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[CrossRef]

Fritsch, K.

G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985).
[CrossRef]

Fujimoto, J. G.

P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[CrossRef] [PubMed]

Gaillard-Groleas, J.

J. Cohen-Sabban, J. Gaillard-Groleas, and P. J. Crepin, “Extended-field confocal imaging for 3D surface sensing,” Proc. SPIE 5252, 366–371 (2004).
[CrossRef]

Galas, J.

D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).

Garzón, J. R.

J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[CrossRef]

Gauthier, B.

M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[CrossRef]

Gdeisat, M.

George, E. W.

J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[CrossRef]

Ghanbari, A.

A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).

Gharbi, T.

J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[CrossRef]

Girao, P. M. B. S.

P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[CrossRef]

Giuliani, G.

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[CrossRef]

Glass, M.

Glenn, W. H.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).

Golnabi, H.

H. Golnabi and P. Azimi, “Design and operation of a double-fiber displacement sensor,” Opt. Commun. 281(4), 614–620 (2008).
[CrossRef]

Golub, M. A.

G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[CrossRef]

Goosman, D. R.

O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[CrossRef]

Gouaux, F.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Guo, D.

Gusmeroli, V.

Hamm, C. W.

Han, J.-H.

S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
[CrossRef]

Hao, J.

J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[CrossRef]

Harris, M.

Hatta, A. M.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

Häusler, G.

Hedayati, H.

A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hemsing, W. F.

W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50(1), 73–78 (1979).
[CrossRef] [PubMed]

Herrmann, J. M.

Hewko, M.

M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[CrossRef]

Hickman, K. E.

G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967).
[CrossRef]

Hill, M.

P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008).
[CrossRef]

Hitzenberger, C. K.

C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express 11(21), 2753–2761 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[CrossRef]

Hollenbach, R. E.

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[CrossRef]

Holly, S.

G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967).
[CrossRef]

Horovitz, E.

E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[CrossRef]

Horovitz, Y.

E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[CrossRef]

Hortschitz, W.

W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[CrossRef]

Howard, L.

Howell, D. F.

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

Hsu, K.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, X.

The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[CrossRef] [PubMed]

Huber, R.

Hwang, G.-J.

W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sens. Actuators A Phys. 49(1–2), 51–55 (1995).
[CrossRef]

Izatt, J. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef]

Jachimowicz, A.

W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[CrossRef]

Jackson, D. A.

Y.-J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[CrossRef]

Jako, G. J.

G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967).
[CrossRef]

Janabi-Sharifi, F.

A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).

Jesser, C.

P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[CrossRef] [PubMed]

Ji, Z.

Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21(5), 339–341 (1989).
[CrossRef]

Johnson, M.

M. Johnson, “Fiber displacement sensors for metrology and control,” Opt. Eng. 24, 961–965 (1985).

Jordan, H.-J.

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[CrossRef]

Juškaitis, R.

R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92(4–6), 315–325 (1992).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[CrossRef]

Kang, L.-H.

S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
[CrossRef]

Katuo, S.

D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9(7), 1031–1035 (1998).
[CrossRef]

Keplinger, F.

W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[CrossRef]

Kissinger, C.

C. Menadier, C. Kissinger, and H. Adkins, “The fotonic sensor,” Instruments Control Syst. 40, 114–120 (1967).

Klein, T.

Kliebold, U.

T. Thiel, J. Meissner, and U. Kliebold, “Autonomous crack response monitoring on civil structures with fiber Bragg grating displacement sensors,” Proc. SPIE 5855, 1068–1071 (2005).
[CrossRef]

Ko, W. H.

W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sens. Actuators A Phys. 49(1–2), 51–55 (1995).
[CrossRef]

Koch, A.

A. Koch and R. Ulrich, “Fiber-optic displacement sensor with 0.02 µm resolution by white-light interferometry,” Sens. Actuators A Phys. 25(1-3), 201–207 (1990).
[CrossRef]

Kohl, F.

W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[CrossRef]

Koo, A.

W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006).
[CrossRef]

Kostamovaara, J.

J. Pehkonen, P. Palojärvi, and J. Kostamovaara, “Receiver channel with resonance-based timing detection for a laser range finder,” IEEE Trans. Circ. Syst. 53(3), 569–577 (2006).
[CrossRef]

K. Määtta, J. Kostamovaara, and R. Myllylä, “Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques,” Appl. Opt. 32(27), 5334–5347 (1993).
[CrossRef] [PubMed]

Kuhlow, W. W.

O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[CrossRef]

Lamouche, G.

M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[CrossRef]

Lange, R.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

Lee, S. B.

S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999).
[CrossRef]

Lei, J. S.

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Leu, M. C.

Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21(5), 339–341 (1989).
[CrossRef]

Lévesque, S.

M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[CrossRef]

Lewis, R. D.

J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[CrossRef]

Leyva, V.

Li, H.

Li, P.

K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997).
[CrossRef]

Libo, Y.

Y. Libo and Q. Anping, “Fiber-optic diaphragm pressure sensor with automatic intensity compensation,” Sens. Actuators A Phys. 28(1), 29–33 (1991).
[CrossRef]

Lilley, F.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Litwin, D.

D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).

Liu, J.

J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002).
[CrossRef]

Liu, Z.

K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

Lo, P. W.

Lugarà, P. M.

Määtta, K.

Malet, Y.

Y. Malet and G. Y. Sirat, “Conoscopic holography application: multipurpose rangefinders,” J. Opt. 29(3), 183–187 (1998).
[CrossRef]

Maroti, L. A.

G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967).
[CrossRef]

Martarelli, M.

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[CrossRef]

Martinelli, M.

Martinez, C.

O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[CrossRef]

Massa, J. S.

Matsumiya, S.

J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002).
[CrossRef]

McBride, J. W.

P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008).
[CrossRef]

Meiners-Hagen, K.

Meissner, J.

T. Thiel, J. Meissner, and U. Kliebold, “Autonomous crack response monitoring on civil structures with fiber Bragg grating displacement sensors,” Proc. SPIE 5855, 1068–1071 (2005).
[CrossRef]

Meltz, G.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).

Menadier, C.

C. Menadier, C. Kissinger, and H. Adkins, “The fotonic sensor,” Instruments Control Syst. 40, 114–120 (1967).

Meneses, J.

J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[CrossRef]

Meng, H.

The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[CrossRef] [PubMed]

Merlo, S.

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[CrossRef]

Mezzapesa, F. P.

Miros, A.

D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).

Morey, W. W.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).

Moshe, E.

E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[CrossRef]

Mueller, U. C.

S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
[CrossRef]

Myllylä, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

K. Määtta, J. Kostamovaara, and R. Myllylä, “Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques,” Appl. Opt. 32(27), 5334–5347 (1993).
[CrossRef] [PubMed]

Nam, S. H.

K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

Naor, E.

E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011).
[CrossRef]

Nascè, A.

P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008).
[CrossRef]

Nettleton, J. E.

Ng, J. H.

J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[CrossRef]

Ngo, N. Q.

X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[CrossRef]

Nickerson, R. B.

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

Nitzan, D.

D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65(2), 206–220 (1977).
[CrossRef]

Noble, P. C.

Norgia, M.

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

Noshad, M.

A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).

Nyberg, S.

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[CrossRef]

Pacaud, S. J.

C. P. Cockshott and S. J. Pacaud, “Compensation of an optical fibre reflective sensor,” Sens. Actuators 17(1–2), 167–171 (1989).
[CrossRef]

Padioleau, C.

M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[CrossRef]

Palojärvi, P.

J. Pehkonen, P. Palojärvi, and J. Kostamovaara, “Receiver channel with resonance-based timing detection for a laser range finder,” IEEE Trans. Circ. Syst. 53(3), 569–577 (2006).
[CrossRef]

Paone, N.

C. Cristalli, N. Paone, and R. M. Rodríguez, “Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements,” Mech. Syst. Signal Process. 20(6), 1350–1361 (2006).
[CrossRef]

Patwari, P.

P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[CrossRef] [PubMed]

Payne, A. D.

Pehkonen, J.

J. Pehkonen, P. Palojärvi, and J. Kostamovaara, “Receiver channel with resonance-based timing detection for a laser range finder,” IEEE Trans. Circ. Syst. 53(3), 569–577 (2006).
[CrossRef]

Pereira, J. M. C. D.

P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[CrossRef]

Perelmutter, L.

E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[CrossRef]

Piatkowski, B.

D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

Plantier, G.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

Plata, A.

J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[CrossRef]

Plumb, R. G.

C. T. Allen, K. Shi, and R. G. Plumb, “The use of ground-penetrating radar with a cooperative target,” IEEE Geosci. Remote Sensing 36(5), 1821–1825 (1998).
[CrossRef]

Polhemus, C.

Pollinger, F.

Postolache, O. A.

P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[CrossRef]

Powell, J. A.

J. A. Powell, “A simple two fiber optical displacement sensor,” Rev. Sci. Instrum. 45(2), 302–303 (1974).
[CrossRef]

Pravdivtsev, A.

W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006).
[CrossRef]

Psaltis, D.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qudeisat, M.

Rakuljic, G.

Raney, R. K.

R. K. Raney, “Synthetic aperture imaging radar and moving targets,” IEEE Trans. Aerosp. Electron. Syst. AES-7(3), 499–505 (1971).
[CrossRef]

Rao, Y.-J.

Y.-J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[CrossRef]

Rapp, S.

S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
[CrossRef]

Ren, L.

Riedel, G. L.

A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
[PubMed]

Riles, K.

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

M. Rioux, “Laser range finder based on synchronized scanners,” Appl. Opt. 23(21), 3837–3844 (1984).
[CrossRef] [PubMed]

Rodríguez, R. M.

C. Cristalli, N. Paone, and R. M. Rodríguez, “Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements,” Mech. Syst. Signal Process. 20(6), 1350–1361 (2006).
[CrossRef]

Rostami, A.

A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).

Sachse, M.

W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[CrossRef]

Saleh, B.

B. Saleh, Introduction to Subsurface Imaging (Cambridge University Press, 2011), p. 38.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Santos II, M.

W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006).
[CrossRef]

Satyan, N.

Sauter, T.

W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[CrossRef]

Scalise, L.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

Scamarcio, G.

Schalko, J.

W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[CrossRef]

Schilling, B. W.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schuon, S.

Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.

Seitz, P.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

Semenova, Y.

P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[CrossRef]

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010).
[CrossRef]

Servagent, N.

Shafir, E.

E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011).
[CrossRef]

G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[CrossRef]

E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[CrossRef]

E. Shafir and G. Berkovic, “Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity,” Appl. Opt. 45(30), 7772–7777 (2006).
[CrossRef] [PubMed]

E. Shafir and G. Berkovic, “Multi-wavelength fiber optic displacement sensing,” Proc. SPIE 5952, 59520X (2005).
[CrossRef]

E. Shafir and G. Berkovic, “Compact fibre optic probe for simultaneous distance and velocity determination,” Meas. Sci. Technol. 12, 943–947 (2001).

G. Berkovic, S. Zilberman, and E. Shafir, “Size effect in fiber optic displacement sensors,” in Optical Sensors, OSA Technical Digest (online) (Optical Society of America, 2012) SM4F.6.

Shang, H.-T.

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibre,” Electron. Lett. 17(17), 603–605 (1981).
[CrossRef]

Shen, W.

The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[CrossRef] [PubMed]

Shepherd, A. P.

A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
[PubMed]

Shi, K.

K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

C. T. Allen, K. Shi, and R. G. Plumb, “The use of ground-penetrating radar with a cooperative target,” IEEE Geosci. Remote Sensing 36(5), 1821–1825 (1998).
[CrossRef]

Shimamoto, A.

Shtilman, M.

E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011).
[CrossRef]

Shum, P.

X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[CrossRef]

Shurman, V.

G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[CrossRef]

Sibillano, T.

Sirat, G.

Sirat, G. Y.

Y. Malet and G. Y. Sirat, “Conoscopic holography application: multipurpose rangefinders,” J. Opt. 29(3), 183–187 (1998).
[CrossRef]

Sitarek, S.

D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).

Skutelski, A.

E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[CrossRef]

Song, G.

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

Southern, J. F.

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[CrossRef] [PubMed]

St-Amant, Y.

Stamper, D.

P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[CrossRef] [PubMed]

Steiner, H.

W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[CrossRef]

Stejskal, A.

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[CrossRef]

Stifter, M.

W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stone, J. A.

Strand, O. T.

O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[CrossRef]

Sudai, M.

E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[CrossRef]

Surma, B.

D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tanaka, K.

Tearney, G. J.

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[CrossRef] [PubMed]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Theobalt, C.

Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.

Thiel, T.

T. Thiel, J. Meissner, and U. Kliebold, “Autonomous crack response monitoring on civil structures with fiber Bragg grating displacement sensors,” Proc. SPIE 5855, 1068–1071 (2005).
[CrossRef]

Thrun, S.

Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.

Tiziani, H.

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[CrossRef]

Tiziani, H. J.

Tomasini, E. P.

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[CrossRef]

Tribillion, G.

J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[CrossRef]

Trost, P.

Trudel, V.

Uhde, H.-M.

Ulrich, R.

A. Koch and R. Ulrich, “Fiber-optic displacement sensor with 0.02 µm resolution by white-light interferometry,” Sens. Actuators A Phys. 25(1-3), 201–207 (1990).
[CrossRef]

Umasuthan, M.

Vasilyev, A.

Vergnole, S.

M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[CrossRef]

Walecki, W. J.

W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006).
[CrossRef]

Walker, A. C.

Wallace, A. M.

Wang, G.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000).
[CrossRef]

Wang, H.

H. Wang, “Reflective fibre optical displacement sensors for the inspection of tilted objects,” Opt. Quantum Electron. 28(11), 1655–1668 (1996).
[CrossRef]

Wang, J.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000).
[CrossRef]

Wang, M.

Wang, P.

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[CrossRef]

P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010).
[CrossRef]

Ward, C.

Wedde, M.

Wegner, M.

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[CrossRef]

Weissman, N. J.

P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[CrossRef] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
[CrossRef] [PubMed]

Werdiger, M.

E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[CrossRef]

Wexler, R.

K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7(1), 105–113 (1968).
[CrossRef]

Whitworth, T. L.

O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[CrossRef]

Wieser, W.

Wilson, T.

R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92(4–6), 315–325 (1992).
[CrossRef]

Wu, Q.

P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[CrossRef]

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010).
[CrossRef]

Wu, X.

The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[CrossRef] [PubMed]

Xiaoli, D.

D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9(7), 1031–1035 (1998).
[CrossRef]

Xu, Z.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000).
[CrossRef]

Yakimovsky, Y.

Y. Yakimovsky and R. Cunningham, “A system for extracting three-dimensional measurements from a stereo pair of TV cameras,” Comput. Graphics Image Process. 7(2), 195–210 (1978).
[CrossRef]

Yamazaki, K.

J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002).
[CrossRef]

Yang, H.-J.

Yang, L.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000).
[CrossRef]

Yang, L.-Z.

P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997).
[CrossRef]

Yang, X.

J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[CrossRef]

X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[CrossRef]

Yariv, A.

Yeh, Y.

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
[CrossRef]

Yin, S.

K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

Yu, Y.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

Zhang, G.

The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[CrossRef] [PubMed]

Zhang, H.

P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997).
[CrossRef]

Zhang, S.

S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999).
[CrossRef]

Zhao, C.-L.

X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[CrossRef]

Zhao, Y.

P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997).
[CrossRef]

Zheng, J.

J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38(2), 227–232 (1999).
[CrossRef]

Zhou, Q. Y.

Zhou, X.

J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[CrossRef]

Zhou, Y.

J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002).
[CrossRef]

Zilberman, S.

G. Berkovic, S. Zilberman, and E. Shafir, “Size effect in fiber optic displacement sensors,” in Optical Sensors, OSA Technical Digest (online) (Optical Society of America, 2012) SM4F.6.

Am. J. Cardiol. (1)

P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound,” Am. J. Cardiol. 85(5), 641–644 (2000).
[CrossRef] [PubMed]

Am. J. Physiol. (1)

A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
[PubMed]

Am. J. Respir. Crit. Care Med. (1)

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

Appl. Opt. (21)

R. O. Cook and C. W. Hamm, “Fiber optic lever displacement transducer,” Appl. Opt. 18(19), 3230–3241 (1979).
[CrossRef] [PubMed]

M. Rioux, “Laser range finder based on synchronized scanners,” Appl. Opt. 23(21), 3837–3844 (1984).
[CrossRef] [PubMed]

B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30(21), 2975–2979 (1991).
[CrossRef] [PubMed]

T. Dabbs and M. Glass, “Fiber-optic confocal microscope: FOCON,” Appl. Opt. 31(16), 3030–3035 (1992).
[CrossRef] [PubMed]

R. G. Dorsch, G. Häusler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33(7), 1306–1314 (1994).
[CrossRef] [PubMed]

H. J. Tiziani and H.-M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt. 33(10), 1838–1843 (1994).
[CrossRef] [PubMed]

F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37(28), 6684–6689 (1998).
[CrossRef] [PubMed]

J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser,” Appl. Opt. 38(28), 5981–5994 (1999).
[CrossRef] [PubMed]

J. E. Nettleton, B. W. Schilling, D. N. Barr, and J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39(15), 2428–2432 (2000).
[CrossRef] [PubMed]

A. Shimamoto and K. Tanaka, “Geometrical analysis of an optical fiber bundle displacement sensor,” Appl. Opt. 35(34), 6767–6774 (1996).
[CrossRef] [PubMed]

K. Määtta, J. Kostamovaara, and R. Myllylä, “Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques,” Appl. Opt. 32(27), 5334–5347 (1993).
[CrossRef] [PubMed]

J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37(31), 7298–7304 (1998).
[CrossRef] [PubMed]

M. Harris, G. Constant, and C. Ward, “Continuous-wave bistatic laser Doppler wind sensor,” Appl. Opt. 40(9), 1501–1506 (2001).
[CrossRef] [PubMed]

C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12(9), 2071–2074 (1973).
[CrossRef] [PubMed]

H.-J. Yang, J. Deibel, S. Nyberg, and K. Riles, “High-precision absolute distance and vibration measurement with frequency scanned interferometry,” Appl. Opt. 44(19), 3937–3944 (2005).
[CrossRef] [PubMed]

E. Shafir and G. Berkovic, “Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity,” Appl. Opt. 45(30), 7772–7777 (2006).
[CrossRef] [PubMed]

D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt. 46(9), 1486–1491 (2007).
[CrossRef] [PubMed]

L. Ren, G. Song, M. Conditt, P. C. Noble, and H. Li, “Fiber Bragg grating displacement sensor for movement measurement of tendons and ligaments,” Appl. Opt. 46(28), 6867–6871 (2007).
[CrossRef] [PubMed]

V. Trudel and Y. St-Amant, “One- and two-dimensional single-mode differential fiber-optic displacement sensor for submillimeter measurements,” Appl. Opt. 47(8), 1082–1089 (2008).
[CrossRef] [PubMed]

F. Pollinger, K. Meiners-Hagen, M. Wedde, and A. Abou-Zeid, “Diode-laser-based high-precision absolute distance interferometer of 20 m range,” Appl. Opt. 48(32), 6188–6194 (2009).
[CrossRef] [PubMed]

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras,” Appl. Opt. 49(23), 4392–4403 (2010).
[CrossRef] [PubMed]

Appl. Phys. B (1)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Yeh and H. Z. Cummins, “Localized fluid flow measurements with an He–Ne laser spectrometer,” Appl. Phys. Lett. 4(10), 176–178 (1964).
[CrossRef]

J. W. Foreman, E. W. George, and R. D. Lewis, “Measurement of localized flow velocities in gases with a laser Doppler flowmeter,” Appl. Phys. Lett. 7(4), 77–78 (1965).
[CrossRef]

Comput. Graphics Image Process. (1)

Y. Yakimovsky and R. Cunningham, “A system for extracting three-dimensional measurements from a stereo pair of TV cameras,” Comput. Graphics Image Process. 7(2), 195–210 (1978).
[CrossRef]

Comput. Integrated Manuf. Syst. (1)

K.-C. Fan, “A non-contact automatic measurement for free-form surface profiles,” Comput. Integrated Manuf. Syst. 10(4), 277–285 (1997).
[CrossRef]

Electron. Lett. (2)

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibre,” Electron. Lett. 17(17), 603–605 (1981).
[CrossRef]

G. Beheim and K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21(3), 93–94 (1985).
[CrossRef]

IEEE Geosci. Remote Sensing (1)

C. T. Allen, K. Shi, and R. G. Plumb, “The use of ground-penetrating radar with a cooperative target,” IEEE Geosci. Remote Sensing 36(5), 1821–1825 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37(3), 390–397 (2001).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photon. Technol. Lett. 23(2), 130–132 (2011).
[CrossRef]

IEEE Sens. J. (2)

W. Hortschitz, H. Steiner, M. Sachse, M. Stifter, F. Kohl, J. Schalko, A. Jachimowicz, F. Keplinger, and T. Sauter, “An optical in-plane MEMS vibration sensor,” IEEE Sens. J. 11(11), 2805–2812 (2011).
[CrossRef]

P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An overview and a contribution to the optical measurement of linear displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[CrossRef]

IEEE Sensors (1)

G. Berkovic, E. Shafir, M. A. Golub, M. Bril, and V. Shurman, “Multiple-fiber and multiplewavelength confocal sensing with diffractive optical elements,” IEEE Sensors 8(7), 1089–1092 (2008).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst. (1)

R. K. Raney, “Synthetic aperture imaging radar and moving targets,” IEEE Trans. Aerosp. Electron. Syst. AES-7(3), 499–505 (1971).
[CrossRef]

IEEE Trans. Circ. Syst. (1)

J. Pehkonen, P. Palojärvi, and J. Kostamovaara, “Receiver channel with resonance-based timing detection for a laser range finder,” IEEE Trans. Circ. Syst. 53(3), 569–577 (2006).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56(5), 1894–1900 (2007).
[CrossRef]

IET Optoelectron. (1)

E. Shafir, M. Shtilman, E. Naor, and G. Berkovic, “Thermally independent fibre optic absolute distance measurement system based on white light interferometry,” IET Optoelectron. 5(2), 68–71 (2011).
[CrossRef]

Instruments Control Syst. (1)

C. Menadier, C. Kissinger, and H. Adkins, “The fotonic sensor,” Instruments Control Syst. 40, 114–120 (1967).

Int. J. Comput. Sci. Network Security (1)

A. Rostami, M. Noshad, H. Hedayati, A. Ghanbari, and F. Janabi-Sharifi, “A novel and high-precision optical displacement sensor,” Int. J. Comput. Sci. Network Security 7, 311–316 (2007).

J. Acoust. Soc. Am. (1)

G. J. Jako, K. E. Hickman, L. A. Maroti, and S. Holly, “Recording of the movement of the human basilar membrane,” J. Acoust. Soc. Am. 41(6), 1578–9999 (1967).
[CrossRef]

J. Appl. Meteorol. (1)

K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” J. Appl. Meteorol. 7(1), 105–113 (1968).
[CrossRef]

J. Appl. Phys. (2)

E. Shafir, G. Berkovic, Y. Horovitz, G. Appelbaum, E. Moshe, E. Horovitz, A. Skutelski, M. Werdiger, L. Perelmutter, and M. Sudai, “Noncontact ballistic motion measurement using a fiber-optic confocal sensor,” J. Appl. Phys. 101(9), 093107 (2007).
[CrossRef]

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[CrossRef]

J. Biomed. Opt. (3)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[CrossRef]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef]

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[CrossRef] [PubMed]

J. Manuf. Sci. Eng. (1)

J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, “A reflective fiber optic sensor for surface roughness in-process measurement,” J. Manuf. Sci. Eng. 124(3), 515–522 (2002).
[CrossRef]

J. Opt. (2)

Y. Malet and G. Y. Sirat, “Conoscopic holography application: multipurpose rangefinders,” J. Opt. 29(3), 183–187 (1998).
[CrossRef]

P. Wang, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system,” J. Opt. 13(7), 075402 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

J. R. Garzón, J. Meneses, G. Tribillion, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single mode fiber,” J. Opt. A, Pure Appl. Opt. 6(6), 544–548 (2004).
[CrossRef]

Laser Photonics Rev. (1)

S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photonics Rev. 6(3), 393–417 (2012).
[CrossRef]

Mach. Vis. Appl. (1)

P. J. Besl, “Active optical range imaging sensors,” Mach. Vis. Appl. 1(2), 127–152 (1988).
[CrossRef]

Meas. Sci. Technol. (6)

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9(7), 1142–1151 (1998).
[CrossRef]

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fibre optical confocal scanning microscope,” Meas. Sci. Technol. 11(12), 1786–1791 (2000).
[CrossRef]

Y.-J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[CrossRef]

E. Shafir and G. Berkovic, “Compact fibre optic probe for simultaneous distance and velocity determination,” Meas. Sci. Technol. 12, 943–947 (2001).

D. Xiaoli and S. Katuo, “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9(7), 1031–1035 (1998).
[CrossRef]

P. A. Coe, D. F. Howell, and R. B. Nickerson, “Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment,” Meas. Sci. Technol. 15(11), 2175–2187 (2004).
[CrossRef]

Mech. Syst. Signal Process. (2)

C. Cristalli, N. Paone, and R. M. Rodríguez, “Mechanical fault detection of electric motors by laser vibrometer and accelerometer measurements,” Mech. Syst. Signal Process. 20(6), 1350–1361 (2006).
[CrossRef]

P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Process. 20(6), 1265–1285 (2006).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

P. Wang, Y. Semenova, Q. Wu, and G. Farrell, “A bend loss-based singlemode fiber microdisplacement sensor,” Microw. Opt. Technol. Lett. 52(10), 2231–2235 (2010).
[CrossRef]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

Opt. Commun. (5)

J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[CrossRef]

K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

R. Juškaitis and T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92(4–6), 315–325 (1992).
[CrossRef]

H. Golnabi and P. Azimi, “Design and operation of a double-fiber displacement sensor,” Opt. Commun. 281(4), 614–620 (2008).
[CrossRef]

Opt. Eng. (5)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[CrossRef]

M. Johnson, “Fiber displacement sensors for metrology and control,” Opt. Eng. 24, 961–965 (1985).

J. Zheng and S. Albin, “Self-referenced reflective intensity modulated fiber optic displacement sensor,” Opt. Eng. 38(2), 227–232 (1999).
[CrossRef]

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

J. W. Bilbro, “Atmospheric laser Doppler velocimetry—An overview,” Opt. Eng. 19, 533–542 (1980).

Opt. Express (5)

Opt. Laser Technol. (1)

Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21(5), 339–341 (1989).
[CrossRef]

Opt. Lasers Eng. (1)

S. Zhang, S. B. Lee, X. Fang, and S. S. Choi, “In-fiber grating sensors,” Opt. Lasers Eng. 32(5), 405–418 (1999).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

H. Wang, “Reflective fibre optical displacement sensors for the inspection of tilted objects,” Opt. Quantum Electron. 28(11), 1655–1668 (1996).
[CrossRef]

Proc. IEEE (1)

D. Nitzan, A. E. Brain, and R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65(2), 206–220 (1977).
[CrossRef]

Proc. SPIE (8)

E. Shafir and G. Berkovic, “Multi-wavelength fiber optic displacement sensing,” Proc. SPIE 5952, 59520X (2005).
[CrossRef]

P. Li, H. Zhang, Y. Zhao, and L.-Z. Yang, “New compensation method of an optical fiber reflective displacement sensor,” Proc. SPIE 3241, 474–476 (1997).
[CrossRef]

W. J. Walecki, A. Pravdivtsev, M. Santos II, and A. Koo, “High-speed high-accuracy fiber optic low-coherence interferometry for in situ grinding and etching process monitoring,” Proc. SPIE 6293, 62930D (2006).
[CrossRef]

M. L. Dufour, G. Lamouche, S. Vergnole, B. Gauthier, C. Padioleau, M. Hewko, S. Lévesque, and V. Bartulovic, “Surface inspection of hard to reach industrial parts using low coherence interferometry,” Proc. SPIE 6343, 63431Z (2006).
[CrossRef]

J. Cohen-Sabban, J. Gaillard-Groleas, and P. J. Crepin, “Extended-field confocal imaging for 3D surface sensing,” Proc. SPIE 5252, 366–371 (2004).
[CrossRef]

D. Litwin, J. Galas, S. Sitarek, B. Surma, B. Piatkowski, and A. Miros, “Temperature influence in confocal techniques for a silicon wafer testing,” Proc. SPIE 6585, 68050V (2007).

T. Thiel, J. Meissner, and U. Kliebold, “Autonomous crack response monitoring on civil structures with fiber Bragg grating displacement sensors,” Proc. SPIE 5855, 1068–1071 (2005).
[CrossRef]

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98–107 (1989).

Rev. Sci. Instrum. (5)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[CrossRef]

O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[CrossRef]

W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50(1), 73–78 (1979).
[CrossRef] [PubMed]

The distance range may be extended by collimating the light from the transmitting fiber; see W. Shen, X. Wu, H. Meng, G. Zhang, and X. Huang, “Long distance fiber-optic displacement sensor based on fiber collimator,” Rev. Sci. Instrum. 81(12), 123104 (2010).
[CrossRef] [PubMed]

J. A. Powell, “A simple two fiber optical displacement sensor,” Rev. Sci. Instrum. 45(2), 302–303 (1974).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sens. Actuators (1)

C. P. Cockshott and S. J. Pacaud, “Compensation of an optical fibre reflective sensor,” Sens. Actuators 17(1–2), 167–171 (1989).
[CrossRef]

Sens. Actuators A Phys. (4)

Y. Libo and Q. Anping, “Fiber-optic diaphragm pressure sensor with automatic intensity compensation,” Sens. Actuators A Phys. 28(1), 29–33 (1991).
[CrossRef]

P. J. Boltryk, M. Hill, J. W. McBride, and A. Nascè, “A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles,” Sens. Actuators A Phys. 142(1), 2–11 (2008).
[CrossRef]

W. H. Ko, K.-M. Chang, and G.-J. Hwang, “A fiber-optic reflective displacement micrometer,” Sens. Actuators A Phys. 49(1–2), 51–55 (1995).
[CrossRef]

A. Koch and R. Ulrich, “Fiber-optic displacement sensor with 0.02 µm resolution by white-light interferometry,” Sens. Actuators A Phys. 25(1-3), 201–207 (1990).
[CrossRef]

Sensor Rev. (1)

R. Bogue, “Three-dimensional measurements: a review of technologies and applications,” Sensor Rev. 30(2), 102–106 (2010).
[CrossRef]

Smart Mater. Struct. (2)

S. Rapp, L.-H. Kang, J.-H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct. 18(2), 025006 (2009).
[CrossRef]

X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(7-N), 10 (2005).
[CrossRef]

Other (8)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

B. Saleh, Introduction to Subsurface Imaging (Cambridge University Press, 2011), p. 38.

Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning with a time-of-flight camera,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1173–1180.

J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile Robots: Sensors and Techniques (A. K. Peters, 1995).

“Fiber optic sensors: Introduction,” http://www.efunda.com/DesignStandards/sensors/fotonic/fotonic_intro.cfm.

http://www.efunda.com/DesignStandards/sensors/fotonic/fotonic_theory.cfm 36.

G. Berkovic, S. Zilberman, and E. Shafir, “Size effect in fiber optic displacement sensors,” in Optical Sensors, OSA Technical Digest (online) (Optical Society of America, 2012) SM4F.6.

See, for example, “Thales,” http://en.wikipedia.org/wiki/Thales.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Figure 1
Figure 1

Illustration of the relationship between an absolute distance measurement and derived quantities of displacement, surface profile speed, and vibration.

Figure 2
Figure 2

Illustration of a fiber optic intensity sensor for distance measurements. (a) Two-fiber sensor, showing the object and the operational principle (b) Various geometries for fiber bundle sensor heads, copied with permission from [6].

Figure 3
Figure 3

Typical signal versus distance response for an intensity-based fiber optic displacement sensor (copied with permission from [14]).

Figure 4
Figure 4

Demonstration of possible sensitivity of intensity-based fiber optic displacement sensor to the tilt angle of specular or shiny objects (e.g., a mirror). The lower illustration shows why a mirror at distance d will specularly reflect more light into the receiving fiber at a tilt angle tan θ = a / d than at normal incidence. a, separation of fiber centers.

Figure 5
Figure 5

Normalized measured responses of three different fiber sensors at constant distance of 1.5 mm from a machined aluminum metal target (with <3  µ m surface roughness), while the target is translated laterally. The nominal distance to the target remains constant, but different areas of the target are exposed to the input light.

Figure 6
Figure 6

Surface roughness model, showing light rays reflected specularly according to the local surface normal. The receiving fiber(s) collect different amounts of light from different sections of the surface.

Figure 7
Figure 7

The effect of lateral translation of various target objects relative to the sensor with a single-mode transmitting fiber and a 100 µm core receiving fiber. Results are shown for three target objects: a mirror, a standard white scattering surface (Labsphere USRS-99-010), and the machined metal surface of Fig. 5.

Figure 8
Figure 8

Principle of optical triangulation sensor. The unknown distance, D, is determined from the known distances E , F and the measured value of G—the distance to the pixel in the position sensitive detector (PSD) recording the image of the laser spot on the measured object.

Figure 9
Figure 9

(a) Triangulation based on measurements of angles of view θ P and θ Q from two known observation points, P and Q. The object is located at the intersection of the two lines drawn. (b) Triangulation based on measurement of distances Z P and Z Q from two known observation points, P and Q. The object is located at the intersection of the two arcs drawn.

Figure 10
Figure 10

(a) Pulsed time-of-flight measurement showing three regimes where the time of flight is (i) much longer, (ii) similar to, and (iii) shorter than the pulse width. For nanosecond pulses these cases correspond to distances (in air) of >50 m, a few meters, and <1 m, respectively. (b) Intensity modulated time-of-flight is an alternative method suitable for distances in range (ii). The phase shift is indicated by the double-headed arrow.

Figure 11
Figure 11

Principle of fiber optic monochromatic and polychromatic confocal sensing. (i) Monochromatic confocal sensor with an object at the image plane. (ii) Monochromatic confocal sensor with an object displaced from the image plane (adapted from [49]). (iii) Polychromatic sensor where the image plane position varies with wavelength and a different wavelength will satisfy the confocal geometry for each object position.

Figure 12
Figure 12

Basic setup for WLI and typical interference pattern as a function of the reference arm mirror movement. A low-coherence source is used, in this case a fiber-coupled 1.5  µ m superluminescent diode with 60 nm spectral width. The interferogram shows an oscillation period of half the wavelength, and width corresponding to the coherence length of the source.

Figure 13
Figure 13

Measurement of a vibrating object by chromatic confocal sensor.

Figure 14
Figure 14

Demonstration of fiber-optic-assisted Doppler velocimetry. (a) The experimental setup, using a pigtailed coherent 1.5 µm laser source and a moving mirror. (b) Detector output measured by an oscilloscope for a motion of 100 µm/s. (c) Detector output measured by an electronic spectrum analyzer for a motion of 100 µm/s (black), 50 µm/s (blue), and 25 µm/s (red).

Figure 15
Figure 15

Schematic diagram showing how a FBG can be used to monitor displacement of the object. The red dots denote that the fiber is glued as shown to the object and a fixed support.

Figure 16
Figure 16

Comparison of typical resolutions and working distances of the optical distance measurement techniques discussed in this article. The entry for triangulation is divided into a filled region, corresponding to measurement from a single observation point, and a shaded region for multiple observation points.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

l c = λ 2 Δ λ ,
Δ f f = 2 ν c or λ Δ f = 2 ν .
L = ( N + ϕ / 2 π ) λ .
n ( λ 0 , T 0 ) = n ( λ 0 + Δ λ , T 0 + Δ T ) ,
Δ λ n λ = Δ T n T .

Metrics